
Multioperator Weighted Monadic Datalog

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden
Fakultät Informatik

eingereicht von

M.Sc. (Inf.) Torsten Stüber
geboren am 8.12.1981 in Lutherstadt Wittenberg

Gutachter:

Prof. Dr.-Ing. habil. Heiko Vogler, TU Dresden
(Betreuer)

Dr. Zoltán Fülöp, full professor, Universität Szeged

Tag der Verteidigung: 10. Februar 2011

Dresden, 30. April 2011

ii

Acknowledgements

Developing a computation model that combines weighted monadic datalog, monadic dat-
alog tree transducers, and multioperator weighted tree automata is a laborious task. I
am particularly thankful to my supervisor, Heiko Vogler, for allowing me to put as much
time and effort into this project as it demanded. I would also like to thank him for many
helpful discussions and for sharing his wisdom about the field of tree automata.

I like to thank my collaborators for giving useful aid and insights for developing a
better understanding of this topic. In particular, I thank Zoltán Fülöp and Manfred
Droste. I would also like to thank my current and former colleagues Matthias Büchse,
Janis Voigtländer, and Andreas Maletti; it has always been pleasant to work, develop
ideas, and spend time with you.

I am particularly thankful to my parents and my brother Carsten, for their lasting
support and love and for providing a background, without which this thesis would not
have been possible.

My greatest thanks, though, are for the very person that makes every single day of my
life invaluable. You are the woman that I long to share life’s adventures with although my
life has not been adventurous during the last very tough couple of months. I am incredibly
thankful for your support and patience during that time and now I am desparately looking
forward to a prosperous future with you. I love you, Juliane!

iii

iv

Contents

1 Introduction 1

2 Preliminaries 11
2.1 Notation . 11
2.2 Sets and Relations . 11
2.3 Mappings and Operations . 14

2.4 Signatures and Algebras . 17
2.5 Strings and Trees . 18
2.6 Hypergraphs . 22

3 M-monoids 35

3.1 Semigroups and monoids . 35
3.2 General m-monoids . 37
3.3 M-monoids with infinite behavior . 39

3.3.1 Complete m-monoids . 40
3.3.2 Continuous m-monoids . 44

3.3.3 Relationships . 49
3.4 Conclusion and open problems . 53

4 M-weighted monadic datalog programs 55
4.1 Syntax . 55

4.2 Semantics . 57
4.2.1 Instantiations . 57
4.2.2 Fixpoint semantics . 65
4.2.3 Hypergraph semantics . 74
4.2.4 Comparison of fixpoint and hypergraph semantics 79

5 Normal forms 83
5.1 Syntactic Subclasses . 83
5.2 Relatedness . 86

5.2.1 Motivation . 87

5.2.2 Formal definition . 88
5.2.3 Weak relatedness . 90
5.2.4 Strong relatedness . 93

5.3 Proper . 102
5.4 Connected . 107

v

vi Contents

5.5 Local . 114

6 Deciding circularity 121
6.1 Recognizable tree languages . 122
6.2 Defining circularity . 124

7 Weighted monadic datalog 135
7.1 Strong bimonoids and semirings . 135
7.2 Weighted monadic datalog programs . 138
7.3 Expressiveness of wmd . 141

7.3.1 Comparison of finitary with infinitary semantics 142
7.3.2 Comparison with monadic datalog 143
7.3.3 Comparison with recognizable tree series 143

7.4 Combined Complexity . 146
7.5 Open problems . 150

8 Monadic datalog tree transducers 151
8.1 Free m-monoids . 151
8.2 Mwmd over free m-monoids . 155
8.3 Normal forms . 159

8.3.1 Semiconnected . 160
8.3.2 Attributed Tree Transducers . 163

8.4 Open problems . 166

9 Weighted multioperator tree automata 167
9.1 Syntax and semantics of weighted multioperator tree automata 168
9.2 Decomposition and composition . 171

9.2.1 Tree transformations . 172
9.2.2 Decomposition . 174
9.2.3 Composition . 177

9.3 M-definable tree series . 179
9.4 A Büchi-like theorem . 184

9.4.1 From automata to m-expressions 184
9.4.2 From m-expressions to automata 185

9.5 Further results . 189

A Additional proofs 191
A.1 Proper classes in formal language theory 191
A.2 Counterexample for (R1) and (R2) . 191
A.3 Proof of Lemma 4.31 . 193

Bibliography 197

List of Symbols 207

Index 209

CHAPTER 1

Introduction

One of the core aspects of computer science is the development of models of computation.
Computation in this sense is the process of transforming input data into output data.

Usually data have an underlying structure. One of the most general, common, and
broadly applicable ways to structure data is the hierarchical scheme, also called tree
structure. Tree structured data have many applications in computer science:

• The rise of the Web has lead to new ways of representing data and storing data
by means of semi-structured databases [1, 82] and eXtensible Markup Language
(for short: XML) [24]. Semi-structured databases are, essentially, data having a
tree structure. The popularity of XML led to an immense increase of research
concerning information extraction techniques for tree structured data.

• Sentences or words of both artificial and natural language are typically denoted
as strings. However, languages usually have a structure, which is given by the
grammar of the language. Hence, strings are a convenient but not the natural way
to represent elements of the language. By adding the structure, which is implied by
the grammar, to such an element, one obtains a tree structure. Hence, processing
natural or artificial languages is most successfully accomplished by using a tree
structured representation of the language elements.

As there are numerous fields of research in computer science, there are multiple definitions
of trees. One of the most broadly used variants are trees such that their nodes are
labeled and the children of every node are totally ordered. There are two flavors of such
trees: (i) for ranked trees, the rank of every node, i.e., the number of its children, is
unambiguously determined by its label and (ii) for unranked trees every node can have an
arbitrary rank. In some sense both variants are interchangeable, because every ranked tree
is an unranked tree and every unranked tree can be encoded as a ranked tree. Therefore,
let us restrict our focus to ranked trees in this motivation because their restricted structure
usually allows for simpler computation models.

There are a variety of methods to model computation processes. Common examples
are Turing machines, programming languages, neural networks, or finite automata, i.e.,
devices having a bounded amount of memory. Research in the field of finite automata
has led to many fruitful discoveries and applications because often finite automata have
a simple structure, can be processed efficiently, behave “nicely”, i.e., have many closure
properties and decidability properties, the classes of computations they define are robust,
i.e., often coincide for similar finite specifications, and, quite often, have satisfactory
computational power.

Let us have a closer look at finite devices for processing ranked trees. In particular, let
us discuss the developments of two branches of such models.

1

2 1. Introduction

Finite state tree automata and transducers The theory of tree automata [37, 49, 65,
66, 128] emerged in the middle of the 1960s and generalizes the concept of finite automata
over strings. Finite state tree automata (for short: fta) were introduced independently by
Doner [37] and Thatcher and Wright [128].

Essentially, an fta consists of a finite state set Q, a set δ of allowed transitions, and a
set F of final states. The semantics of an fta is a tree language; it is usually defined in
terms of runs and transitions. Given an input tree, a run on that tree is a decoration of
its nodes with states of the fta such that the root node is associated with a final state.
Given a run, every position w of the input tree determines a transition, which is the triple
(q1 · · · qk, σ, q) consisting of the sequence q1 · · · qk of states that the direct children of w are
decorated with, the label σ of the input tree at w, and the state q at w. The fta accepts
the input tree if there is a run on that tree such that every transition in the input tree
for that run is allowed, i.e., it is in the set δ. Now the set of accepted input trees is the
recognized language of the fta.

The set δ of allowed transitions can be considered as a mapping from the set of pos-
sible transitions into the set B of Boolean values; let us consider this point of the view
in the following discussion. It is natural to extend this model by assigning more sophis-
ticated weights to each transition. In order to be able to calculate with these weights,
an algebraic structure is required; usually, semirings [67, 72] are most appropriate for
this purpose. Roughly speaking, a semiring is an algebra containing two binary opera-
tions, where the first operation is called the semiring addition and the second operation
is called the semiring multiplication; moreover, the semiring multiplication is required to
distribute over the semiring addition. This extension results in the concept of weighted
tree automata [15, 95, 52, 53] (for short: wta). Wta are defined similarly to fta; however,
in addition every wta involves a semiring and the mapping δ of allowed transitions is re-
placed by a mapping µ which associates every possible transition with a semiring element.
The semantics of a wta is a mapping from the set of input trees to the carrier set of the
semiring of the wta; this mapping is called the recognized (formal) tree series [97, 51] of
the wta. Now let us explain how this tree series is computed. For every input tree t the
image of t under the recognized tree series is the sum of the weights of every run of the
wta on t, where the weight of every run is defined to be the product of the weight of
every transition (note that this weight is given by µ) in the input tree for that run; if the
considered semiring is not commutative, then one has to agree on a certain order of the
factors in that product. Weighted tree automata have broad applications in computer
science, e.g., for code selection in compilers [54, 21], tree pattern matching [120], and nat-
ural language processing [87, 27]. Note that in [114] the concept of wta has been extended
to strong bimonoids [44], which, roughly speaking, are semirings without distributivity.

In the previous paragraph we have described a tree automaton model that is derived
from fta by allowing the mapping δ to map into an arbitrary given semiring. Other models
that originate from fta by employing similar extensions, have been proposed, investigated,
and applied fruitfully. We will just mention two such models.

• The concept of tree transducers [117, 130, 8, 48, 9] (for short: tt) can be considered to
originate from the concept of fta by replacing the mapping δ of allowed transitions by
a mapping µ which associates every possible transition with a finite set of segments
of output trees; such a segment is modeled as a tree containing output symbols and
variables. The semantics of a tt is a mapping from input trees to sets of output
trees; such a mapping is called a tree transformation. The set of output trees for

3

a given input tree is the union of the induced tree languages of every run of the tt
on t; the tree language that is induced by a run is obtained by applying the tree
substitution operation to the output tree segment sets of every transition (which are
given by µ) in the input tree for that run. Note that usually the semantics of tt is
defined in terms of derivations instead of runs and transitions [48]. Tree transducers
have been applied in practice for, e.g., computational linguistics [110, 91, 107], query
languages of semi-structured databases [16], and generation of pictures [39, 40].

• Weighted tree transducers [97, 51, 61, 57, 62, 105, 63] (for short: wtt) are a combi-
nation of wta and tree transducers. Every wtt defines a mapping from input trees
to tree series over output trees and a given semiring; such a mapping is called a tree
series transformation. In particular, wtt and extended models have applications in
the field of translation of natural languages (cf., e.g., [86, 106]).

Since fta, wta, tt, and wtt share a similar structure, a unifying model has been pro-
posed that subsumes all of the former four models. This automaton, called the weighted
multioperator tree automaton (for short: wmta), has been introduced in [96] and is ob-
tained from fta by replacing the mapping δ of allowed transitions by a mapping µ that
associates every possible transition with operations of a multioperator monoid (for short:
m-monoid) [95, 96] (also see [103, 58, 123]). The latter is an algebraic structure which
consists of a commutative monoid and a ∆-algebra [70, 135] (where ∆ is a given signature)
such that the carrier sets of the monoid and the ∆-algebra are required to coincide. More
precisely, the weight of the transition at some k-ary input symbol is a k-ary symbol in
∆. The semantics is defined similarly to the semantics of wta: it is a tree series which
maps every input tree t to an element of the m-monoid; this m-monoid element results
from summing up over the weights of every run of the wmta on t. The weight of a run
is obtained as follows: first t is transformed into a tree s over ∆ by replacing at every
position w of t the label σ of t at w by the symbol µ(q1 · · · qk, σ, q), where (q1 · · · qk, σ, q)
is the transition of t for the considered run. Then the weight of the run is the result of
the initial homomorphism for the ∆-algebra of the considered m-monoid applied to s.

Roughly speaking, by employing particular m-monoids, wmta can simulate fta, wta, tt,
and wtt. Hence, in general investigations and results of wmta subsume investigations and
results of all the former models. For examples of such generalizing results we refer the
reader to [58, 121, 123, 59].

Monadic datalog Monadic datalog [68, 69], a syntactically restricted fragment of stan-
dard datalog [2], is a means of formally specifying tree languages (and node selection
queries on trees). Let us roughly sketch the underlying idea. Essentially, a monadic data-
log program (for short: md) consists of a set P of user-defined predicates, a finite set R of
rules, and a query predicate q ∈ P . For a given tree t the predicates in P are instantiated
for every node of t, yielding user-defined atom instances. The finite set R of rules is then
used to restrict the set of interpretations, that is, mappings from these atom instances to
the set of Boolean values. Every rule consists of a left- and a right-hand side, where the
left-hand side is a user-defined atom (a user-defined predicate applied to a variable) and
the right-hand side is a finite sequence of user-defined atoms and structural atoms, where
structural atoms have a special syntactic form and express properties of the input tree.
An example of such a rule looks as follows:

p(x)← q(y), s(z), labelσ(x), child1(x, y) .

4 1. Introduction

In this rule p(x), q(y), and s(z) are user-defined atoms and labelσ(x) as well as child1(x, y)
are structural atoms. Intuitively, this rule means that for all nodes w, v, u of t, if the atom
instance q(v) is true, the atom instance s(u) is true, the node w is labeled with σ, and
v is the first child node of w, then the atom instance p(w) needs to be true, too. Of all
interpretations that satisfy this condition (and satisfy the other rules in R) we choose the
smallest interpretation, where an interpretation is considered to be smaller than another
interpretation if the former one maps less atom instances to the value ‘true’. Finally, the
input tree is accepted if the designated interpretation maps the atom instance q(ε) (where
q is the query predicate and ε is the root of the input tree) to ‘true’.

Monadic datalog can naturally be used in the setting of ranked trees as well as in
the setting of unranked trees. It has, thus, applications in the field of semi-structured
databases and XML. Its potential for practical applications is due to the following reasons:
(i) the use of rules for specifying properties of tree languages is intuitive and natural,
(ii) the time complexity of evaluating the semantics of monadic datalog is linear in the
size of the considered input tree and the size of the considered md, and (iii) the class of
tree languages that can be specified by means of monadic datalog has been proved to be
the class of tree languages that can be recognized by means of fta (cf. [68, 69]).

Similarly to the extension of fta to wta and tt, the concept of monadic datalog has been
extended to models for specifying tree series (called weighted monadic datalog [122]) and
models for specifying tree transformations (called monadic datalog tree transducers [28]).

In resemblance to wta, a weighted monadic datalog program (for short: wmd) involves
a semiring. Moreover, the syntax of rules in wmd is similar to the syntax of rules in md;
however, their right-hand sides are allowed to contain semiring elements. Let us consider
an example of such a rule:

p(x)← q(y), 3, s(z), 2, labelσ(x), child1(x, y) .

In the setting of weighted monadic datalog every interpretation is a mapping from user-
defined atom instances to the carrier set of the semiring. Again, we restrict the set of
all possible interpretations to those interpretations that satisfy the rules in the wmd; an
interpretation is said to satisfy a rule if for every instance of the variables in that rule,
the resulting atom instance on the left-hand side of the rule is the product of the values
of the atom instances and semiring elements on the right-hand side of the rule, where a
structural atom instance is interpreted as the neutral element of the semiring addition if
it is false and as the neutral element of the semiring multiplication if it is true. If there
are multiple combinations of rules and instantiations of variables in these rules that yield
the same user-defined atom instance on their left-hand sides, then the value of this atom
instance needs to be the sum of all the resulting products of the respective right-hand
sides. Finally, for a given order on interpretations, we choose the smallest interpretation
among all interpretations that satisfy the rules in the md. Then the resulting semiring
element of the considered input tree is the image of the atom instance q(ε) under the
designated interpretation.

Weighted monadic datalog has been shown to be strongly more expressive than wta
and, similarly to monadic datalog, to have the property that it can be evaluated in linear
time (both in the size of the input tree and the wmd) (see [122]). A concept that is
similar to wmd, called semiring-based constraint logic programming, has been introduced
and studied in [18]

Monadic datalog tree transducer programs (for short: mdtt) are defined likewise. In
this setting interpretations map user-defined atom instances to sets of output trees. Since

5

there is no natural way to represent Boolean values as sets of output trees, the syntax
of rules in mdtt is slightly different from the syntax rules in md and wmd: the right-
hand side of rules consist of two parts, called body and guard, where the body is a tree
over output symbols with user-defined atoms as indices and the guard is a finite set of
structural atoms. Consider the following example:

p(x)← σ
(

α, γ(q(y)), s(z)
)

; {labelσ(x), child1(x, y)} .

The guard is used to restrict the set of possible variable assignments. Intuitively, this rule
means that for all nodes w, v, u of the input tree such that the node w is labeled with σ
and v is the first child node of w, we have that the value of p(w) needs to be the set of
all trees of the form σ

(

α, s1, s2
)

where s1 is in the set q(v) and s2 is in the set s(u). If
there are multiple combinations of rules and variable assignments that yield that same
user-defined atom instance in their left-hand side, then the value of this atom instance
needs to be the union of all the resulting tree languages of the respective bodies. The
output tree language of the considered input tree is the image of the atom instance q(ε)
under the smallest interpretation that satisfies the rules in the mdtt.

Monadic datalog tree transducers can be used to specify finite tree transformations (i.e.,
for every input tree the set of output trees is finite) and infinite tree transformations (i.e.,
for a given input tree the set of output trees can be infinite). Mdtt have been shown to
be at least as expressive as attributed tree transducers [56, 11, 12] (see [28]).

The purpose of this thesis

In this thesis we study a generalization of md, wmd, and mdtt that resembles the gener-
alization of fta, wta, and tt to wmta. We call this model multioperator weighted monadic
datalog (for short: mwmd); Table 1.1 illustrates how this formalism fits into the landscape
of models that we discussed above.

tree language tree series tree transformation generalization

tree automata fta wta tt wmta
monadic datalog md wmd mdtt mwmd

Table 1.1: An overview of the presented formalisms.

Intuitively, the semantics of an mwmd is evaluated by means of the operations of a
given m-monoid and, by employing particular m-monoids, mwmd can simulate md, wmd,
and mdtt. In fact, the syntax of mwmd is reminiscent of the syntax of mdtt; i.e., rules
consist of a left-hand side (called head), a body, and a guard, where the body is a tree
over some ranked alphabet ∆ with user-defined atoms as indices. Then the considered
m-monoid that is used for the computation of the semantics is a commutative monoid
with a ∆-algebra, i.e., the symbols of ∆ in the body of rules are interpreted as operations
of the m-monoid.

In this thesis we will introduce the syntax and semantics of mwmd. In order to develop
a rich theory we will define multiple versions of semantics; as a preliminary this requires a
detailed investigation of the theory of m-monoids. Moreover, we will study normal forms
and decidability results of mwmd. We will show that, by employing particular m-monoids,
the theory of mwmd subsumes the theory of both wmd and mdtt. We conclude this thesis

6 1. Introduction

by showing that mwmd even contain wmta (and, roughly speaking, fta, wta, and tt) as a
syntactic subclass and present results concerning this subclass.

Overview

Now let us give an overview over the contents of this thesis.

Chapter 2. In this preliminary chapter we will recall basic notions that are central to this
thesis. First we will deal with sets, relations, directed graphs, mappings, and operations.
In particular, we will cover operations of infinite arity [72, 95, 42, 63]. We proceed
with a discussion of signatures, algebras, homomorphisms and free algebras [30, 70, 135].
Moreover, we will deal with basic concepts of strings, trees, and define and study properties
of tree substitutions [66, 51, 63, 105]. Finally, we will give an introduction into the topic
of hypergraphs and hyperpaths [6, 64]. In that section we will put particular emphasis on
the study of basic results of hyperpath segments, dependence relations, and decomposition
and composition of hyperpaths and hyperpath segments.

Chapter 3. In this chapter we present the definition of the core algebra of this thesis,
called multioperator monoids (for short: m-monoids). Our definition of m-monoids is
based on the definition of distributive m-monoids (or distributive Ω-monoids) that have
been introduced by Kuich [95, 96, 98]. The concept of distributive m-monoids is a general-
ization of distributive F -magmas defined by Courcelle [33, Section 10] and ofK–Γ-algebras
by Bozapalidis [22]. M-monoids that are not necessarily distributive have been studied
in [121, 123, 59].

An m-monoids is a combination of a commutative monoid and a ∆-algebra (for some
ranked alphabet ∆). They are a crucial component of the definition of the semantics of
mwmd programs because it is computed by means of the monoid operation as well as the
∆-algebra operations of the m-monoid.

As a preliminary we give an introduction into the theory of semigroups, monoids, and
tree series. Afterwards, we will define m-monoids and study basic properties of m-monoids
and homomorphisms.

It turns out that in general the operations that m-monoids provide are not sufficient to
compute the semantics of mwmd. This happens whenever the considered mwmd exhibits
circular behavior and, thus, loops indefinitely. We will cope with this problem by em-
ploying extended definitions of m-monoids that are capable of computing a well-defined
output value for such mwmd. To this end we introduce ω-complete and ω-continuous
m-monoids. We will give examples and study their properties in detail. In particular,
we will investigate relationships between ω-complete and ω-continuous m-monoids and
present important results concerning this relationship.

Chapter 4. In this chapter we present the core definitions of this thesis, i.e., both syntax
and semantics of mwmd. We will define the syntactic structure of mwmd in resemblance to
the syntax of monadic datalog tree transducers [28] and weighted monadic datalog [122].

We will put particular emphasis on the definition of the semantics of mwmd. We will
provide two different types of semantics, which we call fixpoint semantics and hypergraph
semantics. The fixpoint semantics is reminiscent of the initial algebra semantics of bottom-
up weighted tree automata [15, 63], whereas the hypergraph semantics is related to the
run semantics of weighted tree automata (or similar concepts such as m-weighted tree

7

automata [103, 123]). The fixpoint semantics is inspired by the definition of the semantics
of mdtt, wmd, and md whereas the hypergraph semantics is novel.

Each type of semantics requires three types of inputs: an mwmd, a tree, and an m-
monoid. The semantics are defined in such a way that they evaluate the input tree
according to the mwmd by applying operations from the m-monoid, and afterwards return
an element of the m-monoid. Thus, when keeping the mwmd and the m-monoid fixed,
the semantics are mappings from input trees to m-monoid elements, i.e., a tree series.

For both the fixpoint and the hypergraph semantics we will introduce two variants,
which we call the finitary and the infinitary semantics. In general, the finitary variants of
the semantics are only applicable for a certain class of mwmd, which we call weakly non-
circular mwmd. Mwmd, that do not belong to this class, exhibit circular behavior when
computing their semantics; as a consequence they require an ω-continuous m-monoid (for
the fixpoint semantics) or an ω-complete m-monoid (for the hypergraph semantics) as
input. The infinitary versions of the semantics use the strength of ω-continuous and ω-
complete m-monoids and are applicable to all mwmd (even mwmd that are not weakly
non-circular). Hence, we will define and study four different variants of semantics (see
Definitions 4.20, 4.29, 4.40, and 4.43).

We conclude this chapter with a comparison of the fixpoint and the hypergraph se-
mantics and provide conditions that guarantee that the finitary fixpoint and hypergraph
semantics coincide and that the infinitary fixpoint and hypergraph semantics coincide (see
Theorem 4.53).

Chapter 5. In this chapter we will we will study four syntactic subclasses of mwmd,
called restricted, connected, local, and proper mwmd (see Definitions 5.1, 5.4, and 5.5).
The connected normal form has been introduced by Gottlob and Koch [69, Theorem 4.2];
it has also been studied in [122, 28]. The remaining three syntactic classes have first been
investigated in [28].

We will present conditions that guarantee that these classes coincide, i.e., conditions
that allow any of this subclasses (and intersections of them) to be considered to be a
normal form of mwmd (see Theorem 5.8). To this end we investigate when a given
mwmd can be transformed into a semantically equivalent mwmd belonging to a particular
syntactic subclass. What are constructions that exhibit ‘semantic equivalence’? In fact,
we aim for the strongest definition of semantics equivalence; more precisely, we will present
constructions that preserve all four kinds of semantics, that we will have introduced
in Chapter 4, simultaneously. Since equivalence proofs for such constructions are very
laborious, we will, as a preliminary step, first prove a generic equivalence result that we
will employ for (almost every) of the normal form constructions later in this chapter. The
constructions that we present in this section are based on the constructions in [28].

Chapter 6. In this chapter we prove that there is an effective procedure that decides
whether an mwmd is weakly non-circular (see Theorem 6.1).

The definition of weak non-circularity is inspired by and adapted from the definitions of
non-circularity for attribute grammars [32, 50], attributed tree transducers [56, 60], and
weighted monadic datalog [122]. A decision procedure for the non-circularity of attribute
grammars, called a circularity test, has first been studied by Knuth [90, 89] (also see [3]
and [94, Figure 3.6, Lemma 3.25]). A similar circularity test for attributed tree transducers
has been proposed in [56] and investigated in [60, Figure 5.7, Lemma 5.17]. Both of these

8 1. Introduction

circularity tests are based on the inductive construction of a finite set of graphs, called
is-graphs, that are checked for cycles.

In this thesis we will not follow the approach to develop a circularity test that is based
on the construction of is-graphs. Instead we will employ the following idea. Let M be an
mwmd and let LM be the set of input trees t such that M exhibits a circular behavior
for the input t. Then M is weakly non-circular iff LM is empty. We will show that there
effectively is an MSO-logic formula [131, 38] that defines LM ; this implies that LM is
a recognizable tree language. The decidability of weak non-circularity of mwmd follows
from the fact that the emptiness problem of recognizable tree languages is decidable [38,
Corollary 1.12(i)] or [131, Theorem 7].

Chapter 7. In this chapter we show that mwmd are capable of simulating weighted
monadic datalog. More precisely, we study the semantics of mwmd for a certain class of
m-monoids, viz. the class of m-monoids that behave like semirings [67, 72]. In order to
develop a richer theory, we even study m-monoids that behave like strong bimonoids [44].
This chapter is a revised and extended version of [122]; note that the scope of investigation
in [122] is weighted monadic datalog over semirings and unranked trees [127], whereas we
study weighted monadic datalog over strong bimonoids and ranked trees in this thesis.

We will study the expressive power of wmd. In particular, we will compare the finitary
and infinitary semantics of wmd (Lemma 7.15), we show that wmd can simulate md when
using the Boolean semiring (Lemma 7.16), and that wmd is strictly more expressive than
wta (Theorem 7.18). We will conclude this chapter by proving that wmd can be evaluated
efficiently (Theorem 7.21).

Chapter 8. In this chapter we show that mwmd are capable of simulating mdtt. This
task is accomplished by, roughly speaking, abstracting from the semantic domain. Hence,
we will not evaluate the semantics of such mwmd in an arbitrary given m-monoid but will
use an m-monoid instead, that behaves like the term algebra. This chapter is a revised
and extended version of [28], where monadic datalog tree transducers have first been
investigated.

We will show that there is a sharp boundary between those mdtt that can be applied
for practical purposes and those mdtt that can not. We will call mdtt of the former
kind executable and show that it is decidable whether a given mdtt is executable (see
Lemma 8.12).

Mdtt and (nondeterministic) attributed tree transducers [56, 11, 12] (for short:att) share
conceptual ideas. We will prove that the class of tree transformations that are definable
by attributed tree transducers coincides with the class of tree transformations that are
computed by restricted mdtt (see Theorem 8.21).

Chapter 9. In this chapter we will show that mwmd are capable of simulating wmta.
More precisely, will study a semantic class of mwmd such that mwmd in this class behave
precisely like wmta.

This chapter is a revised version of the most important results of [123, 59]. We will
restrict ourselves to proving the following two main results.

1. We will show that, for a given absorptive m-monoid satisfying some additional
condition, the class of tree series recognized by wmta over A can be decomposed into
the class of relabeling tree transformations, followed by the class of characteristic

9

tree transformations of recognizable tree languages, and followed by the class of tree
series recognized by homomorphism wmta over A, where a homomorphism wmta is
a wmta having precisely one state (see Theorem 9.17).

2. We will give an alternative characterization of the class of tree series recognized by
wmta. This characterization is based on m-expressions, which form a new kind of
weighted MSO-logic. This characterization is a Büchi-like theorem [26, 46] for the
class of tree series recognized by wmta (see Theorem 9.26).

10 1. Introduction

CHAPTER 2

Preliminaries

In this chapter we recall notions and establish notations that we will use throughout this
thesis.

2.1 Notation

We will abbreviate “if and only if” by “iff” and “with respect to” by “wrt”. We will
indicate the end of definitions, examples, and remarks by the symbol “2” and we will
finish every proof by using the Halmos end mark “�”.

2.2 Sets and Relations

Sets

Set theory is the foundation of most areas of mathematics and therefore also of this thesis.
A naive approach to set theory [47, 55] is sufficient for most of our purposes. However,
we will occassionally need to draw on an axiomatic definition of sets. In this case we use
the Zermelo-Fraenkel set theory with the Axiom of Choice [13, 93, 112, 124] (abbreviated
ZFC) (or any similar theory). Note that we will not employ ZFC on an axiomatic level; we
merely require a non-naive treatment of set theory for the following two reasons. Firstly,
in the field of formal language theory we sometimes need to deal with proper classes (i.e.,
classes that are no sets). A theoretic foundation that does not distinguish between sets
and proper classes can give rise to an inconsistent theory (for an example see Section A.1
in the appendix); in this thesis we will always take care not to refer to proper classes as
sets. Secondly, we will follow the convention to point out whenever any result relies on
the Axiom of Choice1.

We assume that the reader is familiar with the empty set ∅, the membership relation
∈, the subset and strict subset relations ⊆ and ⊂, respectively, the operations union ∪,
intersection ∩, set difference \, and Cartesian product ×, and the notions of disjoint sets,
cardinality of a set, and finite and infinite sets. For a thorough introduction to set theory
we refer the reader to [80].

In the sequel let A, B, C, and D be sets. By P(A) we denote the power set of A, by
Pfin(A) we denote the set of finite subsets of A, and by |A| the cardinality of A.

By N, the set of natural numbers, we denote the set of non-negative integers and by
N+ the set of positive integers. The set A is called countable if |A| ≤ |N|. For every finite
non-empty subset N of N we denote the maximal natural number in N by max(N). We
let max(∅) = 0. For every n ∈ N we abbreviate the set {i ∈ N+ | i ≤ n} by [n]; observe

1We will use the Axiom of Choice [73, 109, 136] only very rarely in this thesis. The main reference to it
is in Section 8.1.

11

12 2. Preliminaries

that [0] = ∅. An initial segment of N is a set N ⊆ N such that for every n ∈ N and
n′ ∈ N with n′ ≤ n also n′ ∈ N . Note that if N is an initial segment of N, then either
N = N or there is an n ∈ N with N = {i ∈ N | i < n}. Moreover, if A is countable, then
there is a unique initial segment N of N such that |A| = |N |.

Relations

A (binary) relation from A to B is a subset of A×B. In particular, also the empty set ∅
is a relation from A to B. Let ρ be a relation from A to B. For every a ∈ A and b ∈ B we
usually write a ρ b instead of (a, b) ∈ ρ. We define the inverse relation ρ−1 of ρ as the
relation from B to A defined by ρ−1 = {(b, a) ∈ B × A | a ρ b}. For every subset A′ ⊆ A
we abbreviate the set {b ∈ B | ∃ a ∈ A′ : a ρ b} by ρ(A′). The domain dom(ρ) of ρ is
defined as the set ρ−1(B) and the range ran(ρ) of ρ is defined as the set ρ(A). For every
A′ ⊆ A we define the restriction of ρ to A′, denoted by ρ|A′ , as the binary relation from
A′ to B defined by ρ|A′ = ρ ∩ (A′ × B); furthermore, we say that ρ extends ρ|A′ . Let τ
be a relation from C to D. The composite relation ρ ; τ of ρ and τ is the relation from
A to D defined by

ρ ; τ = {(a, d) ∈ A×D | ∃ b ∈ B ∩ C : a ρ b ∧ b τ d} .

A relation from A to A is also called a relation on A. A particular relation on A is the
identity relation idA on A, defined by idA = {(a, a) | a ∈ A}. An excellent introduction
to relations can be found in, e.g., [119].

Graphs and diagrams

A pair (V,E) is called a directed graph [10, 36, 119] (for short: digraph) if V is a set
and E is a relation on V . We refer to the elements of V as vertices and to the elements
of E as edges.

If V is finite, then the directed graph (V,E) can be represented graphically by means
of a diagram. Every vertex v ∈ V is depicted by a node (or circle, etc.) having the
label v. Every edge (v,w) ∈ E is represented by an arrow that starts in the vertex for v,
ends in the vertex for w, and does not intersect with any vertex other than v and w. The
diagram is called planar if no arrows cross.

v1 v3

v2

(a) G1

u1 u2 u3

u4

(b) G2

Figure 2.1: Diagrams of directed graphs.

As an example consider the directed graphs G1 = (V1, E1) and G2 = (V2, E2) where
we let V1 = {v1, v2, v3}, E1 = {(v1, v3), (v3, v1)} ∪ idV1 , V2 = {u1, u2, u3, u4}, and E2 =
{(u1, u2), (u1, u3), (u1, u4), (u2, u3)} ∪ idV2 . The diagrams of G1 and G2 are given in Fig-
ure 2.1. Both diagrams are planar.

2.2. Sets and Relations 13

Special relations

Let τ be a relation on A. For every A′ ⊆ A we call an element a ∈ A′ minimal (in A′

wrt τ) if a′ τ a implies a′ = a for every a′ ∈ A′. We say that τ is

• reflexive if idA ⊆ τ ,

• irreflexive if τ ∩ idA = ∅,

• symmetric if τ = τ−1,

• antisymmetric if τ ∩ τ−1 ⊆ idA, and

• transitive if τ ; τ ⊆ τ .

