2,048 research outputs found

    Construction of rational expression from tree automata using a generalization of Arden's Lemma

    Full text link
    Arden's Lemma is a classical result in language theory allowing the computation of a rational expression denoting the language recognized by a finite string automaton. In this paper we generalize this important lemma to the rational tree languages. Moreover, we propose also a construction of a rational tree expression which denotes the accepted tree language of a finite tree automaton

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Bottom Up Quotients and Residuals for Tree Languages

    Full text link
    In this paper, we extend the notion of tree language quotients to bottom-up quotients. Instead of computing the residual of a tree language from top to bottom and producing a list of tree languages, we show how to compute a set of k-ary trees, where k is an arbitrary integer. We define the quotient formula for different combinations of tree languages: union, symbol products, compositions, iterated symbol products and iterated composition. These computations lead to the definition of the bottom-up quotient tree automaton, that turns out to be the minimal deterministic tree automaton associated with a regular tree language in the case of the 0-ary trees

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Multioperator Weighted Monadic Datalog

    Get PDF
    In this thesis we will introduce multioperator weighted monadic datalog (mwmd), a formal model for specifying tree series, tree transformations, and tree languages. This model combines aspects of multioperator weighted tree automata (wmta), weighted monadic datalog (wmd), and monadic datalog tree transducers (mdtt). In order to develop a rich theory we will define multiple versions of semantics for mwmd and compare their expressiveness. We will study normal forms and decidability results of mwmd and show (by employing particular semantic domains) that the theory of mwmd subsumes the theory of both wmd and mdtt. We conclude this thesis by showing that mwmd even contain wmta as a syntactic subclass and present results concerning this subclass

    Average Analysis of Glushkov Automata under a BST-Like Model

    Get PDF
    We study the average number of transitions in Glushkov automata built from random regular expressions. This statistic highly depends on the probabilistic distribution set on the expressions. A recent work shows that, under the uniform distribution, regular expressions lead to automata with a linear number of transitions. However, uniform regular expressions are not necessarily a satisfying model. Therefore, we rather focus on an other model, inspired from random binary search trees (BST), which is widely used, in particular for testing. We establish that, in this case, the average number of transitions becomes quadratic according to the size of the regular expression

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    Fair Testing

    Get PDF
    In this paper we present a solution to the long-standing problem of characterising the coarsest liveness-preserving pre-congruence with respect to a full (TCSP-inspired) process algebra. In fact, we present two distinct characterisations, which give rise to the same relation: an operational one based on a De Nicola-Hennessy-like testing modality which we call should-testing, and a denotational one based on a refined notion of failures. One of the distinguishing characteristics of the should-testing pre-congruence is that it abstracts from divergences in the same way as Milner¿s observation congruence, and as a consequence is strictly coarser than observation congruence. In other words, should-testing has a built-in fairness assumption. This is in itself a property long sought-after; it is in notable contrast to the well-known must-testing of De Nicola and Hennessy (denotationally characterised by a combination of failures and divergences), which treats divergence as catrastrophic and hence is incompatible with observation congruence. Due to these characteristics, should-testing supports modular reasoning and allows to use the proof techniques of observation congruence, but also supports additional laws and techniques. Moreover, we show decidability of should-testing (on the basis of the denotational characterisation). Finally, we demonstrate its advantages by the application to a number of examples, including a scheduling problem, a version of the Alternating Bit-protocol, and fair lossy communication channel

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF
    • …
    corecore