The transitive closure of τ , denoted by τ+, is the smallest transitive relation on A
containing τ . The transitive reflexive closure of τ , denoted by τ∗, is defined as the
relation τ∗ = τ+ ∪ idA on A. If G = (V,E) is a digraph, then we say that G is acyclic if
E+ is irreflexive; otherwise it is called cyclic.

We call τ an equivalence relation (on A) if τ is reflexive, symmetric, and transitive.
If τ is an equivalence relation on A, then for every a ∈ A we call the set {b ∈ A | b τ a}
the equivalence class of a modulo τ and denote it by [a]τ ; the quotient set of A
modulo τ , denoted by A/τ , is the set {[a]τ | a ∈ A}. For an example consider the
digraph G1 = (V1, E1) of Figure 2.1(a). Clearly, E1 is an equivalence relation on V1 and
V1/E1 =

{

[v1]E1 , [v2]E1 , [v3]E1

}

=
{

{v1, v3}, {v2}
}

.

The relation τ is a partial order [34] (on A) if τ is reflexive, antisymmetric, and
transitive; it is a strict order (on A) if τ is irreflexive and transitive. If τ is a partial
order on A, then τ \ idA, called the strict part of τ , is a strict order an A. As usual we
will denote the strict part of, e.g., ≤ and ⊑ by < and <, respectively.

Let τ be a partial order on A. Then (A, τ) is called a partially ordered set (for short:
poset). The covering relation of τ is the relation τ cov on A such that for every a, b ∈ A
we have: a τ cov b iff (i) a 6= b, (ii) a τ b, and (ii) there is no c ∈ A \ {a, b} with a τ c and
c τ b. Note that if A is finite, then (τ cov)∗ = τ .

A subset A′ ⊆ A is called totally ordered (wrt τ) if A′ × A′ ⊆ τ ∪ τ−1. We call
τ a total order (on A) if A is totally ordered wrt τ . The digraph G2 = (V2, E2) of
Figure 2.1(b) is an example of a poset. Note that E2 is not a total order on V2; however,
the subset {u1, u2, u3} ⊆ V2 is totally ordered wrt E2. The covering relation of E2 is given
by Ecov

2 = {(u1, u2), (u1, u4), (u2, u3)}.
An example of a totally ordered poset is (R,≤), where ≤ is the set of all pairs (n,m) ∈

R2 such that there is a nonnegative real number r with n+ r = m; in this thesis we will
refer to this order ≤ on R as the natural order on real numbers (and likewise for other
familiar sets of numbers like N and Q).

Partial orders on finite sets can graphically be represented by means of Hasse dia-
grams [34, Page 11]. The Hasse diagram of a given partial order τ on a finite set A is
the diagram of the digraph (A, τ cov) such that for every a, b ∈ A with a 6= b and a τ b
the vertex for a is positioned below the vertex of b. Due to this convention it suffices
to represent edges by simple arcs instead of arrows; their orientations are clear from the
positions of the vertices. The Hasse diagram of the partial order G2 from Figure 2.1(b)
is shown in Figure 2.2(a). Although Hasse diagrams can only represent partial orders on
finite sets in a meaningful way, we will extend their use to infinite partial orders by means

14 2. Preliminaries

of ellipsis (. . .); an example of such a Hasse diagram is given Figure 2.2(b), it depicts the
poset (N ∪ {∞},≤), where ≤ is the natural order on the natural numbers with infinity.

u3

u2 u4

u1

(a)

...

∞

3

2

1

0
(b)

Figure 2.2: (a) Hasse diagram of G2. (b) Hasse diagram of an infinite poset.

Let τ be an irreflexive relation on A. We call τ well-founded [124, 112] (on A) if
every nonempty B ⊆ A contains a minimal element. Note that if A is finite, then τ is
well-founded iff τ+ is irreflexive. Let τ be well-founded on A and B ⊆ A. We call B
closed under τ if {a ∈ A | τ−1({a}) ⊆ B} ⊆ B. If B is closed under τ , then it is easy to
see that A \B has no minimal element; hence, A \B = ∅ or, equivalently, B = A. Thus,
in order to prove that a property ϕ(x) holds for every a ∈ A it suffices to show that the
set {a ∈ A | ϕ(a)} is closed under τ . This is called the principle of proof by well-founded
(or: Noetherian) induction on τ [7, 112]. The principle of well-founded induction is most
commonly used when A = N and τ = {(n, n + 1) | n ∈ N} is the successor relation of
natural numbers; in this case a proof by well-founded induction on τ is referred to as a
proof by (mathematical) induction.

2.3 Mappings and Operations

Mappings

A relation ρ from A to B is called a partial mapping from A to B if for all a ∈ A and
b1, b2 ∈ B, a ρ b1 and a ρ b2 imply b1 = b2. Let ρ be a partial mapping from A to B. We
call ρ injective if ρ−1 is a partial mapping from B to A; moreover, ρ is surjective (onto
B) if ran(ρ) = B. For every a ∈ dom(ρ) we denote the unique b ∈ ρ({a}) by ρ(a) and call
b the image of a under ρ. Note that if τ is a partial mapping from C to D, then ρ ; τ is
a partial mapping from A to D.

If dom(ρ) = A, then ρ is called a mapping (or: function) from A to B; in this case
we write ρ : A → B.2 We denote the set of all mappings from A to B by BA. Clearly,
B∅ = {∅}; in this context the empty set ∅ is also called the empty mapping. We follow
the convention that function application is left associative, i.e., for every f : A → CB,
a ∈ A, and b ∈ B we write f(a)(b) instead of (f(a))(b). Let ρ : A → B. For every set
A′ ⊆ A we have ρ|A′ : A′ → B. If B ⊆ C and τ : C → D, then ρ ; τ : A → D; moreover,
(ρ ; τ)|A′ = (ρ|A′) ; τ for every A′ ⊆ A.

2In the literature mappings from A to B are sometimes defined as triples (A,B, ρ), where ρ is called the
graph of the mapping. In this thesis a mapping from A to B is always a particular relation from A to
B.

2.3. Mappings and Operations 15

Let ρ : A → B and let a, b be arbitrary objects (that may be elements of A or B or
not). The extension of ρ with (a, b) is the mapping ρ[a 7→ b] from A ∪ {a} to B ∪ {b}
that is defined by ρ[a 7→ b] =

(

ρ \ ({a} × B)
)

∪ {(a, b)}. Note that ρ[a 7→ b](a) = b
and that ρ|A\{a} = (ρ[a 7→ b])|A\{a}, i.e., ρ and ρ[a 7→ b] agree on A \ {a}. For every
n ∈ N and objects a1, . . . , an, b1, . . . , bn we will abbreviate ρ[a1 7→ b1] · · · [an 7→ bn] by
ρ[a1 7→ b1, . . . , an 7→ bn]; if ρ is the empty mapping, we simply write [a1 7→ b1, . . . , an 7→ bn]
instead of ρ[a1 7→ b1, . . . , an 7→ bn]. This notation enables us to enumerate every mapping
on a finite domain as follows: if there is an n ∈ N and pairwise distinct a1, . . . , an such
that A = {a1, . . . , an}, then ρ = [a1 7→ ρ(a1), . . . , an 7→ ρ(an)].

We call ρ : A → B a bijection (from A to B) if ρ is injective and surjective onto B.
An example of a bijection from A to A is the identity relation idA. Note that if ρ is a
bijection, then ρ−1 : B → A. Furthermore, if |A| = |B|, then there exists a bijection
ρ : A→ B. For more details on mappings we refer the reader to [124, 126, 135].

Let f : A → A. An element a ∈ A with f(a) = a is called fixpoint of f . For every
n ∈ N we define the n-fold composition fn : A → A of f as follows: (i) f0 = idA and
(ii) fn+1 = fn ; f for every n ∈ N.

Let n ∈ N and A1, . . . , An be sets. For every set B, f : A1 × · · · × An → B, and
(a1, . . . , an) ∈ A1 × · · · × An we will write f(a1, . . . , an) instead of f((a1, . . . , an)) if no
confusions arise. Let i ∈ [n]. The projection to the i-th component (wrt A1, . . . , An) is
the mapping prA1,...,An

i : A1×· · ·×An → Ai which is defined by prA1,...,An

i (a1, . . . , an) = ai
for every (a1, . . . , an) ∈ A1×· · ·×An. If A1, . . . , An are clear from the context, we simply
write pri instead of prA1,...,An

i .

Let I be a set. An (I-indexed) family over A is a mapping f : I → A. In this context
the set I is called an index set. We usually write fi instead of f(i) for every i ∈ I and we
write (fi | i ∈ I) instead of f . If I is empty, then (fi | i ∈ I) is called the empty family.

A generalized partition [72, Chapter IV] of A is a family (Ai | i ∈ I) over P(A) such
that

⋃

i∈I Ai = A and for every i, j ∈ I with i 6= j: Ai ∩ Aj = ∅. A partition of A is a
generalized partition (Ai | i ∈ I) of A such that for every i ∈ I: Ai 6= ∅.

Let τ be a well-founded relation on A and for every a ∈ A let Aa = τ−1({a}) and
fa : BAa → B be a mapping. Then there is precisely one mapping g : A → B such
that g(a) = fa(g|Aa) for every a ∈ A; thus, in order to define this uniquely determined
g it suffices to define fa for every a ∈ A. This is called the principle of definition by
well-founded recursion on τ [112].

Operations

Let n ∈ N. An n-tuple over A is a mapping t : [n] → A. As usual, we denote t
by (t(1), t(2), . . . , t(n)). For the set of all n-tuples over A we simply write An instead
of A[n]; then A0 = A∅ = {∅}. As usual, we identify An with the n-fold Cartesian product
A× · · · ×A of A.

An n-ary operation [135] over A is a mapping ν : An → A; the number n is called the
arity of ν. Operations of arity 2, 1, and 0 are also called binary, unary, and nullary

operations, respectively. The set of all n-ary operations on A is denoted by Ops(A)(n).
Usually, the operations in Ops(0)(A) are called constants; obviously there is a one-to-one
correspondence between the sets Ops(0)(A) and A. We abbreviate

⋃

n∈N
Ops(n)(A) by

Ops(A).

Let n ∈ N and ν ∈ Ops(n)(A). For every B ⊆ A we say that B is closed under ν if
ν(Bn) ⊆ B. The operation ν is called idempotent if ν(a, . . . , a) = a for every a ∈ A.

16 2. Preliminaries

An element a ∈ A is called absorbing wrt ν if for every a1, . . . , an ∈ A and i ∈ [n]:
ai = a implies ν(a1, . . . , an) = a. Let τ be a relation on A. The operation ν is called
monotone (wrt τ) if for every a1, . . . , an, b1, . . . , bn ∈ A with ai τ bi for every i ∈ [n], we
have ν(a1, . . . , an) τ ν(b1, . . . , bn).

Let ◦ ∈ Ops(2)(A). We usually write a ◦ b instead of ◦(a, b), for every a, b ∈ A. We call
◦ commutative if a ◦ b = b ◦ a for every a, b ∈ A. Moreover, we call ◦ associative if
a ◦ (b ◦ c) = (a ◦ b) ◦ c for every a, b, c ∈ A. Let a ∈ A. We say that a is neutral wrt ◦
if for every a′ ∈ A, ν(a, a′) = a′ = ν(a′, a). For more details on operations we refer the
reader to [135].

Operations of infinite arity

In this paragraph we will deal with operations of infinite arity. First let us briefly motivate
this concept. In the previous paragraph we showed that a 4-ary operation over a set A,
i.e., an operation that always takes 4 arguments, can be modeled as a mapping over the
domain A4. Likewise, we can model an operation that may take 4 or 2 arguments, i.e.,
an operation that behaves both like a 4- and a 2-ary operation, as a mapping over the
domain A4 ∪ A2 because A4 and A2 are disjoint sets. In this manner we can define an
operation that takes an arbitrary finite number of elements as a mapping over the domain
⋃

n∈N
An. It is natural to extend this definition to operations that take even infinitely

many arguments. For our purposes it suffices to restrict ourselves to a countably infinite
number of operands. The set AN is the set of countably infinite sequences over A; hence,
an operation that takes an arbitrary countable number of arguments can be modeled as an
operation over the domain AN ∪

⋃

n∈N
An. This domain is rather heterogeneous. Instead

we will use an alternative, more uniform approach to define the domain of an operation
of arbitrary countable arity.

By Famω
A we denote the set of pairs (I, (ai | i ∈ I)) such that I ⊆ N and (ai | i ∈ I) is

a family over A.3 In this paragraph we will consider mappings
∑

whose domain is the
set Famω

A; in order to simplify notation we will write
∑

i∈I ai instead of
∑

(I, (ai | i ∈ I)),
for every (I, (ai | i ∈ I)) ∈ Famω

A. A mapping
∑

: Famω
A → A is called an ω-infinitary

operation on A if the following holds for every n ∈ N, I, J ⊆ N, generalized partition
(Ij | j ∈ J) of I, and families (ai | i ∈ I) and (bi | i ∈ {n}) over A:

∑

i∈{n}
bi = bn , (2.1)

∑

i∈I
ai =

∑

j∈J

(

∑

i∈Ij
ai

)

. (2.2)

Let
∑

be an ω-infinitary operation on A. By Equations (2.1) and (2.2) we have that for
every index set I ⊆ N, index set J ⊆ N, bijection π : J → I, and family (ai | i ∈ I) (see
[72, Lemma IV.1.6(b)] or [81, Equation (1.6)]):

∑

i∈I
ai =

∑

j∈J
aπ(j) . (2.3)

In this thesis an ω-infinitary operation is only defined for families on index sets that
are sets of natural numbers. However, in the literature (e.g., [72, 95, 42, 63]) infinitary

3Note that in order to give an appropriate definition of the domain Famω
A of an operation that takes an

arbitrary countable number of elements, it suffices to restrict ourselves to those index sets I ⊆ N that
are initial segments of N; however, for technical reasons we allowed for index sets I that are arbitrary
sets of natural numbers.

2.4. Signatures and Algebras 17

operations are usually defined for families on arbitrary (countable) index sets. The au-
thor avoided this definition because the class of all countable families over A is a proper
class (i.e., it is not a set) and, thus, cannot be the domain of a mapping; this implies
that infinitary operations that are defined for arbitrary countable families are no proper
mappings, which is undesirable. We can remedy our restriction to index sets of natural
numbers and simulate the extension to arbitrary countable index sets as follows.

Equation (2.3) allows for a convenient notational extension of ω-infinitary operations
to arbitrary countable families over A. Let I be a countable index set and (ai | i ∈ I)
be a family over A. Then there is a set J ⊆ N and a bijection π : J → I; we will
denote

∑

j∈J aπ(j) simply by
∑

i∈I ai. Note that the notation
∑

i∈I ai (omitting J and
π) is justified because the value of

∑

i∈I ai is independent of the choice of J and π due
to Equation (2.3). Moreover, note that Equations (2.1) and (2.2) carry over to arbitrary
countable families over A; more precisely, for every singleton set K = {k}, countable sets
I, J , generalized partition (Ij | j ∈ J) of I, and families (ai | i ∈ I) and (bi | i ∈ {k}) over
A:

∑

i∈{k}
bi = bk , (2.4)

∑

i∈I
ai =

∑

j∈J

(

∑

i∈Ij
ai

)

. (2.5)

2.4 Signatures and Algebras

A signature is a pair (Σ, r), where Σ is a (possibly infinite) set and r : Σ→ N. Let (Σ, r)
be a signature. If Σ is finite, then (Σ, r) is called a ranked alphabet. For every σ ∈ Σ
the natural number r(σ) is called the rank of σ, and is denoted by rk(σ) if r is clear from
the context. As usual, we identify the signature (Σ, r) with the set Σ. For every k ∈ N

we denote the set {σ ∈ Σ | rk(σ) = k} by Σ(k). By maxrk(Σ) we denote the maximal
rank of symbols in Σ, i.e., maxrk(Σ) = max{k ∈ N | Σ(k) 6= ∅}. Σ is called monadic if
maxrk(Σ) ≤ 1, i.e., Σ = Σ(0) ∪Σ(1).

Example 2.1. Consider the signature (Σmon, r) with Σmon = {e, ◦}, r(e) = 0, r(◦) = 2.

Then Σ
(0)
mon = {e}, Σ

(2)
mon = {◦}, and Σ

(k)
mon = ∅ for every k ∈ N \ {0, 2}. In the sequel we

will define signatures in a less cumbersome way and simply write Σmon = {e(0), ◦(2)}. 2

A Σ-algebra [70, 135] is a pair A = (A, θA) where A is a set (called carrier set of A)
and θA : Σ → Ops(A) such that θA(σ) ∈ Ops(k)(A) for every k ∈ N and σ ∈ Σ(k). Let
A′ ⊆ A. We say that A is generated by A′ if for every set A′′ such that A′ ⊆ A′′ ⊆ A
and A′′ is closed under θA(σ) for every σ ∈ Σ, we have A = A′′.

Example 2.2. The pair N = (N, θ), where θ(e) = + is the conventional addition on
natural numbers and θ(◦) = 0, is a Σmon-algebra. The algebra N is generated by the set
{1}, which is a direct consequence of the induction axiom of natural numbers. 2

Let A = (A, θA) and B = (B, θB) be Σ-algebras. A Σ-homomorphism from A to B
is a mapping h : A → B such that for every k ∈ N, σ ∈ Σ(k), and a1, . . . , ak ∈ A,
h(θA(σ)(a1, . . . , ak)) = θB(σ)(h(a1), . . . , h(ak)). A bijective Σ-homomorphism from A to
B is also called a Σ-isomorphism from A to B; if there is a Σ-isomorphism from A to B,
we say that A and B are Σ-isomorphic. If Σ is clear from the context, we simply write
homomorphism, isomorphism, and isomorphic.

18 2. Preliminaries

Let C be a class of Σ-algebras, C = (C, θC) be a Σ-algebra in C, and C ′ ⊆ C such that C
is generated by C ′. We say that C is freely generated by C ′ for C if for every Σ-algebra
D = (D, θD) in C and mapping f : C ′ → D there is a Σ-homomorphism h from C to D
with h|C′ = f .4 If C ′ = ∅, then C is also called initial for C. For a thorough introduction
to universal algebra we refer the reader to [30, 70, 135].

2.5 Strings and Trees

Strings

Let A be a (possibly infinite) set. We abbreviate
⋃

n∈N
An by A∗. An element of A∗ is also

called a string over A. In this context we refer to the unique element in A0 as the empty

string and denote it by ε; furthermore, we simply write a1 · · · an instead of (a1, . . . , an)
for every n ∈ N and a1, . . . , an ∈ A; we call n the length of a1 · · · an and denote it by
|a1 · · · an|. As usual, we identify the sets A and A1.

For two strings w = a1 · · · an and v = b1 · · · bm over A we denote by w ·v (or simply wv)
the concatenation of w and v, which is defined by w ·v = a1 · · · anb1 · · · bm. If v,w ∈ A∗,
then v is called a prefix of w if there is a v′ ∈ A∗ with vv′ = w; v is called a proper

prefix of w if v is a prefix of w and v 6= w. Let W ⊆ A∗ be nonempty. The longest

common prefix of W is the string w ∈ A∗ such that w is a prefix of every v ∈ W and
the following implication holds for every w′ ∈ A∗: if w′ is a prefix of every v ∈ W , then
w′ is a prefix of w. Note that the longest common prefix of W does always exist and is
unique. For an excellent introduction to the theory of strings and formal string languages
we refer the reader to [76].

Trees

Let Σ be a signature and D be a set. The set TΣ(D) of trees [66] (over Σ indexed by
D) is the smallest set T such that (i) D ⊆ T and (ii) for every k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Every tree t ∈ D is called an index. Note that even
if Σ and D are not disjoint it is always clear whether a tree t ∈ TΣ(D) is an index or not;
e.g., in the former case we have t = d and in the latter case t = d(), where d ∈ Σ ∩ D.
However, we will occasionally denote the tree d() by d if no confusions arise. We follow the
convention to denote, for every t ∈ TΣ(D), γ ∈ Σ(1), and n ∈ N, the tree γ(· · · (γ(t)) · · ·)
(with n consecutive occurrences of γ) by γn(t). We abbreviate TΣ(∅) by TΣ. Moreover,
we call any subset of TΣ(D) a tree language (over Σ and D).

Example 2.3. Let Σex = {α(0), γ(1), σ(2)} be a ranked alphabet and Dex = {x, y}. Then
TΣex(Dex) = {x, y, α, γ(x), γ(α), γ(γ(x)), σ(α, γ(y)), . . .}. The set L = {γn(x) | n ∈ N} is
a tree language over Σex and Dex. 2

Let us consider the relation < on TΣ(D) which is defined as follows: for every t, t′ ∈
TΣ(D) we let t < t′ iff there are k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ TΣ(D), and i ∈ [k] such
that t = ti and t′ = σ(t1, . . . , tk). The relation < is well-founded on TΣ(D) and we call a
proof by well-founded induction on < a proof by structural induction. Moreover, we call a
definition by well-founded recursion on < a definition by structural recursion. For further
details on trees we refer to [66].

4The Σ-homomorphism h is even unique (see [7, Lemma 3.3.1] or [70, Corollary 24.1])

2.5. Strings and Trees 19

Term algebras

Let k ∈ N and σ ∈ Σ(k). The σ-top concatenation (wrt Σ and D) is the operation
topΣ,D

σ ∈ Ops(k)(TΣ(D)) defined by topΣ,D
σ (t1, . . . , tk) = σ(t1, . . . , tk) for every k ∈ N,

σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(D). If Σ and D are clear from the context, then we

write topσ instead of topΣ,D
σ . We lift the operation topσ to the operation toplang

σ ∈
Ops(k)

(

P(TΣ(D))
)

, called σ-language top concatenation, by letting

toplang
σ (L1, . . . , Lk) = {topσ(t1, . . . , tk) | t1 ∈ L1, . . . , tk ∈ Lk}

for every L1, . . . , Lk ∈ P(TΣ(D)). If there is no chance of confusion, then we write topσ
instead of toplang

σ .
The (Σ,D)-term algebra is the Σ-algebra TΣ(D) = (TΣ(D), θΣ) such that θΣ(σ) =

topσ for every σ ∈ Σ. The (Σ, ∅)-term algebra is also called the Σ-term algebra and
denoted by TΣ. For every Σ-algebra A = (A, θA) and mapping f : D → A there is a unique
Σ-homomorphism from TΣ(D) to A extending f (for a proof of this statement we refer
to [135, Theorem 1.2.3.4]); this unique Σ-homomorphisms is also called the evaluation

homomorphism of A and f . Therefore, TΣ(D) is freely generated by D for the class of
all Σ-algebras, and TΣ is initial for the class of all Σ-algebras.

Example 2.4. Consider the Σ-algebra A = (P(TΣ), θ), where for every σ ∈ Σ, θ(σ) =

toplang
σ is the σ-language top concatenation. Then the mapping f : TΣ → P(TΣ) with

f(t) = {t}, for every t ∈ TΣ, is the unique Σ-homomorphism from TΣ to A. 2

Operations on trees

We define the mappings pos : TΣ(D) → P((N+)∗), ind : TΣ(D) → P(D), and indyield :
TΣ(D)→ D∗ by structural recursion as follows:

• for every d ∈ D we let pos(d) = {ε}, ind(d) = {d}, and indyield(d) = d, and

• for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(D) we let

pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)} ,

ind(σ(t1, . . . , tk)) = ind(t1) ∪ · · · ∪ ind(tk) ,

indyield(σ(t1, . . . , tk)) = indyield(t1) · . . . · indyield(tk) .

Let t ∈ TΣ(D). We call pos(t) the set of positions in t and ind(t) the set of indices

occurring in t. The size of t and the height of t is defined by size(t) = |pos(t)| and
height(t) = max{|w| | w ∈ pos(t)}, respectively. The root of t is the position ε ∈ pos(t)
and a leaf of t is a position v ∈ pos(t) such that for every w ∈ pos(t), v is not a proper
prefix of w.

Example 2.5 (Continuation of Example 2.3). Recall the ranked alphabet Σex and the
set Dex from Example 2.3. Consider the tree tex = γ

(

σ(σ(α, y), γ(x))
)

. Then pos(tex) =
{ε, 1, 11, 111, 112, 12, 121}, ind(tex) = {x, y}, indyield(tex) = yx, and size(tex) = 7 and
height(tex) = |111| = 3. 2

Lemma 2.6. Let Σ be finite (i.e., Σ is a ranked alphabet) and for every n ∈ N let Tn =
{t ∈ TΣ | height(t) ≤ n}. Then for every n ∈ N, |Tn| ≤ |Σ|

((b+1)n), where b = maxrk(Σ).

20 2. Preliminaries

Proof. We give a proof by induction on n.

Induction base. Clearly, T0 = {α() | α ∈ Σ(0)} and, hence, |T0| ≤ |Σ| = |Σ|1 =
|Σ|((b+1)0).

Induction step. Let n ∈ N and assume that |Tn| ≤ |Σ|
((b+1)n). Observe that Tn+1 =

{σ(t1, . . . , tk) | k ∈ N, σ ∈ Σ(k), t1, . . . , tk ∈ Tn}; this implies that we have |Tn+1| ≤
|Σ| · |Tn|

b ≤ |Σ| · (|Σ|((b+1)n))b = |Σ|(1+(b+1)n·b) ≤ |Σ|((b+1)n+(b+1)n·b) = |Σ|((b+1)n·(b+1)) =
|Σ|((b+1)n+1). �

Let t ∈ TΣ(D). For every w ∈ pos(t) and t′ ∈ TΣ(D) we define the label t(w) ∈ Σ ∪D
of t at position w, the subtree t|w ∈ TΣ(D) of t at position w, and the substitution

t[t′]w ∈ TΣ(D) of t′ in t at position w by recursion on the length of w as follows. If t ∈ D,
then w = ε and we let t(w) = t|w = t and t[t′]w = t′. If t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ, then

• if w = ε, then we let t(w) = σ, t|w = t, and t[t′]w = t′.

• if w = iw′ for some i ∈ [k] and w′ ∈ pos(ti), then we let t(w) = ti(w
′), t|w = ti|w′ ,

and t[t′]w = σ(t1, . . . , ti−1, ti[t
′]w′ , ti+1, . . . , tk).

We say that t′ ∈ TΣ(D) is a subtree (respectively proper subtree) of t if there is a
w ∈ pos(t) (respectively w ∈ pos(t) \ {ε}) such that t′ = t|w.

Trees can be represented graphically as follows. Let t ∈ TΣ(D) and define the partial
order ≤ on pos(t) by letting for every v,w ∈ pos(t): v ≤ w iff w is a prefix of v (note
that the order of v and w is inverted in this definition). Then a diagram of t is a Hasse
diagram of (pos(t),≤) that is (i) planar and (ii) for every v ∈ pos(t) and i, j ∈ N+ with
vi, vj ∈ pos(t) and i < j we have that the vertex for vi is left of the vertex of vj; moreover,
in this Hasse diagram we label, for every v ∈ pos(t), the vertex for v with t(v) instead of
v. A graphical representation of the tree tex of Example 2.5 is given in Figure 2.3 (note
that we added the positions of tex in this figure for clarity).

ε γ

1 σ

11 σ

111

α
112

y

12γ

121x

Figure 2.3: Diagram of the tree tex of Example 2.5.

The following observation can easily be proved by induction on the length of w and u.

Observation 2.7. Let t, t′ ∈ TΣ(D), w ∈ pos(t), w′ ∈ pos(t′), and u, v ∈ (N+)∗ such
that uv = w. Then v ∈ pos(t|u), ww

′ ∈ pos(t[t′]w), ind(t′) ⊆ ind(t[t′]w), and

t(w) = t|u(v) , t′(w′) = (t[t′]w)(ww′) .

2.5. Strings and Trees 21

Now we will define the notion of substitution of a sequence of trees t̄ into a given source
tree t. In general we need to provide two kinds of information in order to carry out
such a substitution: (i) what are the substitution positions, i.e., at what positions of
the source tree t shall we substitute trees from the sequence of trees t̄ and (ii) for every
substitution position, what tree of the sequence of trees shall we choose for substitution
at this particular position? The tree substitution that we present below is defined in such
a way that the set of substitution positions is precisely the set of index positions in t,
i.e., every index in the source tree is replaced by one tree from t̄. Now let us explain
how we provide the second kind of information (i.e., what trees to substitute). In the
literature [51, 63, 105] this is sometimes accomplished by using special sets of indices of
the form D = {z1, z2, z3, . . .}; then the tree substitution is defined in such a way that
every index, say zi, is replaced by the i-th tree in the sequence of trees t̄. We will not
proceed along these lines in this thesis, instead our definition of tree substitution simply
substitutes the i-th index in the tree t (read from left to right) by the i-th tree in t̄; this
definition presupposes, however, that the number of indices in t is equal to the number of
trees in t̄.

Let t ∈ TΣ(D) and t̄ ∈
(

TΣ(D)
)∗

such that |indyield(t)| = | t̄ |. The tree substitution

of t̄ into t is the tree t← t̄ in TΣ(D) defined by recursion as follows:

• if t ∈ D, then | t̄ | = |indyield(t)| = 1 (i.e, t̄ ∈ TΣ(D)) and we let t← t̄ = t̄,

• if t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(D), then there
are unique t̄1, . . . , t̄k ∈

(

TΣ(D)
)∗

with t̄1 · · · t̄k = t̄ and |indyield(ti)| = | t̄i | for every
i ∈ [k]; we let t← t̄ = σ(t1 ← t̄1, . . . , tk ← t̄k).

The definition of tree substitution is illustrated in Figure 2.4.

t

d d d

←− t1 t2 t3 =
t

t1 t2 t3

Figure 2.4: Illustration of the tree substitution of t1t2t3 into t. The tree t has three
occurrences of the index d and no occurrences of any other index.

Example 2.8 (Continuation of Example 2.5). Let t1 = x and t2 = γ(α). Then tex ←
t1t2 = γ

(

σ(σ(α, x), γ(γ(α)))
)

. 2

We conclude this section with two simple properties regarding the substitution of trees.

Observation 2.9. Let t ∈ TΣ(D), k ∈ N, and t1, . . . , tk ∈ TΣ(D) such that |indyield(t)| =
k. Then indyield(t← t1 · · · tk) = indyield(t1) · · · indyield(tk).

The substitution operation is “associative” in the following sense.

22 2. Preliminaries

Lemma 2.10. Let t ∈ TΣ(D), k = |indyield(t)|, and t1, . . . , tk ∈ TΣ(D). Moreover, for
every i ∈ [k] let s̄i ∈

(

TΣ(D)
)∗

such that |s̄i| = |indyield(ti)|. Then

t← (t1 ← s̄1) · · · (tk ← s̄k) = (t← t1 · · · tk)← s̄1 · · · s̄k . (2.6)

Proof. First observe that the right-hand side of Equation (2.6) is well-defined because
Observation 2.9 implies |indyield(t ← t1 · · · tk)| = |indyield(t1)| + · · · + |indyield(tk)| =
|s̄1|+ · · ·+ |s̄k| = |s̄1 · · · s̄k|. Now we give a proof by structural induction on t.

Induction base. If t ∈ D, then k = 1 and we have t ← (t1 ← s̄1) = t1 ← s̄1 = (t ←
t1)← s̄1.

Induction step. Let t = σ(t′1, . . . , t
′
l) for some l ∈ N, σ ∈ Σ(l), and t′1, . . . , t

′
l ∈ TΣ(D).

For every i ∈ [l] let ni = |indyield(t′i)|. Then n1 + · · ·+nl = k. Moreover, for every i ∈ [l]
let

• tai = t′i ← (tn1+···+ni−1+1 ← s̄n1+···+ni−1+1) · · · (tn1+···+ni
← s̄n1+···+ni

),

• tbi = (t′i ← tn1+···+ni−1+1 · · · tn1+···+ni
)← s̄n1+···+ni−1+1 · · · s̄n1+···+ni

,

• tci = t′i ← tn1+···+ni−1+1 · · · tn1+···+ni
.

Then t← (t1 ← s̄1) · · · (tk ← s̄k) = σ(t′1, . . . , t
′
l)← (t1 ← s̄1) · · · (tk ← s̄k) = σ(ta1, . . . , t

a
l).

Due to the induction hypothesis this is equal to σ(tb1, . . . , t
b
l) = σ(tc1, . . . , t

c
l)← s̄1 · · · s̄k =

(σ(t′1, . . . , t
′
l)← t1 · · · tk)← s̄1 · · · s̄k = (t← t1 · · · tk)← s̄1 · · · s̄k. �

2.6 Hypergraphs

Directed hypergraphs [6, 64] are a generalization of the usual concept of directed graphs,
where an edge in a hypergraph, called hyperedge, is allowed to connect any number of
vertices, i.e., a hyperedge can have multiple input and multiple output vertices. In this
thesis we focus on functional hypergraphs (also called B-graphs in the literature [64, 84]);
these are hypergraphs where every hyperedge has precisely one output vertex. We follow
along the lines of Huang and Chiang [77] and define hypergraphs in such a way that the
input vertices of every hyperedge are given by a string over the set of vertices; such a
hypergraph is called an ordered hypergraph.

Hypergraphs are our main tool to describe the behavior of a multioperator weighted
monadic datalog program for a given input tree. In this section we will study basic
properties of hypergraphs that will be useful in later chapters.

A (finite, functional, ordered, and directed) hypergraph is a triple (V,E, µ) such that
V and E are finite sets, and µ : E → V ∗ × V . We refer to the elements of N as vertices

and to the elements of E as hyperedges. We consider E as a ranked alphabet, where for
every e ∈ E and (w, v) ∈ V ∗×V with µ(e) = (w, v), the rank of e is |w|. Let G = (V,E, µ)
be a hypergraph, k ∈ N, e ∈ E(k), and v1, . . . , vk, v ∈ V such that µ(e) = (v1 · · · vk, v). We
will denote v by out(e), called output vertex of e, and for every i ∈ [k] we will denote vi
by ini(e) and call it the i-th input vertex of e.

Example 2.11. Consider the hypergraph Gex = (Vex, Eex, µex) whose components are
defined as follows: Vex = {v1, v2}, Eex = {e1, e2, e3, e4, e5}, µex(e1) = (ε, v1), µex(e2) =
(v2, v1), µex(e3) = (v2v1, v2), µex(e4) = (v1v1, v1), and µex(e5) = (ε, v2).

Then rk(e1) = rk(e5) = 0, rk(e2) = 1, and rk(e3) = rk(e4) = 2. Moreover, we have
out(e1) = out(e2) = out(e4) = v1 and out(e3) = out(e5) = v2. The input vertices of e3
are in1(e3) = v2 and in2(e3) = v1. 2

2.6. Hypergraphs 23

A hypergraph (V,E, µ) can be represented graphically by means of a hypergraph di-

agram. Every vertex v ∈ V is depicted by a circle containing the label ‘v’ and every
hyperedge e ∈ E by a small box with several incoming and one outgoing edge (called
tentacles). There is one incoming tentacle for every input vertex ini(e) (i ∈ [rk(e)]) and
one outgoing tentacle for the output vertex out(e). The incoming tentacles start at the
input vertices in1(e), . . . , inrk(e)(e) and are ordered counter-clockwise starting from the
outgoing tentacle; the outgoing tentacle ends at the output vertex of e. The label e is
written next to the small box that represents the hyperedge e. The hypergraph Gex from
Example 2.11 is shown in Figure 2.5.

e4

e5

v2
e2

v1

e1

e3

Figure 2.5: Hypergraph diagram of the hypergraph Gex of Example 2.11.

Hyperpaths and hyperpath segments

A path in a digraph is a sequence of edges that fit together; more precisely, the output
vertex of the first edge has to be the input vertex of the second edge and so on. Hyperpaths
are the counterpart of paths for hypergraphs. Since hyperedges can have multiple input
vertices it is not possible to describe hyperpaths by means of sequences of hyperedges.
However, hyperpaths can adequately be represented by trees over the ranked alphabet
of hyperedges. In this sense the hyperpath ends in the output vertex of the hyperedge
that labels the root of the hyperpath, i.e., the label of the root is the final hyperedge
in the hyperpath. The hyperpath might have multiple initial hyperedges; these initial
hyperedges are the leafs of the tree representation of the hyperpath. Note that since the
label at every leaf in a tree is nullary, the initial hyperedges of the hyperpath do not
have any input vertex; hence, the hyperpath does have a unique final vertex but no initial
vertices.

For our purposes it turns out useful to generalize this definition of hyperpaths. In fact,
we will allow hyperpaths to have initial vertices and refer to such hyperpaths as hyperpath
segments. A hyperpath segment is (similarly to a hyperpath) defined as a tree over the
ranked alphabet of hyperedges, where we allow the use of copies of elements of the set of
vertices as indices of the tree.

Similarly to paths in digraphs we require the hyperedges that occur in the tree repre-
sentation to fit together, e.g., the output vertex of the i-th subtree must be the i-th input
vertex of the hyperedge at the root of the tree.

In the sequel let G = (V,E, µ) be a hypergraph and U ⊆ V .

24 2. Preliminaries

Let v ∈ V . A tree η ∈ TE(U) \ U is called a hyperpath segment of G starting in U
and ending in v if out(η(ε)) = v and for every w ∈ pos(η) and i ∈ N+ with wi ∈ pos(η)
we have

• if η|wi ∈ U , then ini(η(w)) = η|wi,

• if η|wi 6∈ U , then ini(η(w)) = out(η(w · i)) and ini(η(w)) 6∈ U .

We denote the set of all hyperpath segments of G starting in U and ending in v by Hv,U
G .

We lift the notion of input and output vertices to hyperpath segments as follows. Let
η ∈ Hv,U

G ; then v is called the output vertex of η and indyield(η) is the sequence of
input vertices of η. Moreover, for every w ∈ pos(η)\{ε} with η|w 6∈ U we call out(η(w))
and inner vertex of η.

Roughly speaking, we can generate the hyperpath segments in Hv,U
G as follows. We start

at vertex v, choose a hyperpath whose output vertex is v, and move backwards along the
hyperedge to its input vertices. Then we proceed with this stepwise “unfolding” of the
hyperpath for each of the input vertices in parallel. This process finishes when we reach
nullary hyperedges or vertices that are in the set U . Note that due to our definition we
have to stop at any vertex that is in the set U ; thus, for any hyperpath segment in Hv,U

G

the only hyperedge that is allowed to have an output vertex in the set U is the hyperedge
at the root of the hyperpath.

Example 2.12 (Continuation of Example 2.11). The sets of hyperpath segments for the
hypergraph Gex are shown in Table 2.1. The diagrams of one example hyperpath segment

in each of the sets Hv1,∅
Gex

and H
v1,{v2}
Gex

is given in Figure 2.6; for reasons of clarity we have,
for every hyperedge, indicated the input vertices (below the hyperedge) and the output
vertex (above the hyperedge); this illustrates how input and output vertices fit together.

The output vertex of the hyperpath segment in Figure 2.6(b) is v1, its sequence of input
vertices is v2v2 and {v1} is the set of its inner vertices. The set of inner vertices of the

hyperpath segment e3(v2, v1), which is in H
v2,{v1,v2}
Gex

, is empty. 2

(v1)

e4

e2

e3

e5 e1

e4

e2

e5

e1

(v1)

(v2)

(v2) (v1)

(v1)

(v1)

(v2)

(v1)

(a)

(v1)

e4

e2

v2

e4

e2

v2

e1

(v1)

(v2)

(v1)

(v1)

(v2)

(v1)

(b)

Figure 2.6: Two diagrams of hyperpath segments of the hypergraph Gex of Example 2.11.

Figure (a) shows a hyperpath segment in the set Hv1,∅
Gex

and Figure (b) a hy-

perpath segment in H
v1,{v2}
Gex

.

2.6. Hypergraphs 25

U Hv1,U
Gex

Hv2,U
Gex

∅
{

e1, e2(e5), e2(e3(e5, e1)),
{

e5, e3(e5, e1),
e4(e1, e1), e4(e1, e2(e5)), . . .

}

e3(e5, e2(e5)), . . .
}

{v1}
{

e1, e4(v1, v1), e2(e5),
{

e5, e3(e5, v1),
e2(e3(e5), v1), . . .

}

e3(e3(e5, v1), v1), . . .
}

{v2}
{

e1, e2(v2), e4(e1, e1), e4(e2(v2), e1),
{

e5, e3(v2, e1),
e4(e2(v2), e4(e1, e1)), . . .

}

e3(v2, e2(v2)), . . .
}

{v1, v2}
{

e1, e2(v2), e4(v1, v1)
} {

e3(v2, v1), e5
}

Table 2.1: Hyperpath segments for the hypergraph Gex of Example 2.11.

Observation 2.13. Let v ∈ V , η ∈ Hv,U
G , w ∈ pos(η), and i ∈ N+ such that wi ∈ pos(η).

Then η|wi ∈ U iff ini(η(w)) ∈ U .

Above we described that one can generate the set Hv,U
G of hyperpath segments (for some

v ∈ V) by starting at v and tracing backwards along hyperedges. It is obvious that when
one reaches a vertex v′ 6∈ U during this process, then the set of subhyperpaths that one

can generate when proceeding at v′ is the set Hv′,U
G . This relationship between the sets in

the family (Hv,U
G | v ∈ V) is made precise by the following two lemmas.

Lemma 2.14. For every k ∈ N, e ∈ E(k), and i ∈ [k] let He
i = H

ini(e),U
G if ini(e) 6∈ U and

He
i = {ini(e)} otherwise. Then for every v ∈ V ,

Hv,U
G =

{

e(η1, . . . , ηk) | k ∈ N, e ∈ E(k), out(e) = v, η1 ∈ H
e
1 , . . . , ηk ∈ H

e
k

}

.

Proof. Let v ∈ V .
“⊆”: Let η ∈ Hv,U

G . Then η 6∈ U . Therefore, there is a k ∈ N, e ∈ E(k), and
η1, . . . , ηk ∈ TE(U) such that η = e(η1, . . . , ηk) and out(e) = v. Let i ∈ [k]. It remains to
show that ηi ∈ H

e
i .

First we consider the case that ini(e) 6∈ U . We need to show that ηi ∈ H
ini(e),U
G . By

Observation 2.13, ηi 6∈ U . Thus, ηi ∈ TE(U) \ U . Moreover, out(ηi(ε)) = out(η(i)) =

ini(η(ε)) = ini(e) because η ∈ Hv,U
G . The remainder of the proof that ηi ∈ H

ini(e),U
G is

trivial.
Now we consider the case that ini(e) ∈ U . We show ηi = ini(e). By Observation 2.13,

ηi ∈ U . Then ini(e) = ini(η(ε)) = η(i) = ηi.
“⊇”: Let k ∈ N and e ∈ E(k) such that out(e) = v. Moreover, for every i ∈ [k] let

ηi ∈ H
ini(e),U
G if ini(e) 6∈ U and ηi = ini(e) otherwise. Let η = e(η1, . . . , ηk). We show that

η ∈ Hv,U
G .

For every i ∈ [k], ηi ∈ TE(U); hence, η ∈ TE(U). Clearly, η 6∈ U and out(η(ε)) =
out(e) = v. Let w ∈ pos(η) and i ∈ N+ such that wi ∈ pos(η).

First let us consider the case w = ε. If η|i ∈ U , then ηi 6∈ H
ini(e),U
G due to the definition

of H
ini(e),U
G ; hence, ηi = ini(e) = ini(η(ε)). If η|i 6∈ U , then ini(e) 6∈ U and ηi ∈ H

ini(e),U
G ;

we obtain out(ηi(ε)) = ini(e), which implies ini(η(ε)) = out(η(i)) 6∈ U .
Now consider the case that w = jw′ for some j ∈ [k] and w′ ∈ pos(ηj). Then ηj ∈

H
inj(e),U
G ; for otherwise ηj = inj(e) ∈ U which contradicts jw′i = wi ∈ pos(η). Therefore

the remainder of the proof is trivial. �

26 2. Preliminaries

Lemma 2.15. Let v ∈ V , η ∈ Hv,U
G , and w ∈ pos(η) such that η|w 6∈ U . Then η|w ∈

H
out(η(w)),U
G .

Proof. We give a proof by induction on the length of w.

Induction base. If |w| = 0, i.e., w = ε, then η|w = η ∈ Hv,U
G = H

out(η(ε)),U
G .

Induction step. Now assume that |w| > 1. Let e = η(ε). Then there is an i ∈ [rk(e)]
and w′ ∈ pos(η|i) such that w = iw′. Since (η|i)|w′ = η|w 6∈ U we obtain η|i 6∈ U . By

Lemma 2.14 we have that (i) η|i = ini(e) if ini(e) ∈ U and (ii) η|i ∈ H
ini(e),U
G if ini(e) 6∈ U .

Since η|i 6∈ U we obtain that η|i ∈ H
ini(e),U
G . Then the induction hypothesis together with

the fact that (η|i)|w′ 6∈ U yields that η|w = (η|i)|w′ ∈ H
out(η|i(w

′)),U
G = H

out(η(w)),U
G . �

We put Hv
G = Hv,∅

G and call any element η in Hv
G a hyperpath (of G ending in v). The

following corollary is an immediate consequence of Lemma 2.14.

Corollary 2.16. Let v ∈ V . Then

Hv
G =

{

e(η1, . . . , ηn) | k ∈ N, e ∈ E(k), out(e) = v, η1 ∈ H
in1(e)
G , . . . , ηk ∈ H

ink(e)
G

}

.

The previous two lemmas characterized how the sets in the family (Hv,U
G | v ∈ V) are

related. Now let us analyze how the sets Hv
G and Hv,U

G , for a given v ∈ V , are connected.
Roughly speaking, we can transform every hyperpath η in Hv

G into a hyperpath segment

η′ in Hv,U
G by the following method: for every leaf position w in η we trace along the

path from the root of η to w and, at the first occurrence of a vertex u in U , we cut the
path at this occurrence, remove the subhyperpath that starts at this vertex and replace
it by the index u. An example of this transformation is given in Figure 2.6, where the
hyperpath segment in Figure (b) is the result of transforming the hyperpath in Figure (a)
for U = {v2}. Now we define this operation formally.

Definition 2.17. Let v ∈ V and η ∈ Hv
G. We define the top decomposition of η wrt U

and G, denoted by dec↑(η, U,G) ∈ Hv,U
G , by recursion on the structure of η as follows. By

Corollary 2.16 there are uniquely determined k ∈ N, e ∈ E(k), and η1 ∈ H
in1(e)
G , . . . , ηk ∈

H
ink(e)
G such that out(e) = v and η = e(η1, . . . , ηk). We define

dec↑(η, U,G) = e(η′1, . . . , η
′
k) ,

where ∀ i ∈ [k] : η′i =

{

dec↑(ηi, U,G) , if ini(e) 6∈ U ,

ini(e) , otherwise.
2

By means of Lemma 2.14 it is easy to check that dec↑(η, U,G) is well-defined. If G is
clear from the context, then we write dec↑(η, U) instead of dec↑(η, U,G). The following
lemma captures some basic properties of the top decomposition.

Lemma 2.18. Let η ∈ Hv
G and η′ = dec↑(η, U).

1. Let w ∈ pos(η)∩pos(η′). If both out(η(w)) ∈ U and |w| > 0, then out(η(w)) = η′|w;
otherwise η(w) = η′(w).

2. For every w ∈ (N+)∗ the following statements are equivalent: (i) w ∈ pos(η′) and
(ii) w ∈ pos(η) and for every proper prefix w′ of w with w′ 6= ε we have out(η(w′)) 6∈
U .

2.6. Hypergraphs 27

3. Let w ∈ pos(η) such that out(η(w′)) 6∈ U for every prefix w′ of w with w′ 6= ε. Then
η′|w = dec↑(η|w, U).

Proof. We prove Statements 1 to 3 simultaneously be structural induction on η. By

Corollary 2.16 there are uniquely determined k ∈ N, e ∈ E(k), and η1 ∈ H
in1(e)
G , . . . , ηk ∈

H
ink(e)
G such that out(e) = v and η = e(η1, . . . , ηk). Moreover, by the definition of

dec↑(η, U) we have η′ = e(η′1, . . . , η
′
k), where for every i ∈ [k]: (i) η′i = dec↑(ηi, U) if

ini(e) 6∈ U and (ii) η′i = ini(e) otherwise.

First we prove Statement 1. Let w ∈ pos(η) ∩ pos(η′). If w = ε, then obviously
|w| = 0 and η(w) = e = η′(w). Now assume that w = iw0 for some i ∈ [rk(e)] and
w0 ∈ pos(ηi) ∩ pos(η′i). First we consider the case that ini(e) ∈ U . Then η′i = ini(e)
and, thus, w0 = ε; hence, |w| > 0, out(η(w)) = out(η(i)) = ini(η(ε)) = ini(e) ∈ U , and
out(η(w)) = ini(e) = η′i = η′|w.

It remains to consider the case that ini(e) 6∈ U . Then η′i = dec↑(ηi, U). First assume
that out(η(w)) ∈ U and |w| > 0. If |w| = 1, then w = i and ini(e) = ini(η(ε)) =
out(η(i)) = out(η(w)) ∈ U , a contradiction. Hence, |w| > 1, i.e., |w0| > 0. Then the
induction hypothesis together with the facts that out(ηi(w0)) = out(η(w)) ∈ U and |w0| >
0 yields out(η(w)) = out(ηi(w0)) = η′i|w0 = η′|w. Now assume that out(η(w)) 6∈ U or |w| 6>
0. Thus, out(η(w)) 6∈ U because |w| = |iw0| > 0. Then the induction hypothesis together
with the fact that out(ηi(w0)) = out(η(w)) 6∈ U implies η(w) = ηi(w0) = η′i(w0) = η′(w).

Next we prove Statement 2. Let w ∈ (N+)∗. If w = ε, then Statements (i) and (ii) are
both true and therefore equivalent. Now assume that w = iw0 for some i ∈ [rk(e)] and
w0 ∈ pos(ηi) ∩ pos(η′i).

First we consider the case that ini(e) 6∈ U . Then η′i = dec↑(ηi, U) and the induction
hypothesis yields that the following two statements are equivalent: (i’) w0 ∈ pos(η′i) and
(ii’) w0 ∈ pos(ηi) and for every proper prefix w′

0 of w0 with w′
0 6= ε we have out(ηi(w

′
0)) 6∈

U . It is easy to check that the equivalence of Statements (i’) and (ii’), and the fact that
out(η(i)) = ini(η(ε)) = ini(e) 6∈ U imply that Statements (i) and (ii) are equivalent.

Now consider the case that ini(e) ∈ U . Then η′i = ini(e). First we show that State-
ment (i) implies Statement (ii). Assume that Statement (i) holds. Then w0 ∈ pos(η′i) and,
therefore, w0 = ε; thus, w = i ∈ pos(η) and out(η(w′)) 6∈ U for every proper prefix w′

of w with w′ 6= ε. Thus, Statement (ii) holds as well. Next we show that Statement (ii)
implies Statement (i). Assume that Statement (ii) holds. Since i is a prefix of w and
out(η(i)) = ini(η(ε)) = ini(e) ∈ U , we obtain that i = w. Clearly, w = i ∈ pos(η′). Thus,
Statement (i) holds as well.

Now we prove Statement 3. This is trivial if w = ε. For the remainder of the proof
let us assume that w = iw0 for some i ∈ [k] and w0 ∈ pos(ηi). Since out(η(w′)) 6∈ U
for every prefix w′ of w with w′ 6= ε, we obtain that (i) ini(e) = ini(η(ε)) = out(η(i)) 6∈
U and that (ii) out(ηi(w

′
0)) = out(ηiw′

0
) 6∈ U for every prefix w′

0 of w0 with w′
0 6= ε.

Then Condition (i) asserts that η′i = dec↑(ηi, U); moreover, Condition (ii) together with
the induction hypothesis implies that η′|w = (η′|i)|w0 = (η′i)|w0 = (dec↑(ηi, U))|w0 =
dec↑((ηi)|w0 , U) = dec↑(η|w, U). �

Dependence Relation

Now we are going to define a relation on the set of vertices, the direct dependence relation,
that turns out to be very useful for our purposes. Roughly speaking, we say that a vertex

28 2. Preliminaries

v2 directly depends on a vertex v1 if there is a hyperpath such that v1 is a direct predecessor
of v2 in this hyperpath.

We define the relation ≺G on V , called the direct dependence relation of G, as
follows for every v1, v2 ∈ V : v1 ≺G v2 iff there are η ∈ Hv2

G and i ∈ [rk(η(ε))] such that
η|i ∈ Hv1

G .

Example 2.19 (Continuation of Example 2.11). Consider the hyperpath η that is de-
picted in Figure 2.6(a). Clearly, η ∈ Hv1

Gex
. By Lemma 2.15 we obtain η|1 ∈ Hv1

Gex
;

hence, v1 ≺Gex v1. By the same reasoning we have that η|11 ∈ Hv2
Gex

, η|111 ∈ Hv2
Gex

, and
η|112 ∈ Hv1

Gex
. Thus, we obtain that also v1 ≺Gex v2, v2 ≺Gex v1, and v2 ≺Gex v2 hold.

Assume that we construct a hypergraph G′ that originates from Gex by removing e4.
Then we still have v1 ≺G′ v2, v2 ≺G′ v1, and v2 ≺G′ v2; however, v1 ≺G′ v1 does not hold
anymore. 2

Now we state two alternative characterizations of the direct dependence relation.

Lemma 2.20. Let v1, v2 ∈ V . Then the following statements are equivalent.

1. v1 ≺G v2.

2. There are v ∈ V , η ∈ Hv
G, w,w′ ∈ pos(η) such that w′ is a prefix of w, |w|−|w′| = 1,

out(η(w)) = v1, and out(η(w′)) = v2.

3. There are k ∈ N, e ∈ E(k), and i ∈ [k] such that out(e) = v2, ini(e) = v1, and

H
inj(e)
G 6= ∅ for every j ∈ [k].

Proof. “1⇒ 2”: Since v1 ≺G v2, there are η ∈ Hv2
G and i ∈ [rk(η(ε))] such that η|i ∈ Hv1

G .
Let v = v2, w = i, and w′ = ε. Then |w| − |w′| = 1, out(η(w)) = out(η|i(ε)) = v1, and
out(η(w′)) = v2.

“2⇒ 3”: Suppose that there are v ∈ V , η ∈ Hv
G, w,w′ ∈ pos(η) such that |w|−|w′| = 1,

out(η(w)) = v1, and out(η(w′)) = v2. Let e = η(w′) and k = rk(e). Then there is an
i ∈ [k] such that w′i = w. Since η ∈ Hv

G, we have ini(e) = ini(η(w
′)) = out(η(w′i)) =

out(η(w)) = v1. It remains to show that H
inj(e)
G 6= ∅ for every j ∈ [k]; this follows from

the fact that η|w′j ∈ H
out(η(w′j))
G = H

inj(η(w
′))

G = H
inj(e)
G , which is implied by Lemma 2.15.

“3 ⇒ 1”: For every j ∈ [k] choose ηj ∈ H
inj(e)
G . Then η = e(η1, . . . , ηk) ∈ Hv2

G by

Corollary 2.16. Clearly, η|i = ηi ∈ H
ini(e)
G = Hv1

G . We obtain v1 ≺G v2. �

For every v, v′ ∈ V we have v ≺G v′ iff there is a hyperpath η such that v′ is the
output vertex of the root hyperedge of η and v is the output vertex of some hyperedge
that is the child of the root hyperedge. If we are given a sequence v0, . . . , vn ∈ V with
v0 ≺G v1 ≺G · · · ≺G vn, then we can even assume that there is one hyperpath η such
that vn is the output vertex of the root of η, vn−1 is the output vertex of some child
hyperedge of the root of η, vn−2 is the output vertex of some child hyperedge of this child
hyperedge, and so on, i.e., the sequence v0, . . . , vn can be embedded into one hyperpath
η. Lemma 2.23 will make this explicit. Before we are going to present Lemma 2.23, let
us state a similar but stronger property.

Lemma 2.21. Let n ∈ N, v0, . . . , vn ∈ V , e1, . . . , en ∈ E, and i1, . . . , in ∈ N+ such that

for every j ∈ [n] we have out(ej) = vj , ij ∈ [rk(ej)], inij(ej) = vj−1, and H
inl(ej)
G 6= ∅ for

every l ∈ [rk(ej)]. Then

2.6. Hypergraphs 29

1. (i) n = 0 or (ii) Hv0
G 6= ∅ and for every η′ ∈ Hv0

G there is an η ∈ Hvn

G with:

a) w ∈ pos(η),

b) η|w = η′, and

c) η(w′) = en−|w′| for every proper prefix w′ of w,

where w = in · · · i1.

2. Suppose that there is a j ∈ [n] such that v0 = vj . Then for every m ∈ N+ there are
η ∈ Hvn

G and w ∈ pos(η) such that: (i) |w| = j(m− 1) + n and (ii) for every proper
prefix w′ of w we have η(w′) = ef(|w|−|w′|), where the mapping f : [j(m−1)+n]→ [n]
is defined as follows for every l ∈ [j(m− 1) + n]:

f(l) =

{

((l − 1) mod j) + 1 , if l ≤ j(m− 1) ,

l − j(m− 1) , otherwise.

Proof. 1. We give a proof by induction on n.

Induction base. For n = 0 this implication holds trivially.

Induction step. Let n ∈ N, v0, . . . , vn+1 ∈ V , e1, . . . , en+1 ∈ E, and i1, . . . , in+1 ∈ N+

such that for every j ∈ [n + 1] we have out(ej) = vj, ij ∈ [rk(ej)], inij (ej) = vj−1, and

H
inl(ej)
G 6= ∅ for every l ∈ [rk(ej)].

If n ≥ 1, then the induction hypothesis yields that for every η′ ∈ Hv0
G there is an η ∈ Hvn

G

with such that w ∈ pos(η), η|w = η′, and η(w′) = en−|w′| for every proper prefix w′ of w,
where w = in · · · i1.

Lemma 2.20(3 ⇒ 1) implies that vj−1 ≺G vj holds for every j ∈ [n + 1]. In particular,
we have v0 ≺G v1. This implies that Hv0

G 6= ∅.
Now let η′ ∈ Hv0

G . We show that there is an η̃ ∈ H
vn+1

G such that the following properties
are satisfied: (a) w̃ ∈ pos(η̃), (b) η̃|w̃ = η′, and (c) η̃(w′) = en+1−|w′| for every proper
prefix w′ of w̃, where w̃ = in+1 · · · i1.

Let w = in · · · i1. First let us define the hypergraph η ∈ Hvn

G satisfying the following
properties: (a’) w ∈ pos(η), (b’) η|w = η′, and (c’) η(w′) = en−|w′| for every proper prefix
w′ of w. If n = 0, then we let η = η′; it is obvious that η satisfies Properties (a’), (b’),
and (c’). If n ≥ 1, then we can apply the induction hypothesis and obtain that there is
such an η satisfying Properties (a’), (b’), and (c’).

For every l ∈ [rk(en+1)] choose an ηl ∈ H
inl(en+1)
G ; such an ηl exists by assumption.

Moreover, vn = inin+1(en+1) and, hence, η ∈ H
inin+1

(en+1)

G . We put

η̃ = en+1

(

η1, . . . , ηin+1−1, η, ηin+1+1, . . . , ηrk(en+1)

)

.

Then Corollary 2.16 yields that η̃ ∈ H
vn+1

G because out(en+1) = vn+1. It remains to prove
that Properties (a), (b), and (c) hold. These properties follow immediately from the
definition of η̃ and Properties (a’), (b’), and (c’).

2. Let m ∈ N+. For every l ∈ [j(m − 1) + n] we define v′l ∈ V , e′l ∈ E, and i′l ∈ N+

by letting (v′l, e
′
l, i

′
l) = (vf(l), ef(l), if(l)). Let v′0 = v0. Clearly, for every l ∈ [j(m − 1) + n]

we have that out(e′l) = out(ef(l)) = vf(l) = v′l, i
′
l = if(l) ∈ [rk(ef(l))] = [rk(e′l)], and

H
ink(e′l)
G = H

ink(ef(l))

G 6= ∅ for every k ∈ [rk(e′l)]; moreover, it is easy to check that vf(l)−1 =
vf(l−1) because v0 = vj ; therefore, ini′l(e

′
l) = inif(l)

(ef(l)) = vf(l)−1 = vf(l−1) = v′l−1.
Thus, we can apply Statement 1 to the sequences v′0, . . . , v

′
n′ , e′1, . . . , e

′
n′ , and i′1, . . . , i

′
n′ ,

30 2. Preliminaries

where n′ = j(m − 1) + n, and obtain that there are η′ ∈ H
v′0
G and η ∈ H

v′
n′

G = Hvn

G such
that w ∈ pos(η) (where w = i′n′ · · · i′1) and for every proper prefix w′ of w we have that
η(w′) = e′n′−|w′| = e′|w|−|w′| = ef(|w|−|w′|). �

Corollary 2.22. Let n ∈ N and v0, . . . , vn ∈ V such that vj−1 ≺G vj for every j ∈ [n].
Then there are w ∈ (N+)n and e1, . . . , en ∈ E such that out(ej) = vj , for every j ∈ [n],
and for every η′ ∈ Hv0

G there is an η ∈ Hvn

G with: (a) w ∈ pos(η), (b) η|w = η′, and
(c) η(w′) = en−|w′| for every proper prefix w′ of w.

Proof. If n = 0, then we put w = ε; the proof is trivial in this case. Now assume that
n ≥ 1. Lemma 2.20(1⇒ 3) yields that for every j ∈ [n] there are ej ∈ E and ij ∈ [rk(ej)]

such that out(ej) = vj , inij (ej) = vj−1, and H
inl(ej)
G 6= ∅ for every l ∈ [rk(ej)]. We put

w = in · · · i1. Then the assertion follows immediately from Lemma 2.21(1). �

Lemma 2.23. Let n ∈ N+ and v0, . . . , vn ∈ V . Then the following statements are equiv-
alent.

1. vj−1 ≺G vj for every j ∈ [n].

2. There are η ∈ Hvn

G and w ∈ pos(η) such that |w| = n and vn−|w′| = out(η(w′)) for
every prefix w′ of w.

Proof. “1⇒ 2”: Suppose that Statement 1 holds. Then Lemma 2.20(1⇒ 3) yields that
for every j ∈ [n] there are ej ∈ E and ij ∈ [rk(ej)] such that out(ej) = vj , inij(ej) = vj−1,

and H
inl(ej)
G 6= ∅ for every l ∈ [rk(ej)]. Then Lemma 2.21(1) yields that there is an η′ ∈ Hv0

G

and an η ∈ Hvn

G such that w ∈ pos(η), η|w = η′, and η(w′) = en−|w′| for every proper
prefix w′ of w, where w = in · · · i1. Clearly, |w| = n. Let w′ be a prefix of w. If w′ is
a proper prefix of w, then out(η(w′)) = out(en−|w′|) = vn−|w′|. It remains to show that
out(η(w′)) = vn−|w′| for the case that w′ = w. This is an immediate consequence of the
facts that η(w) = η′(ε) and η′ ∈ Hv0

G .

“2 ⇒ 1”: Let η ∈ Hvn

G and w ∈ pos(η) such that |w| = n and vn−|w′| = out(η(w′)) for
every prefix w′ of w. Let j ∈ [n]. We show that vj−1 ≺G vj. Let w1 and w2 be the unique
prefixes of w of length n− j and n− j+1, respectively. Since out(η(w2)) = vn−|w′

2|
= vj−1

and, likewise, out(η(w1)) = vj , Lemma 2.20(2⇒ 1) yields vj−1 ≺G vj . �

Lemma 2.23 turns out to be useful for giving a measure of the number and size of
hyperpaths depending on whether the transitive closure of the direct dependence relation
is reflexive, i.e., whether the hypergraph contains loops of dependency. Roughly speaking,
if it contains such a loop, then there are infinitely many hyperpaths and, thus, their heights
are not bounded from above. The converse implication holds as well. For an example
consider the hypergraph Gex from Example 2.11. In Example 2.19 we have shown that
both v1 ≺Gex v1 and v2 ≺Gex v2 hold; in fact, Table 2.1 demonstrates that both Hv1

Gex
and

Hv2
Gex

are infinite.

These relationships are captured by the following three lemmas.

Lemma 2.24. Assume that there is an η ∈ Hv
G such that height(η) ≥ |V |. Then there is

a u ∈ V such that u ≺+
G u and u ≺∗

G v.

2.6. Hypergraphs 31

Proof. There is a w ∈ pos(η) such that |w| = |V |. Let W be the set of prefixes
of w. Clearly, |W | = |w| + 1 > |V |. Then there are w1, w2 ∈ W such that w1

is a proper prefix of w2 and out(η(w1)) = out(η(w2)). Let n = |w2| and for every
i ∈ {0, . . . , n} let vi = out(η(w′

i)) where w′
i is the unique prefix of w2 of length n − i.

Lemma 2.23(2 ⇒ 1) yields vi−1 ≺G vi for every i ∈ [n]. Hence, v0 ≺
+
G vn−|w1| ≺

∗
G vn and,

thus, out(η(w2)) ≺
+
G out(η(w1)) ≺

∗
G out(η(ε)). The assertion follows from the facts that

out(η(w2)) = out(η(w1)) and out(η(ε)) = v. �

Lemma 2.25. Let ⊳ = ≺G \ (U ×V) and v ∈ V . Then the following Statement 1 implies
Statement 2.

1. There is a u ∈ V such that u ⊳+ u and u ⊳∗ v.

2. Hv,U
G is infinite.

If U = ∅ (and, thus, ⊳ = ≺G), then Statements 1 and 2 are equivalent.

Proof. ”1⇒ 2”: Let u ∈ V such that u ⊳+ u and u ⊳∗ v and assume that Hv,U
G is finite.

We derive a contradiction. Let m = max{height(η) | η ∈ Hv,U
G }+ 1.

Clearly, there are j, n ∈ N+ and v0, . . . , vn ∈ V such that j ∈ [n], v0 = vj = u, vn = v,
v0, . . . , vmax(j,n−1) 6∈ U , and vi−1 ≺G vi for every i ∈ [n]. By Lemma 2.20(1 ⇒ 3) we
obtain that for every k ∈ [n] there are ek ∈ E and ik ∈ [rk(ek)] such that out(ek) = vk,

inik(ek) = vk−1, and H
inl(ek)
G 6= ∅ for every l ∈ [rk(ek)]. Thus, we can apply Lemma 2.21(2)

and obtain that there are η ∈ Hvn

G = Hv
G and w ∈ pos(η) such that |w| = j(m − 1) + n

and for every proper prefix w′ of w we have η(w′) = ef(|w|−|w′|), where the mapping
f : [j(m− 1) + n]→ [n] is as in Lemma 2.21(2).

Let η′ = dec↑(η, U). Then η′ ∈ Hv,U
G . It is easy to check that for every index k ∈

{1, . . . , j(m − 1) + n − 1} we have that f(k) ∈ {1, . . . ,max(j, n − 1)}, i.e., vf(k) 6∈ U .
Hence, Lemma 2.18(2) yields that w ∈ pos(η′) because for every proper prefix w′ of w
with w′ 6= ε we have out(η(w′)) = out(ef(|w|−|w′|)) = vf(|w|−|w′|) 6∈ U . Thus, height(η′) ≥
|w| = j(m − 1) + n ≥ m − 1 + 1 = m because j, n ≥ 1; this contradicts the assumption
that m = max{height(η) | η ∈ Hv,U

G }+ 1.

Now we assume that U = ∅ and show that Statement 2 implies Statement 1. Clearly,
⊳ = ≺G. Due to our definition of hypergraphs, V and E are finite. Thus, there is an
η ∈ Hv,U

G = Hv
G such that height(η) ≥ |V |. Then Statement 2 follows from Lemma 2.24.�

Lemma 2.26. Let v ∈ V , ⊳ = ≺G \ (U × V), and V ′ = {u ∈ V | u ⊳∗ v}. Moreover, let
< = ⊳ ∩ (V ′ × V ′). If Hv,U

G is finite, then <
+ is irreflexive.

Proof. Let Hv,U
G be finite. Let u ∈ V and assume, contrary to our claim, that u <

+ u.
Since <

+ = (⊳ ∩ (V ′ × V ′))+ ⊆ ⊳+ ∩ (V ′ × V ′), we obtain that u ⊳+ u and u ∈ V ′, i.e.,
u ⊳∗ v. Then by Lemma 2.25 Hv,U

G is infinite, a contradiction. �

Decomposition of hyperpaths

Now we will define the complement of the top decomposition of hyperpaths. When applied
to a hyperpath, the result of this complementing operation, called bottom decomposition,
is a sequence of hyperpaths, namely the sequence of hyperpaths that are cut off when
performing the top decomposition. Let us consider the example from Figure 2.6. The

32 2. Preliminaries

hyperpath segment in Figure (b) is the result of the top decomposition applied to the
hyperpath η in Figure (a). During this process we removed the hyperpaths η1 = e3(e5, e1)
and η2 = e5. Hence, the string η1η2 is the result of the bottom decomposition when
applied to η. Now let us define this operation formally.

Definition 2.27. Let v ∈ V and η ∈ Hv
G. We define the bottom decomposition of

η wrt U and G, denoted by dec↓(η, U,G) ∈ (
⋃

u∈U Hu
G)∗, by recursion on the structure

of η as follows. By Corollary 2.16 there are uniquely determined k ∈ N, e ∈ E(k), and

η1 ∈ H
in1(e)
G , . . . , ηk ∈ H

ink(e)
G such that out(e) = v and η = e(η1, . . . , ηk). We define

dec↓(η, U,G) = η̄1 · · · η̄k ,

where ∀ i ∈ [k] : η̄i =

{

dec↓(ηi, U,G) , if ini(e) 6∈ U ,

ηi , otherwise.
2

By means of Lemma 2.14 it is easy to check that dec↓(η, U,G) is well-defined. If G is
clear from the context, then we write dec↓(η, U) instead of dec↓(η, U,G).

The combination of top decomposition and bottom decomposition is an inverse oper-
ation to tree substitution. More precisely, if η′ is the result of the top decomposition of
a given hyperpath η and η̂1 · · · η̂l is the string from the bottom decomposition applied to
η, then η′ ← η̂1 · · · η̂k = η. Roughly speaking, top and bottom decomposition followed by
tree substitution is the identity mapping. It turns out that in some restricted sense the
inverse holds as well, i.e., tree substitution followed by top and bottom decomposition
is the identity mapping. These two properties are stated formally by the following two
lemmas.

Lemma 2.28. Let v ∈ V , and η ∈ Hv
G. Let l ∈ N and η̂1, . . . , η̂l ∈

⋃

u∈U Hu
G such that

dec↓(η, U) = η̂1 · · · η̂l. Moreover, let j ∈ N and u1, . . . , uj ∈ U such that u1 · · · uj =
indyield(dec↑(η, U)).

Then j = l and for every m ∈ [l] we have that η̂m ∈ Hum

G and that η̂m is a proper subtree
of η. Furthermore, dec↑(η, U)← dec↓(η, U) = η.

Proof. Throughout this proof we abbreviate
⋃

u∈U Hu
G by H. We give a proof by in-

duction on the structure of η. By Corollary 2.16 there are uniquely determined k ∈ N,

e ∈ E(k), and η1 ∈ H
in1(e)
G , . . . , ηk ∈ H

ink(e)
G such that out(e) = v and η = e(η1, . . . , ηk).

For every i ∈ [k] let

(η′i, η̄i) =

{

(

dec↑(ηi, U),dec↓(ηi, U)
)

, if ini(e) 6∈ U ,

(ini(e), ηi) , otherwise.

Then dec↑(η, U) = e(η′1, . . . , η
′
k) and dec↓(η, U) = η̄1 · · · η̄k = η̂1 · · · η̂l.

For every i ∈ [k] let li ∈ N and η̂i1, . . . , η̂
i
li
∈ H such that η̄i = η̂i1 · · · η̂

i
li
; moreover,

let ji ∈ N and ui1, . . . , u
i
ji
∈ U such that ui1 · · · u

i
ji

= indyield(η′i). Before we proceed
with the main proof, we show that for every i ∈ [k] we have that ji = li and, for every

m ∈ [li], η̂
i
m ∈ H

ui
m

G and η̂im is a subtree of ηi. Let i ∈ [k]. First we consider the case that

ini(e) ∈ U . Then (η′i, η̄i) = (ini(e), ηi); hence, ji = 1 = li, η̂
i
1 = ηi ∈ H

ini(e)
G = H

η′i
G = H

ui
1
G ,

and η̂i1 is a subtree of ηi = η̂i1. Next we consider the case that ini(e) 6∈ U . Then
(η′i, η̄i) =

(

dec↑(ηi, U),dec↓(ηi, U)
)

and the induction hypothesis yields that ji = li and,

for every m ∈ [li], η̂
i
m ∈ H

ui
m

G and η̂im is a subtree of ηi.

2.6. Hypergraphs 33

Clearly, the following two identities hold: η̂1 · · · η̂l = η̄1 · · · η̄k = η̂1
1 · · · η̂

1
l1
· · · η̂k1 · · · η̂

k
lk

and
u1 · · · uj = indyield(dec↑(η, U)) = indyield(e(η′1, . . . , η

′
k)) = indyield(η′1) · · · indyield(η′k) =

u1
1 · · · u

1
j1
· · · uk1 · · · u

k
jk

. We obtain j = j1 + · · · + jk = l1 + · · · + lk = l. Moreover, for ev-

ery m ∈ [l] there is an i ∈ [k] and m′ ∈ [li] such that η̂m = η̂im′ and um = uim′ ; then

η̂m = η̂im′ ∈ H
ui

m′

G = Hum

G and η̂m = η̂im′ is a proper subtree of η = e(η1, . . . , ηk) because it
is a subtree of ηi.

It remains to show that dec↑(η, U) ← dec↓(η, U) = η. First we prove that for every
i ∈ [k], η′i ← η̄i = ηi. If ini(e) ∈ U , then η′i ← η̄i = ini(e) ← ηi = ηi. If ini(e) 6∈ U , then
(η′i, η̄i) =

(

dec↑(ηi, U),dec↓(ηi, U)
)

and, thus, η′i ← η̄i = ηi follows from the induction
hypothesis. We obtain

dec↑(η, U)← dec↓(η, U) = e(η′1, . . . , η
′
k)← η̄1 · · · η̄k

= e(η′1, . . . , η
′
k)← η̂1

1 · · · η̂
1
l1
· · · η̂k1 · · · η̂

k
lk

= e(η′1 ← η̂1
1 · · · η̂

1
l1
, . . . , η′k ← η̂k1 · · · η̂

k
lk

)

= e(η′1 ← η̄1, . . . , η
′
k ← η̄k) = e(η1, . . . , ηk) = η . �

Lemma 2.29. Let v ∈ V , η′ ∈ Hv,U
G , l ∈ N, and u1, . . . , ul ∈ U such that u1 · · · ul =

indyield(η′). Moreover, for every i ∈ [l], let η̂i ∈ Hui

G .
Then η′ ← η̂1 · · · η̂l ∈ Hv

G, dec↑(η′ ← η̂1 · · · η̂l, U) = η′, and dec↓(η′ ← η̂1 · · · η̂l, U) =
η̂1 · · · η̂l.

Proof. We give a proof by structural induction on η′. By Lemma 2.14 there are k ∈
N, e ∈ E(k), and η1, . . . , ηk such that out(e) = v, η′ = e(η1, . . . , ηk), and, for every

i ∈ [k], ηi ∈ H
ini(e),U
G if ini(e) 6∈ U and ηi = ini(e) otherwise. For every i ∈ [k] let

ji ∈ N and ui1, . . . , u
i
ji

such that ui1 · · · u
i
ji

= indyield(ηi). Clearly, u1
1 · · · u

1
j1
· · · uk1 · · · u

k
jk

=

u1 · · · ul. Observe that for every i ∈ [k] and m ∈ [ji] there is an η̂im ∈ H
ui

m

G such that
η̂1
1 · · · η̂

1
j1
· · · η̂k1 · · · η̂

k
jk

= η̂1 · · · η̂l.
First we show that η′ ← η̂1 · · · η̂l ∈ Hv

G. To this end we prove for every i ∈ [k] that

ηi ← η̂i1 · · · η̂
i
ji
∈ H

ini(e)
G . Let i ∈ [k]. If ini(e) ∈ U , then ηi = ini(e) and we have ji = 1

and indyield(ηi) = ui1 = ini(e); thus, ηi ← η̂i1 = η̂i1 ∈ H
ui
1
G = H

ini(e)
G . If ini(e) 6∈ U , then

ηi ∈ H
ini(e),U
G and we obtain ηi ← η̂i1 · · · η̂

i
ji
∈ H

ini(e)
G due to the induction hypothesis.

Therefore Corollary 2.16 yields

η′ ← η̂1 · · · η̂l = e(η1 ← η̂1
1 · · · η̂

1
j1, . . . , ηk ← η̂k1 · · · η̂

k
jk

) ∈ Hv
G .

Next we prove that dec↑(η′ ← η̂1 · · · η̂l, U) = η′ and dec↓(η′ ← η̂1 · · · η̂l, U) = η̂1 · · · η̂l.
For every i ∈ [k] let

(η′i, η̄i) =

{

(

dec↑(ηi ← η̂i1 · · · η̂
i
ji
, U),dec↓(ηi ← η̂i1 · · · η̂

i
ji
, U)

)

, if ini(e) 6∈ U ,

(ini(e), ηi ← η̂i1 · · · η̂
i
ji
) , otherwise.

The fact η′ ← η̂1 · · · η̂l = e(η1 ← η̂1
1 · · · η̂

1
j1
, . . . , ηk ← η̂k1 · · · η̂

k
jk

) and the definitions of

dec↑ and dec↓ imply dec↑
(

η′ ← η̂1 · · · η̂l, U
)

= e(η′1, . . . , η
′
k) and dec↓

(

η′ ← η̂1 · · · η̂l, U
)

=
η̄1 · · · η̄k. Hence, it suffices to show that (η′i, η̄i) = (ηi, η̂

i
1 · · · η̂

i
ji
) for every i ∈ [k]. Let

i ∈ [k]. If ini(e) ∈ U , then ini(e) = ηi and ji = 1; thus, (η′i, η̄i) = (ini(e), ηi ← η̂i1) =
(ηi, η̂

i
1). If ini(e) 6∈ U , then (η′i, η̄i) =

(

dec↑(ηi ← η̂i1 · · · η̂
i
ji
, U),dec↓(ηi ← η̂i1 · · · η̂

i
ji
, U)

)

=

(ηi, η̂
i
1 · · · η̂

i
ji
) due to the induction hypothesis. �

34 2. Preliminaries

Lemma 2.30. Let v ∈ V and η′ ∈ Hv,U
G such that Hu

G 6= ∅ for every u ∈ ind(η′). Then
there is an η ∈ Hv

G such that dec↑(η, U) = η′.

Proof. Let l ∈ N and u1, . . . , ul ∈ U such that u1 · · · ul = indyield(η′). For every i ∈ [l]
choose an η̂i ∈ Hui

G , which exists by assumption. Let η = η′ ← η̂1 · · · η̂l. Then η ∈ Hv
G and

dec↑(η, U) = η′ by Lemma 2.29. �

Reduction to directed graphs

Every hypergraph can be reduced to a digraph by constructing, for every hyperedge and
pair of input vertex u and output vertex v of that hyperedge, an edge (u, v). Formally,
the digraph reduct of G is the digraph (V,E′) such that

E′ = {(u, v) ∈ V × V | ∃ e ∈ E : ∃ i ∈ [rk(e)] : ini(e) = u, out(e) = v} .

Lemma 2.31. Let (V,E′) be the digraph reduct of G and u, v ∈ V . Then u ≺G v implies
(u, v) ∈ E′.

Proof. Assume that u ≺G v. By Lemma 2.20(1 ⇒ 3) there are k ∈ N, e ∈ E(k), and
i ∈ [k] such that out(e) = v and ini(e) = u. Hence, (u, v) ∈ E′. �

CHAPTER 3

M-monoids

In this chapter we present the definition of multioperator monoids (for short: m-monoids)
and study their extension to complete and continuous m-monoids. An m-monoid is an
algebraic structure consisting of a commutative monoid and arbitrary additional opera-
tions. M-monoids are a crucial component of the definition of the semantics of m-weighted
monadic datalog programs, that we will introduce in the next chapter: the operations of
a specific m-monoid are used for computing the output value of a given input tree.

Our definition of m-monoids is based on the definition of distributive m-monoids (or
distributive Ω-monoids) that have been introduced by Kuich [95, 96, 98]. The concept
of distributive m-monoids is a generalization of distributive F -magmas defined by Cour-
celle [33, Section 10] and of K–Γ-algebras by Bozapalidis [22]. M-monoids that are not
necessarily distributive have been studied in [121, 123, 59].

The results in this chapter are a generalization of the work of Kuich [95] for (not
necessarily distributive) m-monoids.

3.1 Semigroups and monoids

First let us recall the notions of semigroups and monoids [99, 100].

Semigroups

A semigroup is an algebraic structure that consists of an associative binary operation.

Definition 3.1. A semigroup is a pair (A,+) such that A is a set and + is an associative
binary operation on A, i.e., a+ (b+ c) = (a+ b) + c for every a, b, c ∈ A.

Let A = (A,+) be a semigroup. An equivalence relation ≡ on A is called semigroup

congruence (on A) if a ≡ a′ and b ≡ b′ implies (a+ b) ≡ (a′ + b′) for every a, a′, b, b′ ∈ A.
Let ≡ be a semigroup congruence on A. The quotient semigroup of A modulo ≡,
denoted byA/≡, is the pair (A/≡, ◦) where ◦ ∈ Ops(2)(A/≡) such that [a]≡◦[b]≡ = [a+b]≡
for every a, b ∈ A. Note that the operation ◦ is well-defined.

Let A = (A,+A) and B = (B,+B) be semigroups. The direct product of A and
B is the pair A × B = (A × B, ◦) with ◦ ∈ Ops(2)(A × B) such that (a, b) ◦ (a′, b′) =
(a+A a

′, b+B b
′) for every a, a′ ∈ A and b, b′ ∈ B. 2

The following lemma is a folklore result (cf. [72, Section 2.1.2 and 3.1.3]).

Lemma 3.2. Let A and B be semigroups and let ≡ be a semigroup congruence on A.
Then A× B and A/≡ are semigroups.

35

36 3. M-monoids

Monoids

A monoid is a semigroup having a neutral element.

Definition 3.3. A monoid is a tuple (A,+,0) such that (A,+) is a semigroup and 0
is neutral wrt +. The monoid (A,+,0) is called zero-sum free if a + b = 0 implies
a = b = 0 for every a, b ∈ A. Moreover, (A,+,0) is commutative if a + b = b + a for
every a, b ∈ A. If (A,+,0) is commutative, we extend the operation + to arbitrary finite
families over A as follows. Let I = {i1, . . . , in} be a finite index set and (ai | i ∈ I) be a
family over A. Then we put

∑

i∈I ai = ai1 + · · ·+ ain ; in particular
∑

i∈∅ ai = 0. 2

Remark 3.4. Every semigroup can be extended to a monoid as follows. Let (A,+) be a
semigroup and 0 be an element that is not in A. Then (A ∪ {0}, ◦,0) is a monoid, where
◦|A×A = + and 0 ◦ a = a = a ◦ 0 for every a ∈ A ∪ {0}. 2

Remark 3.5. Every monoid (A,+,0) can be considered as a particular Σmon-algebra
(recall the definition of Σmon from Example 2.1), where e is interpreted as 0 and ◦ is
interpreted as the operation +. This allows to carry over notions defined for general
algebras to monoids. For every set B the monoid (B∗, ·, ε), where · is the concatenation
of strings, is freely generated by B for the class of all monoids. 2

Example 3.6 (Continuation of Example 2.2). Since the addition + of natural numbers
is an associative and commutative operation and 0 is neutral wrt +, we can consider the
Σmon-algebra N = (N, θ) as the monoid (N,+, 0). 2

Tree series

A (formal) tree series [97, 51] is a mapping from the set of trees over a given alphabet
into a commutative monoid.

Definition 3.7. Let A = (A,+,0) be a commutative monoid, ∆ be a signature, and D
be a set. A tree series (over ∆, D, and A) is a mapping λ : T∆(D) → A; if D = ∅,
then we call λ a tree series (over ∆ and A). We denote the set of all tree series over
∆, D, and A by A〈〈T∆(D)〉〉. Let λ ∈ A〈〈T∆(D)〉〉. For every t ∈ T∆(D) we call λ(t) the
coefficient of t under λ.1 The support of λ is defined as supp(λ) = λ−1(A \ {0}). If
supp(λ) is finite, then λ is called a polynomial tree series. The set of polynomial tree
series over ∆, D, and A is denoted by A〈T∆(D)〉. The tree series λ ∈ A〈T∆(D)〉 with
supp(λ) = ∅ is the empty tree series and denoted by 0̃.

For two tree series λ1, λ2 ∈ A〈〈T∆(D)〉〉 we define the sum λ1 + λ2 ∈ A〈〈T∆(D)〉〉 of λ1

and λ2 pointwise, i.e., for every t ∈ T∆(D), (λ1 +λ2)(t) = λ1(t)+λ2(t). Let I be an index
set. We call a family (λi | i ∈ I) over A〈〈T∆(D)〉〉 locally finite if for every t ∈ T∆(D)
there are only finitely many i ∈ I with t ∈ supp(λi). We extend the sum of tree series to
locally finite families as follows. If the family (λi | i ∈ I) over A〈〈T∆(D)〉〉 is locally finite,
then we denote by

∑

i∈I λi ∈ A〈〈T∆(D)〉〉 the tree series such that for every t ∈ T∆(D):

(

∑

i∈I
λi

)

(t) =
∑

i∈I
t∈supp(λi)

λi(t) .

1Note that some authors, e.g., [51], denote the coefficient of t under λ by (λ, t) instead of λ(t). However,
we will use the standard notation λ(t) for the application of mappings in this thesis.

3.2. General m-monoids 37

Let a ∈ A and t ∈ T∆(D). The monomial tree series over a and t is the tree series
a.t ∈ A〈T∆(D)〉 such that (a.t)(t) = a and (a.t)(t′) = 0 for every t′ ∈ T∆(D) \ {t}. Note
that for every λ ∈ A〈〈T∆(D)〉〉 we have

∑

t∈T∆(D) λ(t).t = λ. 2

For more information on tree series we refer the reader to [51, Section 2.5].

3.2 General m-monoids

Now we are prepared to define the main algebraic structure of this thesis. Our definition
is based on the definition of m-monoids in [95], however, we do not require the additional
operations of the m-monoid to distribute over the monoid. Moreover, unlike the definitions
of m-monoids in the literature [95, 58, 103, 123], we do not allow the set of additional
operations of the m-monoid to be chosen arbitrarily; instead we require them to form a
∆-algebra for a given signature ∆.

Definition 3.8. Let ∆ be a signature. A multioperator monoid (for short: m-

monoid) over ∆ is a tuple A = (A,+,0, θ) such that (A,+,0) is a commutative monoid
and (A, θ) is a ∆-algebra.

We say that A is idempotent if + is idempotent, i.e., if for every a ∈ A, a + a = a.
The m-monoid A is called absorptive if for every δ ∈ ∆ the element 0 is absorbing wrt
θ(δ). For every δ ∈ ∆ we say that θ(δ) is supportive if ran(θ(δ)) 6= {0}. 2

In the sequel we fix an arbitrary signature ∆ and an m-monoid A = (A,+,0, θ)
over ∆.

Since every m-monoid A over ∆ contains a ∆-algebra, we can carry over the concept
of ∆-homomorphisms to A. One useful application of ∆-homomorphisms is to evaluate
a tree over ∆ in the ∆-algebra of A. The next two lemmas capture basic properties
of such evaluation homomorphisms. The first lemma states how certain elements and
sets of elements of A propagate when applying the homomorphism. The second lemma
states how relationships between elements of A are preserved during the application of
the evaluation homomorphism.

Lemma 3.9. Let D be a set, h : T∆(D) → A be a ∆-homomorphism from T∆(D) to
(A, θ), and s ∈ T∆(D).

1. Let A be absorptive. Then 0 ∈ h(ind(s)) implies h(s) = 0.

2. Let A′ ⊆ A such that A′ is closed under θ(δ) for every δ ∈ ∆. Then h(ind(s)) ⊆ A′

implies h(s) ∈ A′.

Proof. 1. We prove this statement by structural induction on s. Assume that 0 ∈
h(ind(s)).

Induction base. Let s ∈ D. Since ind(s) = {s}, h(s) = 0.
Induction step. Let s = δ(s1, . . . , sk) for some k ∈ N, δ ∈ ∆(k), and trees s1, . . . , sk ∈

T∆(D). There is an i ∈ [k] such that 0 ∈ h(ind(si)). Then

h(s) = θ(δ)(h(s1), . . . , h(si−1),0, h(si+1), . . . , h(sk)) = 0

by the induction hypothesis and the fact that A is absorptive.

38 3. M-monoids

2. We prove this statement by structural induction on s. Let A′ ⊆ A such that A′ is
closed under θ(δ) for every δ ∈ ∆, and assume that h(ind(s)) ⊆ A′.

Induction base. Let s ∈ D. Since ind(s) = {s}, h(s) ∈ A′.

Induction step. Let s = δ(s1, . . . , sk) for some k ∈ N, δ ∈ ∆(k), and trees s1, . . . , sk ∈
T∆(D). By the induction hypothesis and since A is closed under θ(δ), we have h(s) =
θ(δ)(h(s1), . . . , h(sk)) ∈ A

′. �

Lemma 3.10. Let D be a set, h, h′ : T∆(D) → A be ∆-homomorphisms from T∆(D)
to (A, θ), and τ be a relation on A such that θ(δ) is monotone wrt τ for every δ ∈ ∆.
Moreover, let s ∈ TΣ(D) such that h(d) τ h′(d) for every d ∈ ind(s). Then h(s) τ h′(s).

Proof. We give a proof by structural induction on s. Let s ∈ T∆(D) such that h(d) τ
h′(d) for every d ∈ ind(s).

Induction base. Let s ∈ D. Since ind(s) = {s}, h(s) τ h′(s).

Induction step. Let s = δ(s1, . . . , sk) for some k ∈ N, δ ∈ ∆(k), and trees s1, . . . , sk ∈
T∆(D). By the induction hypothesis h(si) τ h′(si) for every i ∈ [k]. Then h(s) =
θ(δ)(h(s1), . . . , h(sk)) τ θ(δ)(h

′(s1), . . . , h
′(sk)) = h′(s) because θ(δ) is monotone wrt τ .�

Corollary 3.11. Let D be a set, h, h′ : T∆(D) → A be ∆-homomorphisms from T∆(D)
to (A, θ), and s ∈ TΣ(D) such that h|ind(s) = h′|ind(s). Then h(s) = h′(s).

Remark 3.12 (see [59, Section 2.3]). Every M-monoid A can easily be extended to
an absorptive one. The absorptive extension of A is defined to be the m-monoid
A⊥ = (A ∪ {⊥},+′,⊥, θ′), where +′ is the extension of + to the set A ∪ {⊥} defined by
a +′ ⊥ = ⊥ +′ a = a for every a ∈ A ∪ {⊥}, and for every δ ∈ ∆ the operation θ′(δ)
is the extension of θ(δ) to A ∪ {⊥} such that θ′(δ)(. . . ,⊥, . . .) = ⊥. Obviously, A⊥ is
absorptive. 2

Now we define distributive m-monoids [95, 103, 58].

Definition 3.13. An absorptive m-monoid is called distributive if for every k ∈ N,
δ ∈ ∆(k), a, b, a1, . . . , ak ∈ A, and i ∈ [k] we have

θ(δ)(a1, . . . , ai−1, a+ b, ai+1, . . . , ak)

= θ(δ)(a1, . . . , ai−1, a, ai+1, . . . , ak) + θ(δ)(a1, . . . , ai−1, b, ai+1, . . . , ak) .
(3.1)

A distributive m-monoid is also called a dm-monoid. 2

Before we finish this section, let us state another technical lemma that combines evalu-
ation homomorphisms, tree substitutions, and distributive m-monoids. Let us give a brief
explanation of this lemma. Every tree s over ∆ having k indices can be considered as a
k-ary operation over A in the following sense: for every sequence a1, . . . , ak ∈ A we apply
the evaluation homomorphism of A to s, where we “plug in” the elements a1, . . . , ak ∈ A
at the indices of s; this yields a single element a ∈ A. The main statement of the following
lemma is that such an operation is distributive if A is distributive.

Lemma 3.14. Let D be a set and h be a ∆-homomorphism from T∆(D) to (A, θ). Let
s ∈ T∆(D), k ∈ N, and d1, . . . , dk ∈ D such that indyield(s) = d1 · · · dk.

3.3. M-monoids with infinite behavior 39

1. For every d ∈ ind(s) let Id be a finite set and (sdi | i ∈ Id) be a family over T∆(D).
If A is distributive or |Id| = 1 for every d ∈ ind(s), then

∑

(i1,...,ik)∈Id1
×···×Idk

h(s← sd1i1 · · · s
dk

ik
) = h′(s) ,

where h′ is the unique ∆-homomorphism from T∆(ind(s)) to (A, θ) such that h′(d) =
∑

i∈Id
h(sdi) for every d ∈ ind(s).

2. For every g : ind(s)→ T∆(D) we obtain h(s ← g(d1) · · · g(dk)) = h′(s), where h′ is
the unique ∆-homomorphism from T∆(ind(s)) to (A, θ) extending g ; h.

Proof. 1. We give a proof by structural induction on s.
Induction base. Let s ∈ D. Then k = 1, s = d1, and

∑

i1∈Id1
h(s ← sd1i1) =

∑

i1∈Id1
h(sd1i1) = h′(d1) = h′(s).

Induction step. Let l ∈ N, δ ∈ ∆(l), and s1, . . . , sl ∈ T∆(D) such that s = σ(s1, . . . , sl).
For every j ∈ [l] let indyield(sj) = dj1 · · · d

j
kj

for some kj ∈ N and dj1, . . . , d
j
kj
∈ D;

moreover, we introduce the following abbreviations (where m stands for kj): we let Ij =

I
d

j
1
× · · · × I

d
j
m

and for every ~i = i1 · · · im ∈ I
j we abbreviate s

d
j
1
i1
· · · sd

j
m

im
by ~s j~i

. Clearly,

d1 · · · dk = d1
1 · · · d

1
k1
· · · dl1 · · · d

l
kl

and, therefore, Id1 × · · · × Idk
= I1 × · · · × I l. Then

∑

(i1,...,ik)∈Id1
×···×Idk

h(s← sd1i1 · · · s
dk

ik
)

=
∑

(

~i1,...,~il

)

∈I1×···×Il
h(s← ~s 1

~i1
· · ·~s l~il

)

=
∑

(

~i1,...,~il

)

∈I1×···×Il
h
(

δ(s1 ← ~s 1
~i1
, . . . , sl ← ~s l~il

)
)

(because |~s j~ij
| = kj = |indyield(sj)| for every j ∈ [l] and ij ∈ I

j)

=
∑

(

~i1,...,~il

)

∈I1×···×Il
θ(δ)

(

h(s1 ← ~s 1
~i1

), . . . , h(sl ← ~s l~il
)
)

= θ(δ)
(

∑

~i1∈I1
h(s1 ← ~s 1

~i1
), . . . ,

∑

~il∈Il
h(sl ← ~s l~il

)
)

(since A is distributive or |Id| = 1 for every d ∈ ind(s))

= θ(δ)(h′1(s1), . . . , h
′
l(sl)) , (by the induction hypothesis)

where, for every j ∈ [l], h′j is the unique ∆-homomorphism from T∆(ind(sj)) to (A, θ)

such that h′j(d) =
∑

i∈Id
h(sdi) for every d ∈ ind(sj); clearly h′j(sj) = h′(sj); hence,

= θ(δ)(h′(s1), . . . , h
′(sl))

= h′(δ(s1, . . . , sl)) = h′(s) .

2. This statement follows from Statement 1 by instantiating Id = {1} and sd1 = g(d)
for every d ∈ ind(s). �

3.3 M-monoids with infinite behavior

In the previous section we have shown that m-monoids are useful for evaluating a finite
set of trees and adding up their resulting values. In the next chapter we will employ

40 3. M-monoids

m-monoids for computing the semantics of m-weighted monadic datalog programs. It
will turn out that in general the power of m-monoids is too weak for this task. Roughly
speaking, we instead require m-monoids to be able to (i) sum up over infinitely many
values or (ii) evaluate infinite trees.

In this section we will study how to extend m-monoids with the required capabilities.
We will call an m-monoid that has Capability (i) a complete m-monoid and an m-monoid
that has Capability (ii) a continuous monoid. Note that not every m-monoid can be
extended in this manner. Both complete and continuous m-monoids have been introduced
by Kuich [95].

For our purposes it suffices to restrict ourselves to countably infinite behavior of both
complete and continuous m-monoids. Therefore, we will refer to them as ω-complete and
ω-continuous m-monoids in this thesis.

3.3.1 Complete m-monoids

An ω-complete m-monoid is an m-monoid with an additional ω-infinitary operation that
extends the monoid operation + to countably infinite families.

Definition 3.15. An ω-infinitary sum operation for A is an ω-infinitary operation
∑′ on A such that for every family (bi | i ∈ {j, k}) over A:

∑′

i∈{j,k}
bi = bj + bk . (3.2)

Let
∑′ be an ω-infinitary sum operation for A. Then we call (A,

∑′) an ω-complete

m-monoid. 2

We will give examples of ω-complete m-monoids in Example 3.24. In Definition 3.15 we
took great care not to use the symbol

∑

for ω-infinitary sum operations in order to not
confuse infinitary sum operations with the extension of the operation + to finite families
(see Definition 3.3). However, this distinction is unnecessary according to the following
well-known proposition (cf. [72, Lemma IV.1.17]).

Proposition 3.16. Let
∑′ be an ω-infinitary sum operation for A. Then for every finite

set I and family (ai | i ∈ I) over A:

∑′

i∈I
ai =

∑

i∈I
ai .

Due to Proposition 3.16 we will henceforth allow to use the symbol
∑

for ω-infinitary sum
operations. The following lemma states basic properties of ω-infinitary sum operations.

Lemma 3.17. Let (A,
∑

) be an ω-complete m-monoid, I be a countable set, and let
(ai | i ∈ I) be a family over A.

1. If ai = 0 for every i ∈ I, then
∑

i∈I ai = 0. In particular,
∑

i∈∅ ai = 0.

2. Let a ∈ A such that {i ∈ I | ai = a} is infinite. Then a+
∑

i∈I ai =
∑

i∈I ai.

Proof. 1. First assume that I = ∅. Let a1 = 0, I ′ = {1}, J = {1, 2}, I1 = {1},
I2 = ∅. Then (Ij | j ∈ J) is a generalized partition of I ′. Thus,

∑

i∈I ai =
∑

i∈I2
ai =

0 +
∑

i∈I2
ai =

∑

i∈I1
ai +

∑

i∈I2
ai =

∑

j∈J

∑

i∈Ij
ai =

∑

i∈I′ ai = 0 by Equations (2.4),

3.3. M-monoids with infinite behavior 41

(2.5), and (3.2). Now let I be arbitrary and assume ai = 0 for every i ∈ I. Let K = ∅
and for every i ∈ I let Ki = ∅. Then (Ki | i ∈ I) is a generalized partition of K and we
obtain

∑

i∈I ai =
∑

i∈I 0 =
∑

i∈I

∑

k∈Ki
ak =

∑

k∈K ak = 0.

2. Choose k ∈ I such that ak = a. Let J = {1, 2}, I1 = {k}, I2 = I \ {k}. Then
∑

i∈I ai =
∑

j∈J

∑

i∈Ij
ai =

∑

i∈I1
ai +

∑

i∈I2
ai = a+

∑

i∈I2
ai by Equations (2.4), (2.5),

and (3.2). Clearly, there is a bijection π : I → I2 such that ai = aπ(i), for every i ∈ I,
because {i ∈ I | ai = a} is infinite. Then a+

∑

i∈I2
ai = a+

∑

i∈I aπ(i) = a+
∑

i∈I ai by
Equation (2.3). �

If an m-monoid is distributive, then this property does not need to carry over to ω-
infinitary sum operations. However, if it does, then we call the m-monoid ω-distributive.

Definition 3.18. We call an ω-complete m-monoid (A,
∑

) ω-distributive if for every
k ∈ N, δ ∈ ∆(k), a1, . . . , ak ∈ A, j ∈ [k], countable index set I, and family (bi | i ∈ I) over
A:

θ(δ)
(

a1, . . . , aj−1,
∑

i∈I
bi, aj+1, . . . , ak

)

=
∑

i∈I
θ(δ)(a1, . . . , aj−1, bi, aj+1, . . . , ak) .

(3.3)

2

If an ω-complete m-monoid is ω-distributive, then its underlying m-monoid is distribu-
tive.

Lemma 3.19. Let
∑

be an ω-infinitary sum operation for A such that (A,
∑

) is ω-
distributive. Then A is a dm-monoid.

Proof. First we show that A is absorptive. Let k ∈ N, δ ∈ ∆(k), a1, . . . , ak ∈ A,
and i ∈ [k] with ai = 0. Consider the family (bj | j ∈ ∅). Then θ(δ)(a1, . . . , ak) =
θ(δ)(a1, . . . , ai−1,

∑

j∈∅ bj, ai+1, ak) =
∑

j∈∅ θ(δ)(a1, . . . , ai−1, bj , ai+1, ak) = 0.

Next we prove that Equation (3.1) holds. Let k ∈ N, δ ∈ ∆(k), a, b, a1, . . . , ak ∈ A, and
i ∈ [k]. Consider the family (bj | j ∈ {k, l}) with bk = a and bl = b. Then

θ(δ)(a1, . . . , ai−1, a+ b, ai+1, . . . , ak)

= θ(δ)
(

a1, . . . , ai−1,
∑

j∈{k,l}
bj , ai+1, . . . , ak

)

=
∑

j∈{k,l}
θ(δ)(a1, . . . , ai−1, bj, ai+1, . . . , ak)

= θ(δ)(a1, . . . , ai−1, a, ai+1, . . . , ak) + θ(δ)(a1, . . . , ai−1, b, ai+1, . . . , ak) . �

Similarly to distributivity, the property of the m-monoid to be idempotent does not
need to carry over to ω-infinitary sum operations. If it does, then we call the m-monoid
ω-idempotent.

Definition 3.20. Let A = (A,+,0, θ) be an m-monoid over ∆ and let (A,
∑

) be an
ω-complete m-monoid. We say that (A,

∑

) is ω-idempotent if for every nonempty
countable index set I and a ∈ A we have

∑

i∈I a = a. Note that A is idempotent
whenever (A,

∑

) is ω-idempotent. 2

The following observation is easy to prove.

42 3. M-monoids

Observation 3.21. Let (A,
∑

) be an ω-complete m-monoid that is ω-idempotent. More-
over, let I and K be countable index sets and let (ai | i ∈ I) and (bk | k ∈ K) be families
over A, where A is the carrier set of A. Suppose that {ai | i ∈ I} = {bk | k ∈ K}. Then
∑

i∈I ai =
∑

k∈K bk.

We will now present some examples of ω-complete m-monoids. In order to do this in a
concise way, we introduce an auxiliary notion first.

Definition 3.22. Let a ∈ A and
∑

be an ω-infinitary sum operation for A. We call
∑

a-canonical if for every countable index set I and family (ai | i ∈ I) over A we have

∑

i∈I
ai =











ai1 + · · ·+ ain , if {i ∈ I | ai 6= 0} = {i1, . . . , in} for some n ∈ N

and pairwise distinct i1, . . . , in ∈ I ,

a , otherwise.

(3.4)

2

Proposition 3.23. The 0-canonical ω-infinitary sum operation exists iff A = {0}. More-
over, for every a ∈ A \ {0}, the a-canonical ω-infinitary sum operation exists iff a is
absorbing wrt to + and the monoid (A,+,0) is zero-sum free.

Proof. First we prove the first equivalence. The direction “⇐” is trivial. We show
direction “⇒”. For every a ∈ A \ {0}, 0 =

∑

i∈N
a = a +

∑

i∈N
a = a + 0 = a due to

Lemma 3.17(2).

Now we prove the second equivalence. To this end let a ∈ A \ {0}.

“⇒”: Let
∑

be a-canonical. First we show that a is absorbing wrt +. Clearly, 0+a = a
and for every b ∈ A \ {0}, b+ a = b+

∑

i∈N
b =

∑

i∈N
b = a by Lemma 3.17(2).

Next we show that (A,+,0) is zero-sum free. Let b, c ∈ A\{0} and assume that b+c = 0.
For every n ∈ N let dn = b if n is even and dn = c otherwise. Furthermore, for every j ∈ N

let Ij = {2j, 2j + 1}. Then (Ij | j ∈ N) is a partition of N. By Equations (2.2), and (3.2),
a =

∑

n∈N
dn =

∑

j∈N

∑

i∈Ij
di =

∑

j∈N
(d2j + d2j+1) =

∑

j∈N
0 = 0, a contradiction.

“⇐”: Let
∑

be defined as in Equation (3.4). We show that
∑

is an ω-infinitary sum
operation. Since Equations (2.4) and (3.2) are obvious, we only prove Equation (2.5). Let
I and J be countable sets, (Ij | j ∈ J) be a generalized partition of I, and (ai | i ∈ I) be
a family over A. If {i ∈ I | ai 6= 0} is finite, then for every j ∈ J the sets {i ∈ Ij | ai 6= 0}
and {j ∈ J |

∑

i∈Ij
ai 6= 0} are finite as well; Equation (2.5) follows immediately.

Now assume that {i ∈ I | ai 6= 0} is infinite; hence, we have
∑

i∈I ai = a. If we have
that {j ∈ J |

∑

i∈Ij
ai 6= 0} is infinite, then

∑

j∈J

∑

i∈Ij
ai = a and we are done. Now

assume that there is an n ∈ N and pairwise distinct j1, . . . , jn ∈ J such that {j1, . . . , jn} =
{j ∈ J |

∑

i∈Ij
ai 6= 0}. We show that

∑

i∈Ij1
ai+· · ·+

∑

i∈Ijn
ai = a. For every j ∈ J with

∑

i∈Ij
ai = 0 we obtain ai = 0 for every i ∈ Ij because (A,+,0) is zero-sum free. Hence,

there is a k ∈ [n] such that {i ∈ Ijk | ai 6= 0} is infinite because the set {i ∈ I | ai 6= 0} is
infinite by assumption. Thus,

∑

i∈Ijk
ai = a and therefore,

∑

i∈Ij1
ai+ · · ·+

∑

i∈Ijn
ai = a

because a is absorbing wrt +. �

Now we are prepared to give examples of ω-complete m-monoids.

Example 3.24. Here we list examples of ω-complete m-monoids. Let ∆ = ∅.

3.3. M-monoids with infinite behavior 43

1. According to Proposition 3.23, every zero-sum free monoid (A,+,0) which has an
absorbing element a, can be extended to an ω-complete m-monoid ((A,+,0, θ),

∑

)
over ∆, where

∑

is a-canonical.

Specific examples of such monoids are

• (N ∪ {∞},+, 0),

• (N+ ∪ {∞}, ·, 1),

• (R≥0 ∪ {∞},+, 0), where R≥0 are the non-negative real numbers,

• ({r ∈ R | r ≥ 1} ∪ {∞}, ·, 1),

• (R ∪ {−∞,∞},max,−∞), and

• ([0, 1], ·, 1).

2. Consider the m-monoid AΩ = (AΩ,max, 0, θ) over ∆, where AΩ is the set of all
countable ordinal numbers [31, 112, 124] and max is the maximum operation of
countable ordinal numbers. Then the supremum operation ∨Ω of countable ordinal
numbers is an ω-infinitary sum operation for AΩ.2 Note that there is no a ∈ AΩ

such that the a-canonical ω-infinitary sum operation exists due to Proposition 3.23
and the fact that AΩ has no maximal element. Hence, AΩ is an example of an
m-monoid that admits an ω-infinitary sum operation but not an a-canonical one,
for any a ∈ A.

3. Every complete lattice (S,∨,∧,0,1) can be embedded into an ω-complete m-monoid
((S,∨,0, θ),

∨

) over ∆, where
∨

is the supremum operation. If (S,∨,∧,0,1) is even
a completely distributive lattice3, then the ω-complete m-monoid ((S,∨,0, θ′),

∨

)
over ∆′, where ∆′ = {σ(2)} and θ′(σ) = {∧}, is ω-distributive.

4. Consider the m-monoid A = (R≥0 ∪ {∞},+, 0, θ) over ∆. We define an ω-infinitary
sum operation

∑

for A as follows. Let I be a countable set, (ai | i ∈ I) be a
family over R≥0, N be an initial segment of N with |N | = |I|, and π : N → I be an
arbitrary bijection. Then

∑

i∈I
ai =















0 if N = ∅

aπ(0) + · · · + aπ(n) , if N 6= ∅ is finite and n = max(N)

lim
n→∞

aπ(0) + · · · + aπ(n) , otherwise.

The operation
∑

is well-defined (see [72, Example IV.1.3(d)] and [118]).

5. Let Γ be a signature and consider the m-monoid A = (P(TΓ),∪, ∅, θ) over Γ, where,
for every γ ∈ Γ, θ(γ) is the γ-language top concatenation. Then (A,

⋃

) is an
ω-complete m-monoid which is ω-distributive. 2

2This is implied by the fact that the supremum of countably many countable ordinal numbers is still a
countable ordinal number (see Remark 3.27).

3i.e., it is a distributive lattice and for all sets I, J and family (s(i,j) | (i, j) ∈ I × J) over S:

^

i∈I

_

j∈J
s(i,j) =

_

f∈JI

^

i∈I
s(i,f(i)) .

A thorough introduction into completely distributive lattices can be found, e.g., in [34, 115].

44 3. M-monoids

Example 3.24 shows that there are m-monoids that admit more than one ω-infinitary sum
operation. In fact, the ω-infinitary sum operations for the m-monoid (R≥0 ∪{∞},+, 0, θ)
that are given in item 1 and 4 of the example are distinct4. Hence, in general the under-
lying monoid of an m-monoid does not uniquely determine its ω-infinitary extension (if
any ω-infinitary sum operation exists at all).

3.3.2 Continuous m-monoids

In the literature [95, 103] continuous m-monoids are defined as special complete m-
monoids, namely complete m-monoids that are naturally ordered (i.e., the relation ⊑
on A is a partial order, where for every a, b ∈ A we have a ⊑ b iff a + c = b for some
c ∈ A), and for every index set I, family (ai | i ∈ I) over A, and c ∈ A we have

if
∑

i∈E
ai ⊑ c for every E ∈ Pfin(I), then

∑

i∈I
ai ⊑ c .

In this thesis we will define continuous m-monoids differently. Our definition is indepen-
dent from ω-infinitary sum operations and uses partial orders instead; it is based on the
definition of ω-cpo semirings in [122]. It turns out that our definition and the definition of
continuous m-monoids given by Kuich are related (see Lemmas 3.40 and 3.43). We begin
this section with recalling complete partial orders and related concepts.

Complete partial orders

The order theoretic notions in this section are taken from [34, 71].

Let (A,≤) be a poset and B ⊆ A. A set C ⊆ B is called a cofinal subset of B (wrt
≤) if for every b ∈ B there is a c ∈ C with b ≤ c. Let B′ ⊆ A. We say that B and B′ are
mutually cofinal (wrt ≤) if for every b ∈ B there is b′ ∈ B′ with b ≤ b′ and for every
b′ ∈ B′ there is a b ∈ B with b′ ≤ b.

An element a ∈ A is called upper bound (respectively lower bound) of B (wrt ≤) if
b ≤ a (a ≤ b) for every b ∈ B. If a ∈ A is a lower bound (respectively upper bound) of
A, then it is called the least element (greatest element) of A (wrt ≤). A subset D of
A is called directed (wrt ≤) if for every d, d′ ∈ D the set {d, d′} has an upper bound in
D. An upper bound (respectively lower bound) a of B wrt ≤ is called the supremum

(infimum) of B (wrt ≤) if a ≤ a′ (a′ ≤ a) for every upper bound (lower bound) a′ of B.
If the order ≤ is understood, we denote the supremum and the infimum of B by ∨B and
∧B, respectively; if we use the notation ∨B in any term in the sequel, we imply that the
supremum of B exists, and likewise for ∧B.

The poset (A,≤) is called a complete lattice if every subset of A has both a supremum
and an infimum.

A mapping c : N → A is called an ω-chain (wrt ≤) if n1 ≤ n2 implies c(n1) ≤ c(n2)
for every n1, n2 ∈ N. Occasionally we will denote c as the family (c(n) | n ∈ N). We call
c ultimately constant if there is an n ∈ N such that c(n) = c(n +m) for every m ∈ N.
We refer to the supremum of the range of an ω-chain c as the supremum of c. Observe
that the range of every ω-chain is totally ordered and that every totally ordered subset
of A is directed.

Lemma 3.25. Let (A,≤) be a partial order.

4For example, the former one yields
P

n∈N
2−n = ∞, whereas for the latter one we obtain

P

n∈N
2−n = 2.

3.3. M-monoids with infinite behavior 45

1. Let B ⊆ A be nonempty, countable and directed. Then there is an ω-chain c : N→ B
such that ran(c) is a cofinal subset of B.

2. Let B,B′ ⊆ A be mutually cofinal. If B or B′ has a supremum, then ∨B = ∨B′.

3. Let B ⊆ A and C ⊆ B such that C is a cofinal subset of B. Moreover, let B or C
have a supremum. Then ∨C = ∨B.

Proof. 1. It is easy to show by induction that every finite subset of B has an upper
bound in B.

Let N be the initial segment of N such that |B| = |N | and choose a bijection π : N → B.
Let c : N→ B be defined by recursion as follows: we put c(0) = π(0) and for every n ∈ N
observe that the set {π(m) | m ∈ N,m ≤ n+1}∪{c(n)} is a finite subset of B and, thus,
has an upper bound b in B; choose such a b and put c(n+ 1) = b. Clearly, c is an ω-chain
and π(n) ≤ c(n) for every n ∈ N . Moreover, ran(c) is a cofinal subset of B because for
every b ∈ B we have b = π(π−1(b)) ≤ c(π−1(b)).

2. It suffices to show that every upper bound of B is an upper bound of B′ and vice
versa. If a is an upper bound of B, then it is also an upper bound of B′ because for every
b′ ∈ B′ there is a b ∈ B with b′ ≤ b; hence, b′ ≤ a. Likewise, every upper bound of B′ is
an upper bound of B.

3. Clearly, B and C are mutually cofinal. The assertion follows from Statement 2. �

We call (A,≤) an ω-complete partial order (for short: ω-cpo) if A has a least
element and every ω-chain wrt ≤ has a supremum.

Corollary 3.26. Let (A,≤) be an ω-cpo and B ⊆ A be countable and directed. Then B
has a supremum.

Proof. If B is empty, then the least element of A is the supremum of B. Otherwise the
statement follows immediately from Lemma 3.25. �

Remark 3.27. The restriction to countable sets B in Lemma 3.25 and Corollary 3.26 is
crucial. For example, consider the poset (A,≤) where A is the set of countable ordinal
numbers and ≤ is the natural ordering of countable ordinal numbers. Using the von
Neumann definition of ordinal and cardinal numbers [134], the set A is the smallest
uncountable ordinal number, i.e., the cardinal number ℵ1 (see [124, Chapters 7 and 9]).

Consider the set B = A = ℵ1, which is directed (it is even totally ordered) but not
countable. However, ℵ1 has no countable cofinal subset, i.e., ℵ1 is a regular cardinal
number5; in particular, there is no ω-chain whose range is a cofinal subset of B.

We conclude further that the supremum of any ω-chain of countable ordinal numbers
is still a countable ordinal number, therefore, (A,≤) is an ω-cpo. However, B has no
supremum in A. 2

Let (A,≤) be an ω-cpo, k ∈ N, and ν ∈ Ops(k)(A). For every ω-chain c wrt ≤ we say
that ν is c-continuous (wrt ≤) if for every a1, . . . , ak ∈ A, and i ∈ [k] we have

ν
(

a1, . . . , ai−1,∨{c(n) | n ∈ N}, ai+1, . . . , ak
)

= ∨
{

ν(a1, . . . , ai−1, c(n), ai+1, . . . , ak) | n ∈ N
}

.
(3.5)

5See [112, Satz 38.8] or [124, Theorem 11.13]. This result requires the Axiom of (countable) Choice.
It is a corollary of the fact that any countable union of countable sets is still a countable set, i.e.,
S

i∈I Si is countable if I is countable and Si is countable for every i ∈ I (see [47, Theorem 6Q] or [112,
Satz 31.8]).

46 3. M-monoids

We call ν ω-continuous (wrt ≤) if it is c-continuous wrt ≤ for every ω-chain wrt ≤.

Observation 3.28. Let k ∈ N and ν ∈ Ops(k)(A).

1. ν is monotone iff ν is c-continuous for every ultimately constant ω-chain c.

2. ν is ω-continuous iff ν is monotone and ν is c-continuous for every ω-chain c that
is not ultimately constant.

The following fixpoint theorem is well-known6 (cf. [5] and [135, Theorem 1.5.7]).

Theorem 3.29. Let (A,≤) be an ω-cpo and let f : A → A be ω-continuous. Then
∨{fn(⊥) | n ∈ N} is the least fixpoint of f , where ⊥ is the least element of A.

Before we proceed, we present three auxiliary lemmas about ω-complete partial orders.
To this end we fix an arbitrary ω-cpo (A,≤). The first lemma states that Equation (3.5)
can be extended from ω-chains to nonempty, countable, and directed sets.

Lemma 3.30. Let k ∈ N, a1, . . . , ak ∈ A, i ∈ [k], and ν ∈ Ops(k)(A) be ω-continuous.
Then for every nonempty, countable, and directed set B ⊆ A we have

ν
(

a1, . . . , ai−1,∨B, ai+1, . . . , ak
)

= ∨
{

ν(a1, . . . , ai−1, b, ai+1, . . . , ak) | b ∈ B
}

.
(3.6)

Proof. Let B ⊆ A be nonempty, countable, and directed. By Lemma 3.25(1) there is
an ω-chain c : N → B such that ran(c) is a cofinal subset of B. Since ν is monotone,
we obtain that the set {ν(a1, . . . , ai−1, c(n), ai+1, . . . , ak) | n ∈ N} is a cofinal subset of
{ν(a1, . . . , ai−1, b, ai+1, . . . , ak) | b ∈ B

}

. Hence,

ν
(

a1, . . . , ai−1,∨B, ai+1, . . . , ak
)

= ν
(

a1, . . . , ai−1,∨{c(n) | n ∈ N}, ai+1, . . . , ak
)

(by Lemma 3.25(3))

= ∨
{

ν(a1, . . . , ai−1, c(n), ai+1, . . . , ak) | n ∈ N
}

(ν is ω-continuous)

= ∨
{

ν(a1, . . . , ai−1, b, ai+1, . . . , ak) | b ∈ B
}

. (by Lemma 3.25(3))

�

Lemma 3.31. Let k ∈ N, ν ∈ Ops(k)(A) be an ω-continuous operation, let B1, . . . , Bk
be nonempty, countable, and directed subsets of A, and let a ∈ A such that for every
(b1, . . . , bk) ∈ B1 × · · · ×Bk, ν(b1, . . . , bk) ≤ a. Then ν

(

∨B1, . . . ,∨Bk
)

≤ a.

Proof. For every l ∈ [k+1] and (bl, . . . , bk) ∈ Bl×· · ·×Bk we define an element albl,...,bk ∈

A as follows: albl,...,bk = ν
(

∨B1, . . . ,∨Bl−1, bl, . . . , bk
)

. We need to show that ak+1
ε ≤ a. To

this end we show by induction on l that for every l ∈ [k+1] and (bl, . . . , bk) ∈ Bl×· · ·×Bk
we have albl,...,bk ≤ a.

Induction base. The statement holds trivially for l = 1 because a1
b1,...,bk

= ν(b1, . . . , bk) ≤
a by assumption.

6In the literature this fixpoint theorem is sometimes attributed to Kleene [83, Theorem XXVI] and
sometimes attributed to (Knaster and) Tarski [125, Theorem 1]. However, the attribution to Tarski
is slightly incorrect as his fixpoint theorem [125, Theorem 1] is different from Theorem 3.29; for a
thorough discussion on this topic the reader is referred to [101]. Tarski’s fixpoint theorem occurs in
this thesis in a later chapter (see Theorem 6.6).

3.3. M-monoids with infinite behavior 47

Induction step. Let l ∈ [k + 1] such that l > 1. We obtain

albl,...,bk = ν
(

∨B1, . . . ,∨Bl−2,∨Bl−1, bl, . . . , bk
)

= ∨
{

ν(∨B1, . . . ,∨Bl−2, bl−1, bl, . . . , bk) | bl−1 ∈ Bl−1

}

(by Lemma 3.30)

= ∨{al−1
bl−1,bl,...,bk

| bl−1 ∈ Bl−1} .

The induction hypothesis yields al−1
bl−1,bl,...,bk

≤ a for every bl−1 ∈ Bl−1. This implies our
assertion. �

Lemma 3.32. Let k ∈ N, ν ∈ Ops(k)(A) be ω-continuous, and for every i ∈ [k] let
ci : N→ A be an ω-chain. Then

(

ν(c1(n), . . . , ck(n)) | n ∈ N
)

is an ω-chain and

ν
(

∨{c1(n) | n ∈ N}, . . . ,∨{ck(n) | n ∈ N}
)

= ∨
{

ν(c1(n), . . . , ck(n)) | n ∈ N
}

.

Proof. This statement holds trivially if k = 0. For the remainder of the proof we assume
k > 0.

Clearly,
(

ν(c1(n), . . . , ck(n)) | n ∈ N
)

is an ω-chain because ν is monotone. Let lhs be
the left-hand side and rhs be the right-hand side of the equation.

First we show rhs ≤ lhs. For every n ∈ N, we have ci(n) ≤ ∨{ci(n
′) | n′ ∈ N} for every

i ∈ [k]; therefore, ν(c1(n), . . . , ck(n)) ≤ lhs. This yields rhs ≤ lhs.
Next we show lhs ≤ rhs. By Lemma 3.31 it suffices to show that for every (n1, . . . , nk) ∈

Nk we have ν(c1(n1), . . . , ck(nk)) ≤ rhs; this is clearly true because ν(c1(n1), . . . , ck(nk)) ≤
ν(c1(n), . . . , ck(n)) ≤ rhs, where n = max{n1, . . . , nk}. �

Continuous m-monoids and their properties

Now we are prepared to define the main notion of this section.

Definition 3.33. Let (A,≤) be an ω-cpo. We call (A,≤) an ω-continuous m-monoid

if:

• 0 is the least element of A wrt ≤,

• + is ω-continuous wrt ≤, and

• for every δ ∈ ∆, θ(δ) is ω-continuous wrt ≤. 2

First let us study examples of ω-continuous m-monoids.

Example 3.34. Now we list some examples of ω-continuous m-monoids. Let ∆ = ∅.

1. The m-monoid (N∪{∞},+, 0, θ) over ∆ together with the natural order on N∪{∞}
is an ω-continuous m-monoid.

2. The m-monoid (R≥0 ∪ {∞},+, 0, θ) over ∆ together with the natural order on the
set R≥0 ∪ {∞} is an ω-continuous m-monoid.

3. Let ∆′ = {σ(2)}. The m-monoid (R≥0 ∪ {∞},+, 0, θ
′) over ∆′ together with the

natural order is an ω-continuous m-monoid for, e.g., each of the following three
definitions of θ′(σ):

• θ′(σ) = · is the conventional multiplication,

48 3. M-monoids

• θ′(σ) = max,

• θ′(σ) = min.

4. Let (L,≤) be an ω-cpo that is additionally a join-semilattice, i.e., for every a, b ∈ L
the set {a, b} has a supremum wrt ≤, denoted by a ∨ b. Then ((L,∨,⊥, θ),≤) is an
ω-continuous m-monoid over ∆, where ⊥ denotes the least element of L wrt ≤.

Particular instances of such ω-cpos (L,≤) are totally ordered ω-cpos; e.g., well-
ordered sets having a greatest element7.

5. Let Γ be a signature and let A be defined as in Example 3.24(5). Then (A,⊆) is an
ω-continuous m-monoid.

6. Let A = N ∪ {∞1,∞2,∞3} and define the operations ν ∈ Ops(1)(A) and ◦ ∈
Ops(2)(A) as follows:

• ∀n ∈ N : ν(n) = n+ 1 and ∀ a ∈ {∞1,∞2,∞3} : ν(a) = a

• 0 is neutral wrt ◦, and a ◦ b =∞3 for every a, b ∈ A \ {0}.

Clearly, ◦ is commutative and associative. Consider the signature ∆′ = {γ(1)} and
the m-monoid A = (A, ◦, 0, θ) over ∆′, where θ(γ) = ν. It is easy to check that there
are precisely two partial orders ≤1 and ≤2 on A such that (A,≤i) is an ω-continuous
m-monoid (for i ∈ {1, 2}), namely

≤1 = ≤ ∪ (N× {∞1,∞2,∞3}) ∪
(

{(∞1,∞2), (∞2,∞3)}
∗
)

,

≤2 = ≤ ∪ (N× {∞1,∞2,∞3}) ∪
(

{(∞2,∞1), (∞1,∞3)}
∗
)

,

where ≤ is the natural order on natural numbers.

Now consider the operation ν ′ ∈ Ops(1)(A) which is defined as follows:

• ∀n ∈ N+ : ν ′(n) = n+ 1 and ∀ a ∈ {0,∞1,∞2,∞3} : ν ′(a) = a.

Then the m-monoid A′ = (A, ◦, 0, θ′) over ∆′, where θ′(γ) = ν ′, is distributive.
Observe that (A′,≤1) and (A′,≤2) are ω-continuous m-monoids, too. However,
there are other partial orders ≤ such that (A′,≤) is an ω-continuous m-monoid,
e.g., ≤ = ({0} ×A) ∪ (A× {∞3}). 2

Example 3.34(6) shows that there are m-monoids that admit more than one extension to
an ω-continuous m-monoid. Hence, in general an m-monoid does not uniquely determine
its extension to an ω-continuous m-monoid (if such an extension exists at all).

The following observation is a consequence of the fact that 0 is the least element in an
ω-continuous monoid and that addition is monotone (due to Observation 3.28).

Observation 3.35. Let (A,≤) be an ω-continuous m-monoid. Then for every a, b ∈ A,
a ≤ a+ b. Moreover, for all finite sets I, J with I ⊆ J and every family (aj | j ∈ J) over
A we have

∑

i∈I ai ≤
∑

j∈J aj.

We conclude this section with a technical lemma that connects evaluation homomor-
phisms and suprema of ω-chains.

7A totally ordered poset (L,≤) is a well-ordered set if every nonempty subset of L has a least element.
An example of a well-ordered set with a greatest element is the set of all ordinal numbers less or equal
to a given limit ordinal (e.g., ω + ω), together with the natural order of ordinal numbers. A thorough
introduction into well-ordered sets and ordinal numbers can be found in, e.g., [13, 31, 93, 124].

3.3. M-monoids with infinite behavior 49

Lemma 3.36. Let (A,≤) be an ω-continuous m-monoid, C be a set, and for every n ∈ N

let fn : C → A such that, for every c ∈ C, (fn(c) | n ∈ N) is an ω-chain. Moreover,
let f : C → A be defined by f(c) = ∨{fn(c) | n ∈ N} for every c ∈ C. Then for every
t ∈ T∆(C),

1. (gn(t) | n ∈ N) is an ω-chain and

2. g(t) = ∨{gn(t) | n ∈ N},

where g and, for every n ∈ N, gn is the unique ∆-homomorphism from T∆(C) to (A, θ)
extending f and fn, respectively.

Proof. We give a proof by structural induction on t.

Induction base. If t ∈ C, then clearly (gn(t) | n ∈ N) = (fn(t) | n ∈ N) is an ω-chain
and we have g(t) = f(t) = ∨{fn(t) | n ∈ N} = ∨{gn(t) | n ∈ N}.

Induction step. Now let k ∈ N, δ ∈ ∆(k), and t1, . . . , tk ∈ T∆(C) such that t =
δ(t1, . . . , tk). Then (gn(t) | n ∈ N) =

(

θ(δ)(gn(t1), . . . , gn(tk)) | n ∈ N
)

is an ω-chain due
to Lemma 3.32 and the first part of the induction hypothesis. Now we show Statement 2:

g(t) = θ(δ)(g(t1), . . . , g(tk))

= θ(δ)
(

∨{gn(t1) | n ∈ N}, . . . ,∨{gn(tk) | n ∈ N}
)

(by ind. hyp.)

= ∨
{

θ(δ)(gn(t1), . . . , gn(tk)) | n ∈ N
}

(by Lemma 3.32)

= ∨
{

gn(δ(t1, . . . , tk)) | n ∈ N
}

. �

3.3.3 Relationships

It turns out that some m-monoids A can both be extended to an ω-continuous m-monoid
(A,≤) and an ω-complete m-monoid (A,

∑

). We are particularly interested in such
extensions ≤ and

∑

that are related in a specific way, namely that the sum of any given
family is the supremum of the set of finite partial sums of that family.

Definition 3.37. Let (A,≤) be an ω-continuous m-monoid and
∑

be an ω-infinitary
sum operation for A. Then the ω-continuous m-monoid (A,≤) and the ω-complete m-
monoid (A,

∑

) are called related if for every countable index set I and family (ai | i ∈ I)
over A the following holds:

∑

i∈I
ai = ∨

{

∑

j∈J
aj | J ∈ Pfin(I)

}

. 2

This relationship is reminiscent of the principle used in the theory of real number series,
where the sum value of a series is defined to be the limit of the sequence of partial sums of
the series (for more information about the theory of series the interested reader is referred
to, e.g., [23, 25, 88]). This fact is illustrated by the following example.

Example 3.38. Let ∆ = ∅ and consider the m-monoid A = (R≥0 ∪{∞},+, 0, θ) over ∆.
Moreover, let

• (A,≤) be the ω-continuous m-monoid from Example 3.34(2) and

• (A,
∑

) be the ω-complete m-monoid from Example 3.24(4).

50 3. M-monoids

Then (A,≤) and (A,
∑

) are related.

Let
∑′ be the ∞-canonical ω-infinitary sum operation for the m-monoid A (see Ex-

ample 3.24(1)). Clearly, (A,≤) and (A,
∑′) are not related, which is witnessed by the

family (2−n | n ∈ N):
∑′

n∈N
2−n =∞ 6= 2 = ∨{

∑

n∈N 2−n | N ∈ Pfin(N)}. 2

The last paragraph of Example 3.38 shows that there are ω-continuous m-monoids and
ω-complete m-monoids (over the same underlying m-monoid) which are not related. We
will now investigate the notion of related ω-continuous and ω-complete m-monoids in
more detail.

Lemma 3.39. Let (A,≤) be an ω-continuous m-monoid.

1. Let
∑

and
∑′ be ω-infinitary sum operations for A such that (A,≤) is related both

to (A,
∑

) and (A,
∑′). Then

∑

=
∑′.

2. Let I be a countable set and (ai | i ∈ I) be family over A. Then we have that the set
{
∑

j∈J aj | J ∈ Pfin(I)
}

is nonempty, countable, and directed. Moreover, for every
initial segment N of N and bijection π : N → I:

∨{aπ(0) + · · ·+ aπ(n) | n ∈ N} = ∨
{

∑

j∈J
aj | J ∈ Pfin(I)

}

.

3. Let (A,
∑

) be an ω-complete m-monoid that is related to (A,≤). If A is idempotent,
then (A,

∑

) is ω-idempotent. Moreover, if A is distributive, then (A,
∑

) is ω-
distributive.

Proof. 1. This statement follows from Definition 3.37.

2. Let B =
{
∑

j∈J aj | J ∈ Pfin(I)
}

. Clearly, Pfin(I) is nonempty and countable.
Furthermore, for every J, J ′ ∈ Pfin(I) also J ∪ J ′ ∈ Pfin(I) and

∑

j∈J aj ≤
∑

j∈J∪J ′ aj
and

∑

j∈J ′ aj ≤
∑

j∈J∪J ′ aj by Observation 3.35. Hence, B is nonempty, countable, and
directed; therefore, B has a supremum by Corollary 3.26.

Let N be an initial segment of N and π : N → I be a bijection. We define the set
C = {aπ(0) + · · · + aπ(n) | n ∈ N}. We need to show that ∨C = ∨B. This is trivial if
I = ∅. For the remainder of this proof assume I 6= ∅. Due to Lemma 3.25(3) it suffices
to show that C is a cofinal subset of B. Clearly, C is a subset of B. Let J ∈ Pfin(I).
If J = ∅, then

∑

j∈J aj ≤ aπ(0). If J is nonempty, then for n = max(π−1(J)) we obtain
∑

j∈J aj ≤ aπ(0) + · · ·+ aπ(n) by Observation 3.35.

3. First suppose that A is idempotent. Let I be a nonempty countable index set and
a ∈ A. Then

∑

i∈I a = ∨{
∑

j∈J a | J ∈ Pfin(I)} = ∨
(

{0} ∪ {a | J ∈ Pfin(I), J 6= ∅}
)

= a
because I is non-empty.

Now suppose that A is distributive. Let k ∈ N, δ ∈ ∆(k), a1, . . . , ak ∈ A, j ∈ [k], I be
a countable index set, and (bi | i ∈ I) be a family over A. We show that Equation (3.3)
is satisfied. By Statement 2 the set {

∑

i∈J bi | J ∈ Pfin(I)
}

is nonempty, countable, and
directed. Then

θ(δ)
(

a1, . . . , aj−1,
∑

i∈I
bi, aj+1, . . . , ak

)

= θ(δ)
(

a1, . . . , aj−1,∨
{

∑

i∈J
bi | J ∈ Pfin(I)

}

, aj+1, . . . , ak
)

(by Def. 3.37)

= ∨
{

θ(δ)(a1, . . . , aj−1,
∑

i∈J
bi, aj+1, . . . , ak) | J ∈ Pfin(I)

}

(by Lemma 3.30)

3.3. M-monoids with infinite behavior 51

= ∨
{

∑

i∈J
θ(δ)(a1, . . . , aj−1, bi, aj+1, . . . , ak) | J ∈ Pfin(I)

}

(A is distributive)

=
∑

i∈I
θ(δ)(a1, . . . , aj−1, bi, aj+1, . . . , ak) . (by Def. 3.37)

�

For the remainder of this section we will deal with the problem when a given ω-
continuous m-monoid admits a related ω-complete m-monoid and vice versa.

Lemma 3.40 (cf. [52, Prop. 2.2]). Let (A,≤) be an ω-continuous m-monoid. Then
there is an ω-infinitary sum operation

∑≤ for A such that (A,≤) and (A,
∑≤) are related.

Proof. First we define
∑≤. Let I be a countable index set and (ai | i ∈ I) be a family

over A. Due to Lemma 3.39(2), the set
{
∑

j∈J aj | J ∈ Pfin(I)
}

is countable and directed.

Thus, it has a supremum by Corollary 3.26. We put
∑≤

i∈I ai = ∨
{
∑

j∈J aj | J ∈ Pfin(I)
}

.

Clearly, if
∑≤ is an ω-infinitary sum operation for A, then (A,≤) and (A,

∑≤) are
related. We show that

∑≤ is an ω-infinitary sum operation for A. Therefore, we need to
show that Equations (2.4), (2.5), and (3.2) hold. Equations (2.4) and (3.2) hold trivially.
We prove that Equation (2.5) holds as well. Let I and J be countable sets, (Ij | j ∈ J)
be a generalized partition of I, and (ai | i ∈ I) be a family over A. We show that
∑≤

i∈I ai =
∑≤

j∈J

∑≤
i∈Ij

ai. To this end let bj =
∑≤

i∈Ij
ai for every j ∈ J .

First we show that
∑≤

i∈I ai ≤
∑≤

j∈J bj. Let I ′ ∈ Pfin(I). We need to prove that
∑

i∈I′ ai ≤
∑≤

j∈J bj (note that the sum
∑

on the left-hand side is the finite extension of
the operation +). Let J ′ = {j ∈ J | Ij ∩ I

′ 6= ∅}. Then J ′ ∈ Pfin(J) and I ′ ⊆
⋃

j∈J ′ Ij.

For every j ∈ J ′ the set Ij ∩ I
′ is finite, hence,

∑

i∈Ij∩I′
ai ≤

∑≤
i∈Ij

ai = bj. We obtain
∑

i∈I′ ai =
∑

j∈J ′

∑

i∈Ij∩I′
ai ≤

∑

j∈J ′ bj because + is monotone wrt ≤. Finally, the

definition of
∑≤ yields

∑

j∈J ′ bj ≤
∑≤

j∈J bj.

It remains to show
∑≤

j∈J bj ≤
∑≤

i∈I ai. Let J ′ ∈ Pfin(J). We need to prove that
∑

j∈J ′ bj ≤
∑≤

i∈I ai. Let k ∈ N and j1, . . . , jk ∈ J be pairwise distinct such that J ′ =

{j1, . . . , jk}. Let the operation ν ∈ Ops(k)(A) be defined by ν(a′1, . . . , a
′
k) = a′1 + · · · + a′k

for every a′1, . . . , a
′
k ∈ A. Clearly, ν is ω-continuous. Moreover, for every l ∈ [k] let

Bl = {
∑

i∈I′ ai | I
′ ∈ Pfin(Ijl)}; hence, bjl = ∨Bl and Bl is nonempty, countable, and

directed due to Lemma 3.39(2). It remains to show that ν(∨B1, . . . ,∨Bk) ≤
∑≤

i∈I ai.
Observe that Lemma 3.31 implies that it suffices to show that for every tuple (I ′1, . . . , I

′
k) ∈

Pfin(Ij1)× · · · × Pfin(Ijk) we have ν(
∑

i∈I′1
ai, . . . ,

∑

i∈I′k
ai) ≤

∑≤
i∈I ai. Let (I ′1, . . . , I

′
k) ∈

Pfin(Ij1) × · · · × Pfin(Ijk). Since j1, . . . , jk are pairwise distinct, the sets Ij1, . . . , Ijk are
pairwise disjoint and, thus, also I ′1, . . . , I

′
k are pairwise disjoint. Moreover, I ′1 ∪ · · · ∪ I

′
k ∈

Pfin(I). Thus, ν(
∑

i∈I′1
ai, . . . ,

∑

i∈I′k
ai) =

∑

l∈[k]

∑

i∈I′l
ai =

∑

i∈I′1∪···∪I
′
k
ai ≤

∑≤
i∈I ai. �

According to Lemma 3.40 for every ω-continuous m-monoid there is a related ω-
complete m-monoid. The converse does not hold in general. More precisely, let As ; c

be the class of ω-complete m-monoids that admit a related ω-continuous m-monoid; then
there are ω-complete m-monoids that are not in the class As ; c. This is witnessed by the
following two examples.

Example 3.41. Let ∆ = ∅. Consider the ω-complete m-monoid
(

(A,+, 0, θ),
∑

)

over
∆, where A = {0, 1, 2,∞}, ∞ is absorbing wrt +, for every a, b ∈ {1, 2} we have a+ b =
(a+ b− 1) mod 2 + 1, and

∑

is the ∞-canonical ω-infinitary sum operation.

52 3. M-monoids

Assume that there is a partial order ≤ on A such that
(

(A,+, 0, θ),≤
)

is an ω-continuous
m-monoid. Then by Observation 3.35 we obtain both 1 ≤ 1 + 1 = 2 and 2 ≤ 2 + 1 = 1, a
contradiction. Thus,

(

(A,+, 0, θ),
∑

)

6∈ As ; c. 2

Example 3.42. Let ∆ = ∅ and consider the ω-complete m-monoid (A,
∑′) over ∆ from

Example 3.38, i.e., A = (R≥0 ∪ {∞},+, 0, θ) and
∑′ is the ∞-canonical ω-infinitary sum

operation for A.

Assume that there is an ω-continuous m-monoid (A,≤) such that (A,≤) and (A,
∑′)

are related. By Observation 3.35, ≤ is the natural order on R≥0 ∪ {∞}. However,
(A,≤) and (A,

∑′) are not related as we have already discussed in Example 3.38. Thus,
(

A,
∑′) 6∈ As ; c. 2

Let us briefly analyze Examples 3.41 and 3.42. Let (A,
∑

) =
(

(A,+, 0, θ),
∑

)

be an
ω-complete m-monoid and consider the relation ≤ = {(a, a + b) | a, b ∈ A} on A. We
say that (A,

∑

) has property (R1) if ≤ is antisymmetric. Moreover, we say that (A,
∑

)
has property (R2) if for every a ∈ A, countable set I, and family (ai | i ∈ I) over A: if
a <

∑

i∈I ai, then there is a finite J ⊆ I with
∑

i∈J ai 6≤ a. Obviously, the ω-complete
m-monoid in Example 3.41 does not have property (R1) and the one in Example 3.42
does not have property (R2). It is easy to see that every ω-complete m-monoid in As ; c

has properties (R1) and (R2), i.e., (R1) and (R2) are necessary conditions for an ω-
complete m-monoid to be in As ; c. It turns out, however, that (R1) and (R2) together
are no sufficient conditions. This is witnessed by the more elaborate counterexample
(Example A.1) that is given in Appendix A.2.

Particularly Example A.1 indicates that there is no simple characterization (in terms
of necessary and sufficient conditions) of the class As ; c. Therefore, we restrict ourselves
to giving sufficient conditions that an ω-complete m-monoids is in As ; c.

Lemma 3.43. Let (A,
∑

) be an ω-distributive ω-complete m-monoid such that for every
a ∈ A and family (an | n ∈ N) over A:

• if a0 + · · ·+ an ≤ a for every n ∈ N, then
∑

n∈N
an ≤ a,

where ≤ = {(b, b+ c) | b, c ∈ A}. Then the following statements hold.

1. (A,≤) is a poset.

2. For every countable set I, family (ai | i ∈ I) over A, initial segment N of N, and
bijection π : N → I,

∑

i∈I ai = ∨{aπ(0) + · · ·+ aπ(n) | n ∈ N}.

3. (A,≤) is an ω-continuous m-monoid that is related to (A,
∑

).

4. (A,
∑

) ∈ As ; c.

Proof. 1. Clearly, ≤ is transitive and reflexive. We show that ≤ is antisymmetric. Let
a, b ∈ A such that a ≤ b and b ≤ a. Thus, there are a′, b′ ∈ A such that a + a′ = b and
b+ b′ = a. Let a0 = a and for every n ∈ N+ let an = a′ if n is odd and an = b′ otherwise.
Clearly, for every n ∈ N, a0 + · · · + an = a if n is even and a0 + · · · + an = b otherwise.
Hence, a0 + · · · + an ≤ a for every n ∈ N. By assumption, we obtain that

∑

n∈N
an ≤ a.

Lemma 3.17(2) yields
∑

n∈N
an = a′ +

∑

n∈N
an. Since

∑

n∈N
an ≤ a, there is a c ∈ A

such that c+
∑

n∈N
an = a. Hence, a = c+

∑

n∈N
an = a′ + c+

∑

n∈N
an = a′ + a = b.

3.4. Conclusion and open problems 53

2. Let I be a countable set, (ai | i ∈ I) be a family over A, N be an initial segment
of N, and π : N → I be a bijection. The statement is trivial if I is finite. Now assume
that I is infinite, i.e., N = N. For every n ∈ N let bn = aπ(n). Equation (2.3) yields
∑

i∈I ai =
∑

n∈N
aπ(n) =

∑

n∈N
bn. Clearly,

∑

n∈N
bn is an upper bound of {b0 + · · · +

bn | n ∈ N} due to Equations (2.2) and (3.2) and Observation 3.35. Now let b be an
upper bound of {b0 + · · · + bn | n ∈ N}. Our assumption yields

∑

n∈N
bn ≤ b. Thus,

∑

n∈N
bn = ∨{b0 + · · · + bn | n ∈ N} = ∨{aπ(0) + · · ·+ aπ(n) | n ∈ N}.

3. Observe that for every ω-chain c : N→ A there is a family (an | n ∈ N) over A such
that c(n) = a0 + · · · + an for every n ∈ N. We will use this decomposition of ω-chains
throughout this proof.

We show that (A,≤) is an ω-cpo. Clearly, 0 is the least element of A. Due to the
above decomposition of ω-chains it suffices to show that for every family (an | n ∈ N)
over A,

∑

n∈N
an is the supremum of the set {a0 + · · · + an | n ∈ N}. This follows from

Statement 2.
Next we show that (A,≤) is an ω-continuous m-monoid. First we prove that + is

ω-continuous wrt ≤. Let a ∈ A and c : N → A be an ω-chain. Consider the families
(an | n ∈ N) and (a′n | n ∈ N) over A such that c(n) = a0 + · · · + an for every n ∈ N,
a′0 = a+ a0, and a′n = an for every n ∈ N+.

a+ ∨{c(n) | n ∈ N} = a+ ∨{a0 + . . . + an | n ∈ N} = a+
∑

n∈N
an

=
∑

n∈N
a′n = ∨{a′0 + · · ·+ a′n | n ∈ N} = ∨{a+ c(n) | n ∈ N} .

Let k ∈ N and δ ∈ ∆(k). We prove that θ(δ) is ω-continuous wrt ≤. Let a1, . . . , ak ∈ A,
i ∈ [k], and c : N→ A be an ω-chain. Let (bn | n ∈ N) and (b′n | n ∈ N) be families over A
such that c(n) = b0 + · · ·+ bn and b′n = θ(δ)(a1, . . . , ai−1, bn, ai+1, . . . , ak) for every n ∈ N.
Then

θ(δ)(a1, . . . , ai−1,∨{c(n) | n ∈ N}, ai+1, . . . , ak)

= θ(δ)(a1, . . . , ai−1,
∑

n∈N
bn, ai+1, . . . , ak)

=
∑

n∈N
θ(δ)(a1, . . . , ai−1, bn, ai+1, . . . , ak) ((A,

∑

) is ω-distributive)

=
∑

n∈N
b′n = ∨{b′0 + · · ·+ b′n | n ∈ N}

= ∨
{

θ(δ)(a1, . . . , ai−1, b0 + · · ·+ bn, ai+1, . . . , ak) | n ∈ N
}

(since A is distributive by Lemma 3.19)

= ∨
{

θ(δ)(a1, . . . , ai−1, c(n), ai+1, . . . , ak) | n ∈ N
}

.

We conclude that (A,≤) is an ω-continuous m-monoid.
It remains to prove that (A,≤) and (A,

∑

) are related. Let I be a countable set and
(ai | i ∈ I) be a family over A. There is an initial segment N of N and a bijection
π : N → I. By Statement 2 and Lemma 3.39(2)

∑

i∈I ai = ∨{aπ(0) + · · · + aπ(n) | n ∈
N} = ∨{

∑

j∈J aj | J ∈ Pfin(I)}.
4. This statement is a direct consequence of the third statement. �

3.4 Conclusion and open problems

In the present chapter we introduced the main algebraic notions that we are going to
employ in the definition of the semantics of m-weighted monadic datalog programs. In

54 3. M-monoids

the next chapter we will define different kinds of semantics; some of them are only ap-
plicable when a given m-monoid can be extended to an ω-continuous or an ω-complete
m-monoid. A characterization of m-monoids that admit such extensions or a charac-
terization of ω-complete m-monoids that admit a related ω-continuous m-monoid could
therefore potentially benefit the theory of m-weighed monadic datalog programs.

CHAPTER 4

M-weighted monadic datalog programs

In this chapter we present the definition of m-weighted monadic datalog programs (for
short: mwmd), the device that we will investigate in the remainder of this thesis. The
syntactic structure of our definition is similar to the syntax of monadic datalog tree
transducers [28], which are based on weighted monadic datalog [122]. Weighted monadic
datalog is a combination of the concepts of monadic datalog [68, 69] and semiring-based
constraint logic programming [18].

We will define two different types of semantics, which we call fixpoint semantics and
hypergraph semantics. The fixpoint semantics is reminiscent of the initial algebra seman-
tics of bottom-up weighted tree automata [15, 63], whereas the hypergraph semantics is
related to the run semantics of weighted tree automata (or similar concepts such as m-
weighted tree automata [103, 123]). The fixpoint semantics is inspired by the definition of
the semantics of monadic datalog tree transducers [28], weighted monadic datalog [122],
and monadic datalog [68, 69]. The concept of the hypergraph semantics is novel.

Roughly speaking, each type of semantics of mwmd takes three inputs: an mwmd, a
tree, and an m-monoid. The semantics are defined in such a way that they evaluate
the input tree according to the mwmd by applying operations from the m-monoid, and
afterwards return an element of the m-monoid. Thus, when keeping the mwmd and the
m-monoid fixed, the semantics are mappings from input trees to m-monoid elements.

It turns out that there are mwmd such that their semantics cannot be evaluated for arbi-
trary m-monoids. Such mwmd exhibit circular behavior when computing their semantics;
as a consequence they require an ω-continuous m-monoid (for the fixpoint semantics) or
an ω-complete m-monoid (for the hypergraph semantics) as input; moreover, we need to
develop alternate variants of the fixpoint and the hypergraph semantics that can employ
the strength of ω-continuous m-monoids and ω-complete m-monoids, respectively. Hence,
we will define, study, and compare four different variants of semantics in this chapter (see
Definitions 4.20, 4.29, 4.40, and 4.43).

This chapter is organized as follows. In Section 4.1 we will introduce the syntax and in
Section 4.2 the semantics of mwmd. Section 4.2 consists of the following subsections: first
we will deal with instantiations of mwmd programs (Section 4.2.1), then we will define
the fixpoint semantics (Section 4.2.2) and the hypergraph semantics (Section 4.2.3). We
conclude Section 4.2 by a comparison of fixpoint and hypergraph semantics (Section 4.2.4).

4.1 Syntax

In this section we define the syntactic structure of mwmd. An mwmd consists of three
parts. The first component is a ranked alphabet, that does only contain nullary and
unary elements; the elements of this alphabet are called user-defined predicates. The
third component is a unary user-defined predicates and is called the query predicate.

55

56 4. M-weighted monadic datalog programs

The core of the mwmd is the second component, a finite collection of rules. Every rule
consists of three parts, called head, body, and guard, and it is denoted in the form
“head← body ; guard”. We will explain and define the syntax of these three components
below. First let us define their basic building blocks, which we call atoms.

For the remainder of this chapter we fix a ranked alphabet Σ and a signature ∆.

Definition 4.1. Let Γ be a ranked alphabet and let H be a set. We define Γ(H) =
{γ(h1, . . . , hk) | k ∈ N, γ ∈ Γ(k), h1, . . . , hk ∈ H}; obviously, Γ(H) ⊆ TΓ(H).

Throughout this thesis, we fix an infinite set V, the elements of which being called
variables; in examples we will use x, y, z, x1, x2, . . . as variables. We call Γ(V) the set of
atoms (over Γ). 2

Definition 4.2. We define the ranked alphabet spΣ by letting

spΣ = {root(1), leaf (1)} ∪ {label(1)σ | σ ∈ Σ} ∪ {child
(2)
i | i ∈ [maxrk(Σ)]} .

We refer to the elements of spΣ as structural predicates over Σ. 2

Example 4.3. Consider the ranked alphabet Σex = {α(0), β(0), γ(1), σ(2)}. Then spΣex
=

{root(1), leaf (1), label
(1)
α , label

(1)
β , label

(1)
γ , label

(1)
σ , child

(2)
1 , child

(2)
2 }. Moreover, we obtain

that the set spΣex
(V) of atoms over spΣex

contains, amongst other elements, leaf(x),
labelσ(y), child2(y, x), and child1(z, z). 2

Now let us explain the syntax of heads, bodies, and guards of rules. The head is always
an atom over the set of used-defined predicates. The body is a tree over ∆ that is allowed
to have atoms over user-defined predicates as indices. Finally, the guard is a finite set of
atoms over structural predicates. Now we present the core definition of this thesis.

Definition 4.4. A triple (P,R, q) is called an m-weighted monadic datalog program

(for short: mwmd) over Σ and ∆ if

• P is a monadic ranked alphabet,

• R ⊆ P (V)× T∆(P (V)) × Pfin(spΣ(V)) is a finite set,

• q ∈ P (1).

Note that T∆(P (V)) is the set of trees over symbols from ∆ which are indexed by elements
of P (V). We call the members of P user-defined predicates, the members of R rules,
and the predicate q query predicate.

Let r = (h′, b′, G′) ∈ R. We denote r by h′ ← b′ ; G′. Moreover, we call h′, b′, and G′

the head, body, and guard of r, and denote them by rh, rb, and rG, respectively. Thus,
r′ = r′h ← r′b ; r′G for every r′ ∈ R. By var(rh), var(rb), and var(rG) we denote the sets
of variables occurring in rh, rb, and rG, respectively. More precisely, we let var(rh) be
the smallest set V ′ ⊆ V such that rh ∈ P (V ′). Likewise, we let var(rb) and var(rG) be
the smallest sets V ′ ⊆ V and V ′′ ⊆ V such that rb ∈ T∆(P (V ′)) and rG ∈ Pfin(spΣ(V ′′)),
respectively. We put var(r) = var(rh) ∪ var(rb) ∪ var(rG).

We refer to the elements in P (V) and spΣ(V) as user-defined atoms and structural

atoms, respectively. 2

4.2. Semantics 57

Example 4.5 (Continuation of Example 4.3). Let ∆ex = Σex be a ranked alphabet.
Then M1 = (P1, R1, q) is an mwmd over Σex and ∆ex, where P1 = {q(1), p(0)} and
R1 = {r1, r2, r3} such that

r1 = q(x)← σ
(

q(y), p()
)

; {child2(x, y)} ,

r2 = p()← α ; {labelγ(y)} ,

r3 = q(x)← β ; {leaf(x), root(z), labelσ(z)} .

Clearly, var(r1) = {x, y}, var(r2) = {y}, and var(r3) = {x, z}. Another more elaborate
example is the mwmd M2 = (P2, R2, q), where P2 = {q(1), p(1), r(1)}, and R2 consists of
the following rules:

r4 = q(x)← q(y) ; {child2(x, y)} ,

r5 = q(x)← σ
(

p(y), r(x)
)

; {leaf(x), child2(y, x)} ,

r6 = p(x)← r(z) ; {root(x), child1(x, z)} ,

r7 = p(x)← σ
(

p(y), r(z)
)

; {child2(y, x), child1(x, z)} ,

r8 = r(x)← α ; {labelα(x)} ,

r9 = r(x)← β ; {labelβ(x)} .

We will study the behavior of the mwmd M1 and M2 in the next section. 2

4.2 Semantics

In this section we present the semantics of mwmd. We are going to define four variants
of semantics as we have already mentioned in the introduction of this chapter. Roughly
speaking, each of them associate with every valid combination of an mwmd M and an
m-monoid A a mapping from the set TΣ of input trees to the carrier set of A. All of them
use the concept of rule instances, that we need to define and study as a preliminary step
before we can define the semantics formally.

In the sequel let M = (P,R, q) be an mwmd over Σ and ∆.

4.2.1 Instantiations

Given an input tree t ∈ TΣ, the variables from the set V that occur in rules of M are to
be interpreted as positions of the input tree. Such an assignment of variables to positions
of t can be modeled as a mapping from the set of variables to pos(t). We will apply
variable assignments at the level of rules; i.e., all occurrences of the same variable within
one rule always represent the same position in t whereas occurrences of the same variable
in different rules may stand for different positions.

When computing the semantics of mwmd we are only interested in certain combinations
of a rule and an assignment of variables occurring in it; these are, roughly speaking, those
combinations such that the instantiated guard of the rule satisfies the input tree t. As
an example assume that the guard contains the atoms labelα(x) and leaf(y); then we are
only interested in those variable assignments that map x to a position that is labeled α
and y to a leaf position in t. These concepts are specified formally in the following two
definitions.

58 4. M-weighted monadic datalog programs

ε σ

1 β 2σ

21

β
22

α

(a) t1

ε γ

1 γ

11 α

(b) t2

ε σ

1 γ

11 γ

111 α

2σ

21

β
22

α

(c) t3

Figure 4.1: Diagrams of the trees from Example 4.8.

Definition 4.6. Let t ∈ TΣ. We refer to the elements in P (pos(t)) and spΣ(pos(t))
as user-defined atom instances and structural atom instances (over t), respec-
tively. The tree t constitutes a set Bt ⊆ spΣ(pos(t)) of t-compatible structural atom

instances defined as:

Bt =
{

root(ε)
}

∪
{

leaf(w) | w ∈ pos(t), t(w) ∈ Σ(0)
}

∪
{

childi(w,wi) | w ∈ pos(t), i ∈ [rk(t(w))]
}

∪
{

labelσ(w) | w ∈ pos(t), t(w) = σ
}

. 2

Definition 4.7. Let t ∈ TΣ and r ∈ R. An r, t-variable assignment is a mapping ρ :
var(r)→ pos(t). Let ρ be an r, t-variable assignment. For every ranked alphabet Γ we lift
ρ to three mappings ρ1,Γ : Γ(var(r)) → Γ(pos(t)), ρ2 : T∆

(

P (var(r))
)

→ T∆

(

P (pos(t))
)

,
and ρ3 : P

(

spΣ(var(r))
)

→ P
(

spΣ(pos(t))
)

as follows:

• ρ1,Γ is the restriction of ρ′ to Γ(var(r)), where ρ′ is the unique Γ-homomorphism
from TΓ(var(r)) to TΓ(pos(t)) extending ρ.

• ρ2 is the unique ∆-homomorphism from T∆(P (var(r))) to T∆(P (pos(t))) extending
the mapping ρ1,P .

• ρ3(G) = {ρ1,spΣ
(g) | g ∈ G} for every G ⊆ spΣ(var(r)).

For the sake of simplicity we write ρ instead of ρ1,Γ, ρ2, and ρ3. If ρ(rG) ⊆ Bt, then we
call ρ valid.

The set of rule instances of M and t is the set ΦM,t of pairs (r′, ρ′) such that r′ ∈ R
and ρ′ is a valid r′, t-variable assignment. A rule instance (r′, ρ′) of M and t is called
ε-rule instance if ρ′(r′b) ∈ P (pos(t)). For every c ∈ P (pos(t)) we define the set ΦM,t,c

of rule instances of M and t for c by letting ΦM,t,c = {(r′, ρ′) ∈ ΦM,t | ρ
′(r′h) = c}. 2

Example 4.8 (Continuation of Example 4.5). In this example we consider three exam-
ple trees t1, t2, t3 ∈ TΣex . These trees are shown in Figure 4.1. Let t1 = σ(β, σ(β, α))
and let us determine the set ΦM1,t1 . Clearly, an r1, t1-variable assignment is a mapping
ρ : {x, y} → pos(t1); if ρ is valid, then it must map y to the second child of x; hence,
ρ = [x 7→ ε, y 7→ 2] or ρ = [x 7→ 2, y 7→ 22]. There are no valid r2, t1-variable assign-
ments because there is no position labeled γ in t1. Every valid r3, t1-variable assignments

4.2. Semantics 59

ρ maps x to a leaf position in t and z to the root of t; hence, ρ = [x 7→ 1, z 7→ ε],
ρ = [x 7→ 21, z 7→ ε], or ρ = [x 7→ 22, z 7→ ε]. We obtain that

ΦM1,t1 =
{

(r1, [x 7→ ε, y 7→ 2]), (r1, [x 7→ 2, y 7→ 22])
}

∪
{

(r3, [x 7→ 1, z 7→ ε]), (r3, [x 7→ 21, z 7→ ε]), (r3, [x 7→ 22, z 7→ ε])
}

.

For the pair (r, ρ) = (r1, [x 7→ ε, y 7→ 2]) we have that ρ(rh) = q(ε); likewise, for (r, ρ) =
(r1, [x 7→ 2, y 7→ 22]) we obtain ρ(rh) = q(2). Observe that for every v ∈ pos(t1) =
{ε, 1, 2, 21, 22} there is a unique (r, ρ) ∈ ΦM1,t1 such that ρ(rh) = q(v). Hence, for every
v ∈ pos(t1) we have

ΦM1,t1,q(v) =

{

{

(r1, [x 7→ v, y 7→ v · 2])
}

, if v ∈ {ε, 2},
{

(r3, [x 7→ v, z 7→ ε])
}

, otherwise.

Moreover, ΦM1,t1,p() = ∅. Now let us consider the tree t2 = γ(γ(α)). Then there is no
valid r1, t2-variable assignment because there is no position in t2 that is the second child of
any other position in t. There are precisely two valid r2, t2-variable assignments, namely
ρ1 = [y 7→ ε] and ρ2 = [y 7→ 1]. Furthermore, there is no valid r3, t2-variable assignment
because the root position is not labeled σ. Hence, we obtain that ΦM1,t2 = ΦM1,t2,p() =
{

(r2, [y 7→ ε]), (r2, [y 7→ 1])
}

.

Finally, let t3 = σ(γ(γ(α)), σ(β, α)). Then we obtain for every v ∈ pos(t3):

ΦM1,t3 =
{

(r1, [x 7→ ε, y 7→ 2]), (r1, [x 7→ 2, y 7→ 22])
}

∪
{

(r2, [y 7→ 1]), (r2, [y 7→ 11]), (r3, [x 7→ 111, z 7→ ε])
}

∪
{

(r3, [x 7→ 21, z 7→ ε]), (r3, [x 7→ 22, z 7→ ε])
}

,

ΦM1,t3,q(v) =











{

(r1, [x 7→ v, y 7→ v · 2])
}

, if v ∈ {ε, 2},

∅ , if v ∈ {1, 11},
{

(r3, [x 7→ v, z 7→ ε])
}

, otherwise,

ΦM1,t3,p() =
{

(r2, [y 7→ 1]), (r2, [y 7→ 11])
}

.

These examples show that rule r2 is only applicable (i.e., has an instance) if there is a
γ-labeled position in the input tree, and rule r3 can only be applied if the root of the
input tree is labeled σ.

Let us conclude this example with determining the rule instances ΦM2,t1 of the mwmd
M2 and t1. We have

ΦM2,t1 =
{

(r4, [x 7→ ε, y 7→ 2]), (r4, [x 7→ 2, y 7→ 22])
}

∪
{

(r5, [x 7→ 22, y 7→ 2])
}

∪
{

(r6, [x 7→ ε, z 7→ 1])
}

∪
{

(r7, [x 7→ 2, y 7→ ε, z 7→ 21])
}

∪
{

(r8, [x 7→ 22]), (r9, [x 7→ 1]), (r9, [x 7→ 21])} .

Observe that the three rule instances (r4, [x 7→ ε, y 7→ 2]), (r4, [x 7→ 2, y 7→ 22]), and
(r6, [x 7→ ε, z 7→ 1]) are ε-rule instances. 2

60 4. M-weighted monadic datalog programs

Dependency graphs and dependency hypergraphs

All kinds of the semantics that we will define in this thesis make direct use of the set of
rule instances that we defined in the previous section. Intuitively, the user-defined atom
instances are associated with elements of the carrier set of the considered m-monoid, and
the rule instances provide the means to compute this association. As an example consider
the following rule instance:

(

p(x)← σ(p(y), q(x)) ; {child1(x, y)} , [x 7→ 2, y 7→ 21]
)

.

Roughly speaking, this rule instance signifies that the value of the atom instance p(2)
is obtained by applying the operation σ (evaluated in the considered m-monoid) to the
values of the atom instances of p(21) and q(2); note that the guard {child1(x, y)} can be
disregarded in this phase of the computation of the semantics; in fact, it was only required
for determining the set of valid variable assignments and, thus, the set of rules instances.
Therefore, the above rule instance asserts that the associated value of p(2) depends on
the values of p(21) and q(2). The collection of dependencies between user-defined atom
instances that are induced by the rule instances in this manner can be represented by a
hypergraph, called the dependency hypergraph. The dependency hypergraph will turn
out to be a useful tool when dealing with the semantics that we will define later in this
chapter.

Definition 4.9. Let t ∈ TΣ. The dependency hypergraph of M and t is the hy-
pergraph Gdep

M,t =
(

P (pos(t)),ΦM,t, µ
)

such that, for every (r, ρ) ∈ ΦM,t, µ((r, ρ)) =
(

indyield(ρ(rb)), ρ(rh)
)

. Note that (due to our definition of hypergraphs) in this context
we consider ΦM,t as a ranked alphabet, where the rank of every element (r, ρ) ∈ ΦM,t is

|indyield(ρ(rb))|. Let G = Gdep
M,t and c ∈ P (pos(t)). We refer to the elements in Hc

G as
derivations of M and t ending in c.

The digraph reduct of the dependency hypergraph of M and t is called the dependency

graph of M and t. 2

The definition of the dependency graph is inspired by the definition of dependency graphs
for attribute grammars [32, 50] and attributed tree transducers [56, 60]. We will use
dependency graphs only rarely in this thesis because dependency hypergraphs contain
more information (and, thus, are more useful for our purposes) and allow for a more so-
phisticated definition of non-circularity (see Definition 4.12). Note that both dependency
graphs and dependency hypergraphs are independent from any particular m-monoids.

Example 4.10 (Continuation of Example 4.8). In Figure 4.2 we present the dependency
hypergraphs of the combinations of mwmd and input trees that we considered in Ex-
ample 4.8. Note that, for reasons of simplicity, we only depicted those vertices (atom
instances) that are the output or an input vertex for some hyperedge. We will follow this
convention throughout this thesis. 2

Clearly, when using dependency hypergraphs, we are allowed to employ the generic
terminology of hypergraphs. For example, we can consider some rule instance (r, ρ) as a
hyperedge whose output vertex is the atom instance ρ(rh) that is obtained by instantiating
the head rh by the variable assignment ρ. This is stated formally by the following Obser-
vation. We will use these terminologies interchangeably whenever it suits our purposes.
Note that the last statement of Observation 4.11 follows from Corollary 2.16.

4.2. Semantics 61

q(ε)

(r1, [x 7→ ε, y 7→ 2])

q(2) p()

(r1, [x 7→ 2, y 7→ 22])

q(22) q(21) q(1)

(r3, [x 7→ 22, z 7→ ε]) (r3, [x 7→ 1, z 7→ ε])

(r3, [x 7→ 21, z 7→ ε])

(a) Dep. hyp. of M1 and t1

q(ε)

(r1, [x 7→ ε, y 7→ 2])

(r2, [y 7→ 1])

q(2) p()

(r2, [y 7→ 11])

(r1, [x 7→ 2, y 7→ 22])

q(22) q(21) q(111)

(r3, [x 7→ 22, z 7→ ε]) (r3, [x 7→ 111, z 7→ ε])

(r3, [x 7→ 21, z 7→ ε])

(b) Dep. hyp. of M1 and t3

(r2, [y 7→ ε])

p()

(r2, [y 7→ 1])

(c) Dep. hyp. of
M1 and t2

(r4, [x 7→ 2, y 7→ 22])
r(22) (r8, [x 7→ 22])

q(ε) q(2) q(22) (r5, [x 7→ 22, y 7→ 2]) r(21) (r9, [x 7→ 21])

(r4, [x 7→ ε, y 7→ 2])
p(2) (r7, [x 7→ 2, y 7→ ε, z 7→ 21])

p(ε) r(1) (r9, [x 7→ 1])

(r6, [x 7→ ε, z 7→ 1])

(d) Dep. hyp. of M2 and t1

Figure 4.2: Dependency hypergraphs of Example 4.10.

Observation 4.11. Let t ∈ TΣ and c ∈ P (pos(t)).

1. {e ∈ ΦM,t | out(e) = c} = ΦM,t,c.

2. Let e = (r, ρ) ∈ ΦM,t and indyield(ρ(rb)) = c1 · · · ck for some k ∈ N, and c1, . . . , ck ∈
P (pos(t)). Then k = rk(e) and ini(e) = ci for every i ∈ [k].

3. Let E be the set of edges of the dependency graph of M and t. Then for every
c′ ∈ P (pos(t)), (c′, c) ∈ E iff there is a (r, ρ) ∈ ΦM,t,c such that c′ ∈ ind(ρ(rb)).

4. For every e = (r, ρ) ∈ ΦM,t,c let ke ∈ N and ce1, . . . , c
e
ke
∈ P (pos(t)) such that

ce1 · · · c
e
ke

= indyield(ρ(rb)). Let G = Gdep
M,t. Then

Hc
G = {e(η1, . . . , ηke) | e ∈ ΦM,t,c, η1 ∈ H

c1e
G , . . . , ηke ∈ H

ceke

G)} .

Consider the dependency hypergraph of Figure 4.2(a). The value of the atom instance
q(ε) depends on the values of q(2) and p(), and the value of q(2) depends on q(22) and

62 4. M-weighted monadic datalog programs

p(). Intuitively, the values of these atom instances should be computed in the following
order: first compute the values of q(22) and p(), then of q(2), and finally of q(ε). However,
such a topological ordering is not possible when the dependencies are circular, i.e., when
some atom instance depends directly or indirectly on itself; then there might not be a
meaningful way to associate values of the carrier set of the considered m-monoid with atom
instances. Roughly speaking, in general the semantics are only definable for mwmd which
do not exhibit such circularities. The notions of circularity and non-circularity are defined
formally in the following definition; they are inspired by the definitions of circularity for
attribute grammars [32, 50], attributed tree transducers [56, 60], and weighted monadic
datalog [122].

Definition 4.12. The mwmd M is called circular if there is a t ∈ TΣ such that the
dependency graph of M and t is cyclic. Otherwise M is called non-circular.

The mwmd M is called weakly non-circular if, for every t ∈ TΣ, H
q(ε)
G is finite, where

G = Gdep
M,t. 2

In the previous definition we introduced another version of non-circularity, which we call
weak non-circularity. We defined this notion for the following two reasons:

• The definition of non-circularity (according to the following definition) is unneces-
sarily strong because there are mwmd that are circular but nevertheless allow for a
meaningful definition of the semantics. This case occurs if, for instance, the cycle
has no impact on the value of the atom instance p(ε) (where p is the query predicate;
the value of p(ε) is the value that we are interested in at the end of the computation
of the semantics, i.e., it is the resulting value of the semantics); more precisely, if
p(ε) does not depend on the cycle in the dependency hypergraph.

• In Chapter 5 we will introduce syntactic normal forms of mwmd. In general these
constructions do not preserve the property of non-circularity. For instance, consider
the rule p(x) ← σ(p(x), q(y)) ; {root(x), leaf(x), child1(y, z)}. This rule does not
lead to cyclic dependencies because there is no valid variable assignment: if both
root(x) and leaf(x) are satisfied, then the input tree has only one node, which is
the root node; if, however, child1(y, z) is satisfied, then the input tree must have at
least two nodes. When constructing the connected normal form (see Lemma 5.33),
then this rule is replaced by the two rules p(x) ← σ(p(x), r()) ; {root(x), leaf(x)}
and r()← q(y) ; {child1(y, z)}. Now the resulting mwmd is circular because for any
input tree consisting of only one node the rule p(x)← σ(p(x), r());{root(x), leaf(x)}
together with the variable assignment [x 7→ ε] will lead to cycles in the dependency
graph. While non-circularity is not preserved by this construction, the property of
weak non-circularity is preserved.

The following lemma shows that the name “weak non-circularity” is justified.

Lemma 4.13. Let M be non-circular. Then M is weakly non-circular.

Proof. Assume that there is a t ∈ TΣ such that H
q(ε)
G is infinite, where G = Gdep

M,t. We will

derive a contradiction. By Lemma 2.25 there is a c ∈ P (pos(t)) such that c ≺+
G c ≺

∗
G q(ε).

Then Lemma 2.31 implies (c, c) ∈ E+, where E is the set of edges of the dependency
graph G′ of M and t; thus, G′ is cyclic, a contradiction. �

4.2. Semantics 63

Example 4.14 (Continuation of Example 4.10). Consider the mwmd M1 from Exam-
ple 4.10 and the input tree t1. From Figure 4.2(a) it is easy to see that the dependency
graph of M1 and t1 has precisely four edges, namely (q(2), q(ε)), (p(), q(ε)), (q(22), q(2)),
and (p(), q(2)); thus, the dependency graph is not cyclic. Similarly, the dependency graphs
of M1 and t2 as well as of M1 and t3 are not cyclic. It is easy to check that this holds
for every input tree; hence, M1 is non-circular. Likewise, Figure 4.2(d) shows that the
dependency graph of M2 and t1 is not cyclic. Again, it is easy to check that M2 is
non-circular.

By Lemma 4.13 we conclude that both M1 and M2 are weakly non-circular. Let us
establish this property for M1 explicitely. First consider the dependency hypergraph of

M1 and t1 (Figure 4.2(a)). Observe that the set H
q(ε)
G is empty, where G = Gdep

M1,t1
; this is

due to the fact that there is no derivation ending in p() and, hence, no derivation ending

in q(ε). In particular we obtain that H
q(ε)
G is finite. Now consider the input tree t3 and the

according dependency hypergraph (Figure 4.2(b)). We define e1 = (r1, [x 7→ ε, y 7→ 2]),
e2 = (r1, [x 7→ 2, y 7→ 22]), e3 = (r3, [x 7→ 22, z 7→ ε]), e4 = (r2, [y 7→ 1]), and
e5 = (r2, [y 7→ 11]). There are two derivations ending in p(), namely e4 and e5; there-
fore, there are four derivations ending in q(ε), namely e1(e2(e3, e4), e4), e1(e2(e3, e4), e5),

e1(e2(e3, e5), e4), and e1(e2(e3, e5), e5); hence, H
q(ε)
G is finite, where G = Gdep

M1,t3
. It is easy

to check that for every input tree the number of derivations ending in q(ε) is finite.

Now let us consider a more interesting example. Let M3 = (P3, R3, q) be an mwmd
over Σex and ∆ex, where P3 = (q(1), p(0), r(0)) and R3 consists of the following rules:

r10 = q(x)← p() ; {root(y), labelα(y)} ,

r11 = p()← σ(p(), r()) ; ∅ ,

r12 = r()← α ; {root(y), labelβ(y)} ,

r13 = p()← β ; ∅ .

It is easy to see that M3 is circular because for every input tree the rule r11 together
with the empty variable assignment induces the edge (p(), p()) in the dependency graph.
However, M3 is weakly non-circular. Consider the dependency hypergraphs for the input
trees t4 = α and t5 = β in Figure 4.3. Although there is a cyclic dependency of p() on
itself, the set of derivations ending in q(ε) is finite in both cases. Note that this holds
for different reasons for each of the trees t4 and t5. For t4 the cycle is “not active”
because there is no derivation ending in r(); therefore, there is only one derivation ending
in q(ε), namely (r10, [y 7→ ε])

(

(r13, [])
)

. For the input tree t5 the cycle is active (the
set of derivations ending in p() is infinite; it is the set of all left-descending combs of
the form e2(e2(· · · e2(e2(e1, e3), e3) · · ·), e3), where e1 = (r13, []) and e2 = (r11, []) and
e3 = (r12, [y 7→ ε])); however, this cycle cannot be reached from q(ε); the set of derivations
ending in q(ε) is empty. It is easy to see that for every other input tree the set of derivations
ending in q(ε) is empty as well.

Let r′10 originate from r10 by replacing its guard by the empty set and let M4 originate
from M3 by replacing r10 by r′10. Then M4 is not even weakly non-circular because for
the input tree t5 the set of derivations ending in q(ε) is infinite (see Figure 4.3(c)). 2

In Example 4.14 we argued that it is easy to check that the mwmd M1 and M2 are
non-circular and weakly non-circular. In general this checking might be hard as there are
infinitely many input trees that have to be analyzed. In Chapter 6 we will show rigor-

64 4. M-weighted monadic datalog programs

(r10, [y 7→ ε]) (r13, [])

q(ε) p()

(r11, [])

r()

(a) M3 and t4

(r13, [])

q(ε) p()

(r12, [y 7→ ε])

(r11, [])

r()

(b) M3 and t5

(r′10, [y 7→ ε]) (r13, [])

q(ε) p()

(r12, [y 7→ ε])

(r11, [])

r()

(c) M4 and t5

Figure 4.3: Dependency hypergraphs of M3 and M4 (Example 4.14).

ously that both the properties of non-circularity and weak non-circularity are effectively
decidable.

Finitary and infinitary semantics

In the introduction to this chapter we explained that we are going to define two types
of semantics: fixpoint semantics and hypergraph semantics. In the previous section we
discussed that, in general, these semantics are only applicable if the considered mwmd is
weakly non-circular. For each of these two types of semantics we will define an alternative
version that can be applied to arbitrary mwmd, even to mwmd that are not weakly
non-circular; let us call this version the infinitary semantics and the version that is only
applicable to weakly non-circular mwmd the finitary semantics.

Clearly, the infinitary semantics are not applicable in general. Instead of requiring
the considered mwmd to be weakly non-circular they require the considered m-monoid
to be capable of carrying out “infinitary computations”. More precisely, the infinitary
fixpoint semantics is only defined for ω-continuous m-monoids and the infinitary hyper-
graph semantics is only defined for ω-complete m-monoids. An overview of all kinds of
semantics that we define in this thesis and their respective restrictions on the mwmd and
the m-monoid is given in Table 4.1.

fixpoint semantics hypergraph semantics

finitary weakly non-circular mwmd weakly non-circular mwmd
absorptive m-monoid arbitrary m-monoid
non-circular mwmd
arbitrary m-monoid

infinitary arbitrary mwmd arbitrary mwmd
ω-continuous m-monoid ω-complete m-monoid

Table 4.1: In this thesis we define four kinds of semantics.

Note that the finitary fixpoint semantics is only defined if (i) the mwmd is weakly
non-circular and the m-monoid is absorptive or (ii) the mwmd is non-circular and the
m-monoid is arbitrary. We included Case (ii) only for completeness and we will show
that, roughly speaking, Case (ii) is subsumed by Case (i) (see Proposition 4.22).

4.2. Semantics 65

For the remainder of this section we fix an m-monoid A = (A,+,0, θ) over
∆.

4.2.2 Fixpoint semantics

The fixpoint semantics, which is based on the application of an immediate consequence
operator, is inspired by the definition of the semantics for the Horn calculus [102, 74, 75]
and monadic datalog [68, 69].

The idea of the fixpoint semantics is as follows. Given an mwmd, an input tree, and
an m-monoid, we associate every atom instance with an element of the carrier set of the
m-monoid; such an association is called an interpretation. Among all interpretations is
one designated interpretation, which is computed by the fixpoint semantics in a stepwise
manner. Finally, the semantics returns the element of the m-monoid that is associated
with the atom instance q(ε) by the designated interpretation, i.e., the element that the
designated interpretation associates with the query predicate at the root of the input tree.

The computation of the designated interpretation is based on the immediate conse-
quence operator; this is a mapping from the set of interpretations into itself; it takes an
interpretation I and returns an interpretation, called the consequence interpretation of I.
The computation of the consequence interpretation is guided by the rule instances. As
an example consider the following rule instance:

(

p(x)← σ(p(y), q(x)) ; {child1(x, y)} , [x 7→ 2, y 7→ 21]
)

.

Its meaning is that the value of p(2) under the consequence interpretation of I is the
result of applying the operation σ (evaluated in the considered m-monoid) to the values
of the atom instances of p(21) and q(2) under I. If there are multiple rule instances for
p(2) (i.e., rule instances whose output vertex is p(2) in the dependency hypergraph), then
their resulting values should be added up by using the monoid operation of the m-monoid.

Definition 4.15. Let t ∈ TΣ. An interpretation over M , t, and A is a mapping
I : P (pos(t)) → A. We denote the set of all interpretations over M , t, and A by IM,t,A.
For every I ∈ IM,t,A we denote by hI the unique ∆-homomorphism from T∆

(

P (pos(t))
)

to
(A, θ) extending the interpretation I. The empty interpretation I0 ∈ IM,t,A is defined
by I0(c) = 0 for every c ∈ P (pos(t)).

We define the immediate consequence operator TM,t,A : IM,t,A → IM,t,A over M , t,
and A by letting for every I ∈ IM,t,A and c ∈ P (pos(t)):

TM,t,A(I)(c) =
∑

(r,ρ)∈ΦM,t,c

hI(ρ(rb)) ;

we call TM,t,A(I) the consequence interpretation of I. Note that this sum is always
finite. If M , t, and A are clear from the context, we simply write I and T instead of
IM,t,A and TM,t,A, respectively. 2

Example 4.16 (Continuation of Example 4.14). Let us consider the m-monoid A1 =
(R≥0 ∪ {∞},+, 0, θ1) over ∆ex, where for every a, b ∈ R≥0 ∪ {∞} we have

θ1(α)() = 3 , θ1(β)() = 2 , θ1(γ)(a) = a

θ1(σ)(a, b) =











0 , if 0 ∈ {a, b} ,

∞ , if a 6= 0 6= b and ∞ ∈ {a, b} ,

a/2 + b+ 1 , otherwise.

66 4. M-weighted monadic datalog programs

Note that A1 is absorptive but not distributive; in fact, we obtain that θ1(σ)(2, 1 + 3) =
1 + (1 + 3) + 1 = 6 6= 8 = 3 + 5 = θ1(σ)(2, 1) + θ1(σ)(2, 3).

In the following table we give three examples of interpretations over M1, t1, and A1,
and compute their respective consequence interpretations. As an example we compute
the value of T (I1)(q(ε)) explicitely. Using Figure 4.2(a) it is easy to see that ΦM1,t1,q(ε) =
{

(r1, [x 7→ ε, y 7→ 2])
}

; then T (I1)(q(ε)) = hI1
(

σ(q(2), p())
)

= θ1(σ)
(

I1(q(2)), I1(p())
)

=
θ1(σ)(6, 1) = 3 + 1 + 1 = 5.

I1 T (I1) I2 T (I2) I3 T (I3)

q(ε) 4 5 2 6 0 0
q(1) 3 2 1 2 2 2
q(2) 6 4 2 0 0 0
q(21) 1 2 0 2 2 2
q(22) 4 2 0 2 2 2
p() 1 0 4 0 0 0

Observe that the immediate consequence operator leaves interpretation I3 unchanged. We
call such an interpretation a fixpoint interpretation. It is easy to check that I3 is the only
fixpoint interpretation over M1, t1, and A1. For the input tree t3 we obtain that there is
also a unique fixpoint interpretation, which looks as follows (this can easily be verified by
using Figure 4.2(b)):

q(ε) q(1) q(11) q(111) q(2) q(21) q(22) p()

11 0 0 2 8 2 2 6 2

In Example 4.16 we turned our attention to fixpoint interpretations. It is self-evident
that we are interested in computing such a fixpoint interpretation when evaluating the
semantics because, roughly speaking, fixpoint interpretations are consistent with the rule
instances. However, we have to deal with two problems: (i) a fixpoint interpretation
does not necessarily exist and (ii) if there are multiple fixpoint interpretations, which one
should we choose? These two problems are dealt with differently in the finitary and the
infinitary version of the fixpoint semantics.

We conclude this section with a technical lemma, which states the following. When
we use an absorptive m-monoid and apply the immediate consequence operator to the
empty interpretation an arbitrary number of times, then the resulting interpretation will
associate the neutral element of the m-monoid with every atom instance that has no
derivations ending in it.

Lemma 4.17. Let A be absorptive, t ∈ TΣ, and G = Gdep
M,t. Moreover, let n ∈ N.

1. Let c ∈ P (pos(t)) such that Hc
G = ∅. Then T n(I0)(c) = 0.

2. Let (r, ρ) ∈ ΦM,t and assume that Hc
G = ∅ for some c ∈ ind(ρ(rb)). Then we have

hT n(I0)(ρ(rb)) = 0.

Proof. First we prove Statement 1 by induction on n.

Induction base. Clearly, T 0(I0)(c) = I0(c) = 0 for every c ∈ P (pos(t)).

Induction step. Let n ∈ N and c ∈ P (pos(t)) such that Hc
G = ∅. For every d ∈

P (pos(t)) with Hd
G = ∅ we assume T n(I0)(d) = 0. We show T n+1(I0)(c) = 0. Obser-

vation 4.11(4) yields that for every e = (r, ρ) ∈ ΦM,t,c there is a d ∈ ind(ρ(rb)) such

4.2. Semantics 67

that Hd
G = ∅. Then Lemma 3.9(1) and the induction hypothesis imply T n+1(I0)(c) =

∑

(r,ρ)∈ΦM,t,c
hT n(I0)(ρ(rb)) = 0.

Statement 2 follows from Statement 1 and Lemma 3.9(1). �

The finitary case

Throughout this section we fix a tree t ∈ TΣ.

Recall that we will define the finitary semantics for the following two cases: (i) the
mwmd is non-circular and the m-monoid is arbitrary or (ii) the mwmd is weakly non-
circular and the m-monoid is absorptive. In Case (i) there is always precisely one fixpoint
interpretation (cf. [122, Lemma 3.26]). As an example of this property consider the non-
circular mwmd M1 from Example 4.16; in this example we have already established that
for the m-monoid A1 and the input trees t1 and t3 there is a unique fixpoint interpretation.

Unfortunately, in Case (ii) there can be zero, one, or many fixpoint interpretations; this
is witnessed by the following example.

Example 4.18 (Continuation of Example 4.16). Recall the weakly non-circular mwmd
M3 from Example 4.14. Let A2 = (N,+, 0, θ2) be the distributive m-monoid over ∆ex

such that for every a, b ∈ N:

θ2(α)() = θ2(β)() = 1 , θ2(γ)(a) = a , θ1(σ)(a, b) = a · b .

Consider the tree t5 = β (the dependency hypergraph of M3 and t5 is shown in Fig-
ure 4.3(b)). We prove that there is no fixpoint interpretation over M3, t5, and A2. As-
sume, contrary to our claim, that I is a fixpoint interpretation. Clearly, T (I)(r()) = hI(α)
and T (I)(p()) = hI(β) + hI

(

σ(p(), r())
)

. Hence, I(r()) = T (I)(r()) = θ2(α)() = 1 and
I(p()) = T (I)(p()) = θ2(β)()+θ2(σ)

(

I(p()), I(r())
)

= 1+I(p())·1. There is no I(p()) ∈ N

satisfying I(p()) = 1 + I(p()). 2

Although there might not be a fixpoint interpretation, every weakly non-circular mwmd
in conjunction with an absorptive m-monoid exhibits a “weak fixpoint behavior” in the
following sense. When we start with the empty interpretation and repeatedly apply
the immediate consequence operator to this interpretation, i.e., compute the sequence
T 0(I0),T 1(I0),T 2(I0), . . ., then after n steps (where n is the number of atom instances)
the value that the resulting interpretations assign to q(ε) stays fixed. This is stated
formally by the following lemma.

Lemma 4.19. Let n = |P (pos(t))| and assume that at least one of the following condi-
tions is satisfied:

(i) M is non-circular, or

(ii) M is weakly non-circular and A is absorptive.

Then for every m ∈ N we have T n(I0)(q(ε)) = T n+m(I0)(q(ε)).

Proof. Throughout this proof we abbreviate Gdep
M,t by G and we let E be the set of

edges of the dependency graph of M and t. We define the relation ≺ on P (pos(t)) as
follows: (i) if A is absorptive, then ≺ = ≺G (recall the definition of ≺G from Page 28)
and (ii) otherwise we let ≺ = E.

68 4. M-weighted monadic datalog programs

Let C = {c ∈ P (pos(t)) | c ≺∗ q(ε)} and < = ≺ ∩ (C × C). We show that <
+ is

irreflexive. First consider the case that A is absorptive. Then ≺ = ≺G. By Lemma 4.13

either one of Conditions (i) and (ii) yields hat M is weakly non-circular; hence, H
q(ε)
G is

finite. Then Lemma 2.26 implies that <
+ is irreflexive. Now consider the case that A is

not absorptive. Then Condition (i) must hold, i.e., M is non-circular; hence, ≺+ = E+ is
irreflexive. Since <

+ = (≺ ∩ (C × C))+ ⊆ ≺+ ∩ (C × C), also <
+ is irreflexive.

Since C is finite and <
+ is an irreflexive relation on C, we obtain that < is well-founded

on C. For every c ∈ C we define the number nc ∈ N by well-founded recursion on < by
letting nc = 1 + max{nc′ | c

′ ∈ C, c′ < c}. It is easy to see that nc ≤ |C| for every c ∈ C;
hence, in particular nq(ε) ≤ |C| ≤ |P (pos(t)| because q(ε) ∈ C.

We claim that for every c ∈ C, m ∈ N, and n′ ∈ N with n′ ≥ nc we have that
T n

′
(I0)(c) = T n

′+m(I0)(c). This claim trivially implies the lemma because nq(ε) ≤
|P (pos(t)| = n. We prove this claim by well-founded induction on <.

Let c ∈ C and assume that we have already proved the claim for every c′ ∈ C with
c′ < c. Let m,n′ ∈ N such that n′ ≥ nc. We show T n

′
(I0)(c) = T n

′+m(I0)(c). By the
definition of nc, n

′ ≥ nc ≥ 1. Then by the definition of T it suffices to show that for every
(r, ρ) ∈ ΦM,t,c, hT n′−1(I0)(ρ(rb)) = hT n′−1+m(I0)(ρ(rb)). Let (r, ρ) ∈ ΦM,t,c.

First we consider the case that for every c′ ∈ ind(ρ(rb)) we have c′ < c; thus, nc′ <
nc and the induction hypothesis yields T n

′−1(I0)(c′) = T n
′−1+m(I0)(c′). We obtain

hT n′−1(I0)(ρ(rb)) = hT n′−1+m(I0)(ρ(rb)).

Next we consider the case that there is a c′ ∈ ind(ρ(rb)) such that c′ 6< c. If c′ ≺ c,
then c′ ∈ C and, thus, c′ < c, a contradiction. Hence, c′ 6≺ c. Clearly, (c′, c) ∈ E by
Observation 4.11(3). We obtain that A is absorptive because otherwise ≺ = E, which
implies the contradiction c′ ≺ c. Moreover, ≺ = ≺G by the definition of ≺. Since c′ 6≺G c,
Lemma 2.20 and Observation 4.11(1,2) imply that there is a c′ ∈ ind(ρ(rb)) such that
Hc′

G = ∅. Then by Lemma 4.17(2) hT n′−1(I0)(ρ(rb)) = 0 = hT n′−1+m(I0)(ρ(rb)). �

Now we define the finitary fixpoint semantics. Our definition is justified by the previous
lemma.

Definition 4.20. Suppose that one of the following conditions holds: (i) M is non-
circular or (ii) M is weakly non-circular and A is absorptive. Then we define the tree

series fixpoint-defined by M and A as the tree series [[M]]fix
A ∈ A〈〈TΣ〉〉 with [[M]]fix

A (t) =
T |P (pos(t))|(I0)(q(ε)) for every t ∈ TΣ. 2

Example 4.21 (Continuation of Example 4.18). First consider the mwmd M1, input
tree t1, and m-monoid A1. The sequence of interpretations T i(I0) is shown in the following
table.

q(ε) q(1) q(2) q(21) q(22) p()

T 0(I0) 0 0 0 0 0 0
T 1(I0) 0 2 0 2 2 0
T 2(I0) 0 2 0 2 2 0

For every i ∈ N with i ≥ 1 we have T i(I0) = T 1(I0). Hence, [[M1]]
fix
A1

(t1) = 0. For the
input tree t3 we obtain the following table:

4.2. Semantics 69

q(ε) q(1) q(11) q(111) q(2) q(21) q(22) p()

T 0(I0) 0 0 0 0 0 0 0 0
T 1(I0) 0 0 0 2 0 2 2 6
T 2(I0) 0 0 0 2 8 2 2 6
T 3(I0) 11 0 0 2 8 2 2 6

For every i ∈ N with i ≥ 3 we have T i(I0) = T 3(I0); thus, [[M1]]
fix
A1

(t3) = 11. Observe
how the values propagate through the dependency hypergraph from p() over q(2) to q(ε).
Note that for non-circular mwmd we do not only reach a fixed valued for q(ε) after n steps
(where n is the number of atom instances) but even a fixpoint interpretation (cf. [122,
Lemma 3.26]).

Now consider the mwmd M3, input tree t5, and m-monoid A2. We obtain

q(ε) r() p()

T 0(I0) 0 0 0
T 1(I0) 0 1 1
T 2(I0) 0 1 2
T 3(I0) 0 1 3

For every i ∈ N we have T i(I0)(p()) = i. Although there is no fixpoint interpretation,
the value that the interpretations in this sequence assign to q(ε) stays fixed. We obtain
[[M3]]

fix
A2

(t5) = 0. Moreover, for the input tree t4 we obtain [[M3]]
fix
A2

(t4) = 1. 2

In order to reduce the number of cases that we have to consider in the sequel, we restrict
ourselves to employing the semantics of Definition 4.20 only in the case that M is weakly
non-circular and A is absorptive. This is justified due to the following proposition.

Proposition 4.22. Let A be an arbitrary m-monoid over ∆. Then there is a signature
∆⊥ and an absorptive m-monoid A⊥ over ∆⊥ such that the carrier set of A⊥ contains
the carrier set of A, and for every non-circular mwmd M over Σ and ∆ there is a weakly
non-circular mwmd M⊥ over Σ and ∆⊥ such that [[M]]fix

A = [[M⊥]]fix
A⊥

.1

Proof. Let A = (A,+,0, θ). We let ∆⊥ = ∆ ·∪ {null(0)} and A⊥ = (A ·∪ {⊥},+′,⊥, θ′},
where +′ is the extension of + to the set A ∪ {⊥} defined by ⊥ +′ a = a = a +′ ⊥ for
every a ∈ A ∪ {⊥}, and for every δ ∈ ∆, θ′(δ) is the extension of θ(δ) to A ∪ {⊥} such
that θ′(δ)(. . . ,⊥, . . .) = ⊥; moreover, we put θ′(null)() = 0. Obviously, A⊥ is absorptive.

Let M = (P,R, q) be a non-circular mwmd over Σ and ∆. We defineM⊥ = (P,R∪R′, q)
such that

R′ = {p(x)← null() ; ∅ | p ∈ P (1)} ∪ {p()← null() ; ∅ | p ∈ P (0)} ,

where x is chosen arbitrarily in V. First we show that M⊥ is weakly non-circular. Let
t ∈ TΣ and let E be the set of edges of the dependency graph of M and t, and let E⊥ be
the set of edges of the dependency graph of M⊥ and t. It is easy to check that E = E⊥

because the rules in R′ generate no edges in E⊥. Then M⊥ is non-circular because M is
non-circular. We conclude that M⊥ is weakly non-circular by Lemma 4.13.

Let t ∈ TΣ. It remains to show that [[M]]fix
A (t) = [[M⊥]]fix

A⊥
(t). SinceM is non-circular, the

relation E+ is irreflexive. Therefore, E is well-founded on P (pos(t)) because P (pos(t))

1Note that there is no “conflict of types” when writing [[M]]fix
A = [[M⊥]]fix

A⊥
because we defined mappings

f : A → B as relations from A to B and not as triples (A, B, ρ), where ρ is a relation from A to B.

70 4. M-weighted monadic datalog programs

is finite. For every c ∈ P (pos(t)) we define nc ∈ N by well-founded recursion on E:
nc = 1 + max{nc′ | c

′ ∈ P (pos(t)), (c′, c) ∈ E}.
We claim that for every c ∈ P (pos(t)) and for every n ∈ N with n ≥ nc, T

n
M,t,A(I0)(c) =

T nM⊥,t,A⊥
(I⊥)(c). This claim implies [[M]]fix

A (t) = [[M⊥]]fix
A⊥

(t) because for every atom in-
stance c ∈ P (pos(t)) it is easy to check that nc ≤ |P (pos(t))|; in particular, nq(ε) ≤
|P (pos(t))|.

We prove our claim by well-founded induction on E. Let c ∈ P (pos(t)) and assume
that the claim holds for every c′ ∈ P (pos(t)) with (c′, c) ∈ E. Let n ∈ N with n ≥ nc; by
the definition of nc, n ≥ nc ≥ 1. The induction hypothesis and Observation 4.11(3) yield
that for every (r, ρ) ∈ ΦM,t,c:

hT n−1
M,t,A(I0)(ρ(rb)) = hT n−1

M⊥,t,A⊥
(I⊥)(ρ(rb)) , (4.1)

because n − 1 ≥ nc′ for every c′ ∈ ind(ρ(rb)) by the definition of nc and Observa-
tion 4.11(3).

Observe that there is exactly one (rc, ρc) ∈ ΦM⊥,t,c with rc ∈ R′. More precisely, if
c = p() for some p ∈ P (0), then rc is the rule p()← null() ;∅ and ρc is the empty mapping;
if c = p(w) for some p ∈ P (1) and w ∈ pos(t), then rc is the rule p(x) ← null() ; ∅ and
ρc(x) = w. Clearly, ρc((rc)b) = null() and, thus, hT n−1

M⊥,t,A⊥
(I⊥)(ρc((rc)b)) = θ′(null)() = 0.

It is easy to see that ΦM⊥,t,c = ΦM,t,c ∪ {(rc, ρc)}.
In the remainder of the proof we denote the extension of + and +′ to finite families by

∑

and
∑′, respectively. Note that

∑

and
∑′ agree on all nonempty families over A; however,

when applied to the empty family, then
∑

yields 0 and
∑′ yields ⊥. It is easy to see that

for every finite set J and family (aj | j ∈ J) over A we have
∑

j∈J aj = 0 +′
∑′

j∈J aj. By
putting all these facts together we obtain

T nM,t,A(I0)(c) =
∑

(r,ρ)∈ΦM,t,c

hT n−1
M,t,A(I0)(ρ(rb))

=
∑

(r,ρ)∈ΦM,t,c

hT n−1
M⊥,t,A⊥

(I⊥)(ρ(rb)) (by Equation (4.1))

= 0 +′
∑′

(r,ρ)∈ΦM,t,c

hT n−1
M⊥,t,A⊥

(I⊥)(ρ(rb))

= hT n−1
M⊥,t,A⊥

(I⊥)(ρc((rc)b)) +′
∑′

(r,ρ)∈ΦM,t,c

hT n−1
M⊥,t,A⊥

(I⊥)(ρ(rb))

=
∑′

(r,ρ)∈ΦM⊥,t,c

hT n−1
M⊥,t,A⊥

(I⊥)(ρ(rb)) = T nM⊥,t,A⊥
(I⊥)(c) . �

Definition 4.23. Let A be absorptive. The set of all tree series fixpoint-defined by
weakly non-circular mwmd over Σ and ∆, and A is denoted by WMDfix(Σ,∆,A). 2

The infinitary case

We motivate the definition of the infinitary fixpoint semantics by means of the following
example.

Example 4.24 (Continuation of Example 4.21). Let us consider mwmd M4, input tree
t5, and m-monoid A2 (the dependency hypergraph for this combination of mwmd and
input tree is given in Figure 4.3(c)). Recall that M4 is not weakly non-circular. The
following table shows the according sequence of interpretations T i(I0).

4.2. Semantics 71

q(ε) r() p()

T 0(I0) 0 0 0
T 1(I0) 0 1 1
T 2(I0) 1 1 2
T 3(I0) 2 1 3

For every i ∈ N+ we obtain that T i(I0)(q(ε)) = i− 1; hence, we will not reach a fixpoint
for q(ε) in the sequence (T i(I0) | i ∈ N) of interpretations. In fact, for every interpretation
I we obtain that T 3(I)(q(ε)) = T 2(I)(p()) = θ2(β)() + θ2(σ)

(

T (I)(p()),T (I)(r())
)

= 1 +
T (I)(p())·θ2(α)() = 1+T 2(I)(q(ε))·1 = 1+T 2(I)(q(ε)); hence, T 3(I)(q(ε)) 6= T 2(I)(q(ε)).
Thus, there is no interpretation I that assigns a consistent value to q(ε), i.e., a value that
will stay constant when repeatedly applying the immediate consequence operator to I.
Roughly speaking, there is no meaningful way to define the semantics for M4, t5, and A2.

Now let us consider the m-monoid A1. Then we obtain:

q(ε) r() p()

T 0(I0) 0 0 0
T 1(I0) 0 3 2 + 0 = 2
T 2(I0) 2 3 2 + (2/2 + 3 + 1) = 7
T 3(I0) 7 3 2 + (7/2 + 3 + 1) = 19/2
T 4(I0) 19/2 3 2 + (19/4 + 3 + 1) = 43/4
T 5(I0) 43/4 3 2 + (43/8 + 3 + 1) = 91/8

It is easy to show by induction that for every i ∈ N with i ≥ 2 we have that T i(I0)(q(ε)) =
12 − 5 · 23−i. Hence, for the m-monoid A1 we will not reach a fixpoint for q(ε) in the
sequence (T i(I0) | i ∈ N), either. However, a fixpoint interpretation exists nevertheless:
in fact, the interpretation I with I(q(ε)) = I(p()) = 12 and I(r()) = 3 is a fixpoint for
the immediate consequence operator. Observe that, roughly speaking, the interpretation
I is the limit of the sequence T 0(I0),T

1(I0),T
2(I0), . . . of interpretations. 2

In Example 4.24 we have shown that for the mwmd M4 and input tree t5 the m-monoid
A2 does not admit a fixpoint interpretation, whereas A1 does admit one. This is due to
the fact that for A1 there is a partial order ≤ (namely the natural order on R≥0 ∪ {∞})
such that (A1,≤) is an ω-continuous m-monoid.

Now we show that this property holds for arbitrary ω-continuous m-monoids. More
precisely, we prove that for every ω-continuous m-monoid the set of interpretations is an
ω-cpo, that the family (T i(I0) | i ∈ N) is an ω-chain and that the supremum of this
ω-chain is a fixpoint interpretation. We will employ this fixpoint interpretation in the
definition of the infinitary fixpoint semantics.

In this section we let (A,≤) be an ω-continuous m-monoid.

Definition 4.25. We lift the order ≤ to the set I as follows for every I1, I2 ∈ I: I1 ≤ I2
iff I1(c) ≤ I2(c) for every c ∈ P (pos(t)). 2

Lemma 4.26. The poset (I,≤) is an ω-cpo with least element I0. Moreover, we have
(∨{b(n) | n ∈ N})(c) = ∨{b(n)(c) | n ∈ N} for every c ∈ P (pos(t)) and ω-chain b : N→ I.

Proof. Clearly, I0 is the least element of I. Let b : N→ I be an ω-chain. Observe that
the interpretation I ∈ I with I(c) = ∨{b(n)(c) | n ∈ N}, for every c ∈ P (pos(t)), is the
supremum of b. �

72 4. M-weighted monadic datalog programs

The following lemma is crucial for the proof of the result that the supremum of the
family (T i(I0) | i ∈ N) is a fixpoint interpretation.

Lemma 4.27. The immediate consequence operator T is ω-continuous.

Proof. Let c ∈ P (pos(t)) and b : N → I be an ω-chain. Then we show that we have
T (∨{b(n) | n ∈ N})(c) =

(

∨{T (b(n)) | n ∈ N}
)

(c). Let I = ∨{b(n) | n ∈ N}. Then

T (I)(c) =
∑

(r,ρ)∈ΦM,t,c

hI(ρ(rb))

=
∑

(r,ρ)∈ΦM,t,c

∨{hb(n)(ρ(rb)) | n ∈ N} (⋆)

= ∨
{

∑

(r,ρ)∈ΦM,t,c

hb(n)(ρ(rb)) | n ∈ N
}

(⋆⋆)

= ∨
{

T (b(n))(c) | n ∈ N
}

=
(

∨{T (b(n)) | n ∈ N}
)

(c) . (by Lemma 4.26)

At Equation (⋆) we used Lemma 3.36(2) with the following instantiations: C = P (pos(t))
and fn = b(n), f = I, gn = hb(n), g = hI for every n ∈ N. The instantiation f = I is
justified by the fact that, for every c′ ∈ P (pos(t)), I(c′) = ∨{b(n)(c′) | n ∈ N}, which
follows from Lemma 4.26. Equation (⋆⋆) holds by Lemma 3.32 applied to ν = +; here,
for every (r, ρ) ∈ ΦM,t,c, (hb(n)(ρ(rb)) | n ∈ N) is an ω-chain due to Lemma 3.36(1). �

Lemma 4.28. The family (T n(I0) | n ∈ N) is an ω-chain. Furthermore, the supremum
∨{T n(I0) | n ∈ N} is the least fixpoint of T .

Proof. This follows from Lemmas 4.26 and 4.27, and Theorem 3.29. �

We denote the least fixpoint of TM,t,A, whose existence is asserted by Lemma 4.28, by
T ωM,t,A. Again, if M , t, and A are clear from the context, then we simply write T ω instead
of T ωM,t,A.

Now we are prepared to define the infinitary fixpoint semantics.

Definition 4.29. The tree series fixpoint-defined by M and (A,≤) is the tree se-
ries [[M]]fix

(A,≤) ∈ A〈〈TΣ〉〉 with [[M]]fix
(A,≤)(t) = T ω(q(ε)) for every t ∈ TΣ. The set of all

tree series fixpoint-defined by arbitrary mwmd over Σ and ∆, and (A,≤) is denoted by
WMDfix

(

Σ,∆, (A,≤)
)

. 2

Example 4.30 (Continuation of Example 4.24). Let ≤ be the natural order on the set
R≥0 ∪ {∞} and observe that (A1,≤) is an ω-continuous m-monoid.

Let us consider the mwmd M4, input tree t5, and the ω-continuous m-monoid (A1,≤).
We have already shown that for every i ∈ N+ we have

T i(I0)(r()) = 3 , T i(I0)(p()) = 12− 5 · 22−i ,

T i(I0)(q(ε)) =

{

0 , if i = 1 ,

12− 5 · 23−i , otherwise.

Lemmas 4.28 and 4.26 yield that we have T ω(q(ε)) =
(

∨{T n(I0) | n ∈ N}
)

(q(ε)) =
∨{T n(I0)(q(ε)) | n ∈ N} = ∨{12 − 5 · 23−n | n ∈ N} = 12. Likewise, we have

4.2. Semantics 73

T ω(p()) = 12 and T ω(r()) = 3. Clearly, T ω is a fixpoint interpretation. Finally, we
obtain [[M4]]

fix
(A1,≤)(t5) = 12.

Now consider the m-monoid A3 =
(

P(T∆ex),∪, ∅, θ3
)

over ∆ex, where for every δ ∈ ∆ex,
θ3(δ) is the δ-language top concatenation. Then (A3,⊆) is an ω-continuous m-monoid
(cf. Example 3.34(5)). For M4 and t5 we obtain

q(ε) r() p()

T 0(I0) ∅ ∅ ∅
T 1(I0) ∅ {α} {β}
T 2(I0) {β} {α} {β, σ(β, α)}
T 3(I0) {β, σ(β, α)} {α} {β, σ(β, α), σ(σ(β, α), α)}

This implies that [[M4]]
fix
(A3,⊆)(t5) = T ω(q(ε)) is the set of all left-descending combs of the

form σ(σ(· · · σ(σ(β, α), α) · · ·), α). 2

In Example 3.34(6) we have shown that there are m-monoids A and distinct partial
orders ≤ and ⊑ such that both (A,≤) and (A,⊑) are ω-continuous m-monoids. This
does not necessarily mean that the infinitary fixpoint semantics for (A,≤) and (A,⊑) are
distinct. However, the following lemma shows that in general the semantics are distinct
for different ω-continuous m-monoids over the same underlying m-monoid.

Lemma 4.31. There are a ranked alphabet Σ, a signature ∆, a distributive m-monoid
A over ∆, ω-continuous m-monoids (A,≤) and (A,⊑), and an mwmd M over Σ and ∆
such that [[M]]fix

(A,≤) 6= [[M]]fix
(A,⊑).

The proof of Lemma 4.31 is given in Appendix A.3.

Now we show that under certain assumptions the least fixpoint interpretation can be
reached by a finite number of applications of the immediate consequence operator when
starting with the empty interpretation.

Definition 4.32. We call A operationally locally finite (for short: olf), if for every
finite ∆′ ⊆ ∆ there is a finite A′ ⊆ A containing 0 such that A′ is closed under + and
under θ(δ), for every δ ∈ ∆′. 2

Lemma 4.33. Suppose that A is olf. Then there is an n ∈ N with T ω = T n(I0). If A is
finite, then there is such an n with (|A| − 1) · |P | · |pos(t)| ≥ n.

Proof. Let ∆′ be the set of elements of ∆ that occur in the bodies of rules of M . Clearly,
∆′ is finite. Then there is a finite A′ ⊆ A containing 0 such that A′ is closed under + and
under θ(δ), for every δ ∈ ∆′. Before we proceed with the main argument, we show that
for every n ∈ N and c ∈ P (pos(t)) we have T n(I0)(c) ∈ A′. We give a proof by induction
on n.

Induction base. Clearly, for every c ∈ P (pos(t)), T 0(I0)(c) = I0(c) = 0 ∈ A′.

Induction step. Let n ∈ N and assume that T n(I0)(c′) ∈ A′ for every c′ ∈ P (pos(t)).
Let c ∈ P (pos(t)). Since A′ is closed under +, it suffices to show that hT n(I0)(ρ(rb)) ∈ A′

for every (r, ρ) ∈ ΦM,t,c. This follows from Lemma 3.9(2).

We claim that there is an n ∈ N with (|A′|−1) · |P (pos(t))| ≥ n such that T ω = T n(I0).
This claim implies our lemma because |A| ≥ |A′| and |P | · |pos(t)| ≥ |P (pos(t))|. Now we
prove the claim.

74 4. M-weighted monadic datalog programs

Since the strict part < of ≤ is irreflexive and transitive, and since A′ is finite, the
relation <A′ = < ∩ (A′ × A′) is well-founded. We define the mapping m : A′ → N by
well-founded recursion on <A′ by letting m(a) = max{1 + m(a′) | a′ ∈ A′, a′ <A′ a},
for every element a ∈ A′. It is easy to see that for every a ∈ A′, |A′| − 1 ≥ m(a). We
define f : N → N as follows for every n ∈ N: f(n) =

∑

c∈P (pos(t))m(T n(I0)(c)). This is

well-defined because T n(I0)(c) ∈ A′ for every n ∈ N and c ∈ P (pos(t)), as we have shown
above. Now we present three facts about f .

Fact 1. (|A′| − 1) · |P (pos(t))| ≥ f(n) for every n ∈ N. This is easy to see because
|A′| − 1 ≥ m(a) for every a ∈ A′.

Fact 2. f(n + 1) ≥ f(n) for every n ∈ N. By Lemma 4.28, T n(I0) ≤ T n+1(I0).
Hence, for every c ∈ P (pos(t)), T n(I0)(c) ≤ T n+1(I0)(c) and, thus, m(T n+1(I0)(c)) ≥
m(T n(I0)(c)) by the definition of m. We obtain f(n+ 1) ≥ f(n).

Fact 3. f(n + 1) = f(n) implies T n(I0) = T n+1(I0), for every n ∈ N. Assume
f(n+ 1) = f(n). Then m(T n+1(I0)(c)) = m(T n(I0)(c)) for every c ∈ P (pos(t)) because
m(T n+1(I0)(c)) ≥ m(T n(I0)(c)) for every c ∈ P (pos(t)) as shown in the proof of Fact 2.
Then for every c ∈ P (pos(t)) we obtain T n(I0)(c) = T n+1(I0)(c) because T n(I0)(c) ≤
T n+1(I0)(c) and by the definition of m. Hence, T n(I0) = T n+1(I0).

By putting Facts 1 to 3 together we obtain that there is an n ∈ N such that (|A′| − 1) ·
|P (pos(t))| ≥ n and T n(I0) = T n+1(I0). Then T n(I0) = T n+m(I0) for every m ∈ N and,
thus, T n(I0) = T ω. �

Although the finitary and the infinitary version of the fixpoint semantics are defined in
a different manner, they coincide if both of them are defined.

Lemma 4.34. Let M be weakly non-circular, A be absorptive, and (A,≤) be an ω-
continuous m-monoid. Then [[M]]fix

A = [[M]]fix
(A,≤).

Proof. Let t ∈ TΣ and n = |P (pos(t))|. By Definition 4.25 and Lemmas 4.26 and 4.28,
(

T m(I0)(q(ε)) | m ∈ N
)

is an ω-chain. Then, Lemma 4.19 yields ∨{T m(I0)(q(ε)) | m ∈
N} = T n(I0)(q(ε)). By Lemmas 4.26 and 4.28, T ω(q(ε)) = ∨{T m(I0) | m ∈ N}(q(ε)) =
∨{T m(I0)(q(ε)) | m ∈ N} and thus, [[M]]fix

A (t) = T n(I0)(q(ε)) = ∨{T m(I0)(q(ε)) | m ∈
N} = T ω(q(ε)) = [[M]]fix

(A,≤)(t). �

Corollary 4.35. Let A be absorptive and let (A,≤) be an ω-continuous m-monoid. Then

WMDfix(Σ,∆,A) ⊆WMDfix(Σ,∆, (A,≤)) .

4.2.3 Hypergraph semantics

The idea of the hypergraph semantics is as follows. For a given mwmd and input tree we
consider the set of derivations ending in q(ε). For every such derivation we compute a
weight, which is an element of the m-monoid, and sum up over the weights of all derivations
ending in q(ε). The semantics is defined as the resulting value of this summation.

Now let us explain how the weight of a derivation is defined. Every derivation is a
tree whose labels are rule instances. Such a tree can be transformed into a tree over
∆ by, roughly speaking, replacing every label (r, ρ) by the tree (ρ(rb)); we will define
this transformation function formally in the next definition. After the transformation we
evaluate the resulting tree over ∆ by means of the ∆-algebra in the considered m-monoid;
this evaluation yields an element of the m-monoid, which is the weight of the derivation.

4.2. Semantics 75

Definition 4.36. Let t ∈ TΣ. Recall that we consider ΦM,t as a ranked alphabet (see
Definition 4.9). We define the ΦM,t-algebra GM,t =

(

T∆(P (pos(t))), θ′
)

where for every

k ∈ N, (r, ρ) ∈ (ΦM,t)
(k), and s1, . . . , sk ∈ T∆(P (pos(t)) we let θ′(r, ρ)(s1, . . . , sk) =

ρ(rb)← s1 · · · sk; note that this is well-defined because k = |indyield(ρ(rb))|.

We define hM,t : TΦM,t
(P (pos(t)))→ T∆(P (pos(t))) as the unique ΦM,t-homomorphism

from TΦM,t
(P (pos(t))) to GM,t extending idP (pos(t)). 2

Example 4.37 (Continuation of Example 4.14). Consider the mwmd M1 and input tree
t3 from Example 4.10 (the according dependency hypergraph is shown in Figure 4.2(b)).
Moreover, consider the derivation η = e1(e2(e3, e4), e5) ending in q(ε). Let us compute
hM1,t3(η):

hM1,t3

(

e1(e2(e3, e4), e5)
)

= [x 7→ ε, y 7→ 2]((r1)b)← hM1,t3

(

e2(e3, e4)
)

hM1,t3

(

e5
)

= σ(q(2), p()) ← hM1,t3

(

e2(e3, e4)
)

hM1,t3

(

e5
)

= σ
(

hM1,t3

(

e2(e3, e4)
)

,hM1,t3

(

e5
))

= σ
(

[x 7→ 2, y 7→ 22]((r1)b)← hM1,t3(e3)hM1,t3(e4), [y 7→ 11]((r2)b)← ε
)

= σ
(

σ(q(22), p()) ← hM1,t3(e3)hM1,t3(e4), α← ε
)

= σ
(

σ
(

hM1,t3(e3),hM1,t3(e4)
)

, α
)

= σ
(

σ
(

[x 7→ 22, z 7→ ε]((r3)b)← ε, [y 7→ 1]((r2)b)← ε
)

, α
)

= σ
(

σ(β ← ε, α← ε), α
)

= σ(σ(β, α), α) .

By similar derivations we obtain hM1,t3

(

e1(e2(e3, e4), e4)
)

= hM1,t3

(

e1(e2(e3, e5), e4)
)

=
hM1,t3

(

e1(e2(e3, e5), e5)
)

= σ(σ(β, α), α).

Now consider mwmd M2 and input tree t1 (see Figure 4.2(d)). Observe that there is
precisely one derivation η′ ending in q(ε). We obtain hM2,t1(η

′) = σ(σ(β, β), α). 2

Now we present two technical lemmas concerning basic properties of the transformation
function hM,t.

Lemma 4.38. Let t ∈ TΣ and η ∈ TΦM,t
(P (pos(t))). Then we have indyield(hM,t(η)) =

indyield(η). Moreover, hM,t(TΦM,t
) ⊆ T∆.

Proof. The second part of the lemma follows from the first part, which we prove by
induction on the structure of η.

Induction base. If η ∈ P (pos(t)), then hM,t(η) = η implies the statement.

Induction step. Let k ∈ N, (r, ρ) ∈ (ΦM,t)
(k), and η1, . . . , ηk ∈ TΦM,t

(P (pos(t))) such
that η = (r, ρ)(η1, . . . , ηk). Then Observation 2.9 together with the induction hypoth-
esis yields that we have indyield(hM,t(η)) = indyield(ρ(rb) ← hM,t(η1) · · · hM,t(ηk)) =
indyield(hM,t(η1)) · · · indyield(hM,t(ηk)) = indyield(η1) · · · indyield(ηk), which is equal to
indyield(η). �

Lemma 4.39. Let t ∈ TΣ, s ∈ TΦM,t
(P (pos(t)), k = |indyield(s)|, and s1, . . . , sk ∈

TΦM,t
(P (pos(t)). Then hM,t(s← s1 · · · sk) = hM,t(s)← hM,t(s1) · · · hM,t(sk).

Proof. We give a proof by induction on s.

Induction base. Let s ∈ P (pos(t)). Then k = 1 and, thus, hM,t(s ← s1) = hM,t(s1) =
s← hM,t(s1) = hM,t(s)← hM,t(s1) because hM,t extends idP (pos(t)).

76 4. M-weighted monadic datalog programs

Induction step. Let l ∈ N, e = (r, ρ) ∈ (ΦM,t)
(l), and s′1, . . . , s

′
l ∈ TΦM,t

(P (pos(t)) such
that s = e(s′1, . . . , s

′
l). For every i ∈ [l] there are ni ∈ N and si1, . . . , s

i
ni
∈ TΦM,t

(P (pos(t))

such that |indyield(s′i)| = ni and s11 · · · s
1
n1
· · · sl1 · · · s

l
nl

= s1 · · · sk. We obtain

hM,t(s← s1 · · · sk)

= hM,t

(

e(s′1 ← s11 · · · s
1
n1
, . . . , s′l ← sl1 · · · s

l
nl

)
)

= ρ(rb)← hM,t(s
′
1 ← s11 · · · s

1
n1

) · · · hM,t(s
′
l ← sl1 · · · s

l
nl

)

= ρ(rb)←
(

hM,t(s
′
1)← hM,t(s

1
1) · · · hM,t(s

1
n1

)
)

· · ·
(

hM,t(s
′
l)← hM,t(s

l
1) · · · hM,t(s

l
nl

)
)

(by the induction hypothesis)

=
(

ρ(rb)← hM,t(s
′
1) · · · hM,t(s

′
l)

)

← hM,t(s1) · · · hM,t(sk) (by Lemma 2.10)

= hM,t

(

e(s′1, . . . , s
′
l)

)

← hM,t(s1) · · · hM,t(sk)

= hM,t(s)← hM,t(s1) · · · hM,t(sk) . �

Now we define the finitary hypergraph semantics. It is defined as the sum of the weights
of all derivations ending in q(ε), where the computation of the weight of a derivation is
broken down into two steps: (i) first the derivation is transformed into a tree over ∆ by
means of the mapping hM,t, (ii) then the resulting tree is evaluated in the ∆-algebra of
the considered m-monoid.

Definition 4.40. Let M be weakly non-circular. The tree series hypergraph-defined

by M and A is the tree series [[M]]hyp
A ∈ A〈〈TΣ〉〉 such that, for every t ∈ TΣ,

[[M]]hyp
A (t) =

∑

η∈H
q(ε)
G

h(hM,t(η)) ,

where G = Gdep
M,t and h is the unique ∆-homomorphism from T∆ to (A, θ). Note that

[[M]]hyp
A is well-defined due to the definition of weakly non-circular mwmd and Lemma 4.38.

The set of all tree series hypergraph-defined by weakly non-circular mwmd over Σ and ∆,
and A is denoted by WMDhyp(Σ,∆,A). 2

Example 4.41 (Continuation of Examples 4.37 and 4.30). Consider the mwmd M1, in-
put tree t3, and m-monoid A1. In Example 4.14 we have shown that there are four
derivations ending in q(ε) and in Example 4.37 we have established that for every such

derivation η we have hM1,t3(η) = σ(σ(β, α), α). Thus, for G = Gdep
M1,t3

we obtain

[[M1]]
hyp
A1

(t3) =
∑

η∈H
q(ε)
G

h(hM1,t3(η)) = 4 · h
(

σ(σ(β, α), α)
)

(where h is the ∆ex-homomorphism from T∆ex to (R≥0 ∪ {∞}, θ1))

= 4 · θ1(σ)(θ1(σ)(θ1(β)(), θ1(α)()), θ1(α)())

= 4 · θ1(σ)(θ1(σ)(2, 3), 3) = 4 · θ1(σ)(2/2 + 3 + 1, 3)

= 4 · θ1(σ)(5, 3) = 4 · (5/2 + 3 + 1) = 4 · 13/2 = 26 .

Now consider mwmd M2 and input tree t1 (see Figure 4.2(d)). In Example 4.37 we showed
that there is precisely one derivation η′ ending in q(ε) and that hM2,t1(η

′) = σ(σ(β, β), α).
Recall m-monoid A3 from Example 4.30. We obtain

[[M2]]
hyp
A3

(t1) = [[M2]]
hyp
A3

(

σ(β, σ(β, α))
)

= h
(

σ(σ(β, β), α)
)

=
{

σ(σ(β, β), α)
}

,

4.2. Semantics 77

where h is the ∆ex-homomorphism from T∆ex to (P(T∆ex), θ3).

Note that [[M2]]
hyp
A3

is a mapping from trees over Σex to sets of trees over ∆ex = Σex.

In particular, we obtain that if [[M2]]
hyp
A3

takes a right-descending comb having the form
σ(α1, σ(α2, · · · σ(αn, αn+1) · · ·)), for some n ∈ N+ and α1, . . . , αn+1 ∈ {α, β}, then it pro-
duces a singleton set with the related left-descending comb σ(σ(· · · σ(α1, α2) · · ·αn), αn+1)
(cf. [60, Example 5.4]; compare the six rules that are required to define the mwmd M2

versus the 11 rules that are required to define the attributed tree transducer in [60, Ex-
ample 5.4]). 2

When the considered mwmd is weakly non-circular, then the set of derivations ending in
q(ε) is finite. The following lemma states that the number of derivations is even bounded
from above.

Lemma 4.42. Let M be weakly non-circular. Then there is a constant n ∈ N such that

for every t ∈ TΣ we have |H
q(ε)
G | ≤ 2(2n·size(t)), where G = Gdep

M,t.

This bound is tight in the following sense: If ∆(0) 6= ∅ and ∆ is not monadic, then for
every n ∈ N there is a weakly non-circular mwmd Mn over Σ and ∆ such that for every

t ∈ TΣ we have |H
q(ε)
Gn
| = 2(2n·size(t)), where Gn = Gdep

Mn,t
.

Proof. Let M = (P,R, q) and let b = max{|indyield(rb)| | r ∈ R}. Then for every

t ∈ TΣ and e ∈ ΦM,t we have rk(e) ≤ b. Let t ∈ TΣ and G = Gdep
M,t. Let η ∈ H

q(ε)
G .

Due to Lemmas 2.24 and 2.25(1 ⇒ 2) and due to the fact that H
q(ε)
G is finite, we obtain

height(η) < |P (pos(t))|. Then the sets H
q(ε)
G and {η ∈ H

q(ε)
G | height(η) ≤ |P (pos(t))| − 1}

coincide. Thus, Lemma 2.6 and the fact that maxrk(ΦM,t) ≤ b imply that |H
q(ε)
G | ≤

|ΦM,t|kt , where kt = (b+ 1)|P (pos(t))|−1.

Let us estimate the size of the set ΦM,t. Let l = max{|var(r)| | r ∈ R}. Clearly, for every
r ∈ R we have that there are at most |pos(t)|l = size(t)l many r, t-variable assignments.
Thus, |ΦM,t| ≤ |R| · size(t)

l. Observe that |P (pos(t))| ≤ |P | · |pos(t)| = |P | · size(t). We
obtain

|H
q(ε)
G | ≤ |ΦM,t|

kt ≤ (|R| · size(t)l)((b+1)|P (pos(t))|−1) ≤ (|R| · size(t)l)((b+1)|P |·size(t))

≤ (k · size(t)k)(k
k·size(t)) (where k = max{|R|, |P |, b + 1, l})

= k(k
k·size(t)) · size(t)(k·k

k·size(t)) = k((k
k)size(t)) · size(t)(k·(k

k)size(t))

≤ j(j
size(t)) · size(t)(j·j

size(t)) (where j = kk)

≤ j(j
size(t)) · size(t)(j

size(t)·jsize(t)) (because size(t) ≥ 1)

≤ i(i
size(t)) · size(t)(i

size(t)) (where i = j · j)

Observe that i ≤ 2i and, thus, i(i
size(t)) ≤ (2i)(i

size(t)) = 2(i·isize(t)) ≤ 2(isize(t)·isize(t)) =

2((i2)size(t)). Moreover, size(t) ≤ 22size(t)
implies that size(t)(i

size(t)) ≤
(

22size(t))(isize(t)) =

2(2
size(t)·isize(t)) = 2((2i)size(t)). Thus,

|H
q(ε)
G | ≤ i(i

size(t)) · size(t)(i
size(t)) ≤ 2((i2)size(t)) · 2((2i)size(t))

≤ 2(msize(t)) · 2(msize(t)) = 2(2·msize(t)) (where m = max{i2, 2i})

78 4. M-weighted monadic datalog programs

≤ 2(2size(t)·msize(t)) = 2((2m)size(t)) .

Let n ∈ N be minimal in the set {n′ ∈ N | 2m ≤ 2n
′
}. Then we obtain that |H

q(ε)
G | ≤

2((2·m)size(t)) ≤ 2((2n)size(t)) = 2(2n·size(t)); this holds for every t ∈ TΣ because |R|, |P |, b, and
l (and, hence, k, j, i, m, and n) do only depend on M and not on t.

Now we show that this bound is tight. Suppose that ∆(0) 6= ∅ and that ∆ is not
monadic; thus, there is a k ∈ N with k > 1 such that ∆(k) 6= ∅; choose α ∈ ∆(0) and
δ ∈ ∆(k).

For reasons of simplicity we assume that Σ is a monadic ranked alphabet. The argu-
ments in this proof can easily be extended to arbitrary ranked alphabets. Let n ∈ N. We
construct the mwmd Mn = (P,R, pn) over Σ and ∆ as follows:

P = {p
(1)
0 , p

(1)
1 , . . . , p(1)

n } ,

R = {pi(x)← δ(pi−1(x), pi−1(x), α, . . . , α) ; ∅ | i ∈ [n]}

∪
{

p0(x)← pn(y) ; {child1(x, y)}
}

∪
{

p0(x)← α ; {leaf(x)}, p0(y)← α ; {leaf(y)}
}

,

where the number of occurrences of α in the tree δ(pi−1(x), pi−1(x), α, . . . , α) is rk(δ)− 2.
Note that we require the rule p0(x) ← α ; {leaf(x)} to occur twice in the set R. Since
R is a set (and not a multiset) and, thus, allows every rule only to occur once, we cope
with this problem by adding the rule p0(y) ← α ; {leaf(y)} instead (where y is chosen
arbitrarily in V \ {x}), which is essentially the same rule. It is easy to see that Mn is
weakly non-circular (it is even non-circular).

Let t ∈ TΣ and Gn = Gdep
Mn,t

. We show that |H
pn(ε)
Gn
| = 2(2n·size(t)). By our assumption

that Σ is monadic we obtain that there are β ∈ Σ(0), m ∈ N and γ1, . . . , γm ∈ Σ(1) such
that t = γ1(γ2(· · · γm(β) · · ·)). Then size(t) = m + 1 and pos(t) = {10, 11, 12, . . . , 1m},
where 1i denotes the string of i successive occurrences of 1, for every i ∈ {0, . . . , n}.

We claim that for every j ∈ {0, . . . ,m} and i ∈ {0, . . . , n} we have that |H
pi(wj)
Gn

| =

2(2n·j+i), where wj = 1m−j . Clearly, this claim implies |H
pn(ε)
Gn
| = 2(2n·m+n) = 2(2n·(m+1)) =

2(2n·size(t)). We prove our claim by induction on j.
Induction base. Let j = 0. We prove that for every i ∈ {0, . . . , n} we have that

|H
pi(w0)
Gn

| = 2(2i). We give a proof by induction on i. Clearly, for i = 0, |H
p0(w0)
Gn

| = 2 = 2(20)

because w0 is a leaf position in t. Now let i ∈ [n] and assume that |H
pi−1(w0)
Gn

| = 2(2i−1).

Then Corollary 4.11(4) yields |H
pi(w0)
Gn

| =
(

|H
pi−1(w0)
Gn

|
)2

=
(

2(2i−1)
)2

= 2(2i).
Induction step. Let j ∈ [m] and assume that for every i ∈ {0, . . . , n} we have that

|H
pi(wj−1)
Gn

| = 2(2n·(j−1)+i). We show for every i ∈ {0, . . . , n} that |H
pi(wj)
Gn

| = 2(2n·j+i). We
give a proof by induction on i. For i = 0 we obtain by means of Corollary 4.11(4) and the

induction hypothesis (for the outer inductive proof over j) that |H
p0(wj)
Gn

| = |H
pn(wj−1)
Gn

| =

2(2n·(j−1)+n) = 2(2n·j). Now let i ∈ [n] and assume that |H
pi−1(wj)
Gn

| = 2(2n·j+i−1). Then

Corollary 4.11(4) yields |H
pi(wj)
Gn

| =
(

|H
pi−1(wj)
Gn

|
)2

=
(

2(2n·j+i−1)
)2

= 2(2n·j+i). �

Now we define the infinitary hypergraph semantics, which is only defined for ω-complete
m-monoids. The definition looks similar to Definition 4.40. However, the summation in
Definition 4.40 is the extension of the monoid operation to finite families whereas the
summation in the following definition is the ω-infinitary sum operation of the given ω-
complete m-monoid.

4.2. Semantics 79

Definition 4.43. Suppose that (A,
∑

) be an ω-complete m-monoid. Then the tree

series hypergraph-defined by M and (A,
∑

) is the tree series [[M]]hyp
(A,

P

) ∈ A〈〈TΣ〉〉 such
that, for every t ∈ TΣ,

[[M]]hyp
(A,

P

)(t) =
∑

η∈H
q(ε)
G

h(hM,t(η)) ,

where G = Gdep
M,t and h is the unique ∆-homomorphism from T∆ to (A, θ). The set of all

tree series hypergraph-defined by arbitrary mwmd over Σ and ∆, and (A,
∑

) is denoted
by WMDhyp

(

Σ,∆, (A,
∑

)
)

. 2

Example 4.44 (Continuation of Example 4.30). Consider the mwmd M4 and input tree
t5 (see Figure 4.3(c)). Let e6 = (r′10, [y 7→ ε]), e7 = (r13, []), e8 = (r11, []), and e9 =
(r12, [y 7→ ε]). Note that the set of derivations ending in q(ε) consists of all trees of the
form e6

(

e8(e8(· · · e8(e8(e7, e9), e9) · · ·), e9)
)

.
Observe that for all derivations η, η′ of M4 and t5 we have

hM4,t5(e6(η)) = hM4,t5(η) , hM4,t5(e7) = β ,

hM4,t5(e8(η, η
′)) = σ

(

hM4,t5(η),hM4,t5(η
′)
)

, hM4,t5(e9) = α .

Consider the ω-complete m-monoid (A3,∪). Let h be the ∆ex-homomorphism from T∆ex

to (P(T∆ex), θ3). For every tree t ∈ T∆ex we have h(t) = {t}. Hence, for every derivation
η of the form e6

(

e8(e8(· · · e8(e8(e7, e9), e9) · · ·), e9)
)

(with n occurrences of e9) we ob-
tain h(hM4,t5(η)) =

{

σ(σ(· · · σ(σ(β, α), α) · · ·), α)
}

(with n occurrences of α). Therefore,

[[M4]]
hyp
(A3,∪)

(t5) is the set of left combs of the form σ(σ(· · · σ(σ(β, α), α) · · ·), α). 2

Clearly, if both the finitary and the infinitary version of the hypergraph semantics are
applicable, then they coincide.

Lemma 4.45. Let M be weakly non-circular and (A,
∑

) be an ω-complete m-monoid.

Then [[M]]hyp
A = [[M]]hyp

(A,
P

)
.

Proof. This is an immediate consequence of Proposition 3.16. �

Corollary 4.46. Let (A,
∑

) be an ω-complete m-monoid. Then

WMDhyp(Σ,∆,A) ⊆WMDhyp(Σ,∆, (A,
∑

)) .

4.2.4 Comparison of fixpoint and hypergraph semantics

The computation of the fixpoint semantics consists of interleaved applications of the op-
erations of the ∆-algebra and the monoid operation of the given m-monoid, whereas the
hyperpath semantics is computed by summing up values that are obtained by merely us-
ing operations from the ∆-algebra. Roughly speaking, the computation of the hyperpath
semantics can be obtained from the computation of the fixpoint semantics by distribut-
ing out the monoid operation. In this sense the fixpoint semantics resembles the initial
algebra semantics of bottom-up weighted tree automata [15, 63], whereas the hypergraph
semantics resembles the run semantics.

Note that in general the fixpoint semantics and hypergraph semantics do not coincide.
In Example 4.21 we have shown that [[M1]]

fix
A1

(t3) = 11; however, in Example 4.41 we have

80 4. M-weighted monadic datalog programs

established the fact that [[M1]]
hyp
A1

(t3) = 26; hence, [[M1]]
fix
A1
6= [[M1]]

hyp
A1

. This difference is
due to the fact that A1 is not distributive.

In fact, in the remainder of this chapter we show that the fixpoint and the hypergraph
semantics coincide if the considered m-monoid is distributive. To this end we introduce
an auxiliary notion.

Definition 4.47. Let t ∈ TΣ, c ∈ P (pos(t)), and n ∈ N. The set of n-bounded deriva-

tions of M and t ending in c is defined as the set

Hc,n
G = {η ∈ Hc

G | height(η) < n} . 2

The following observation is a consequence of the definition of the height of trees and
Observation 4.11(4).

Observation 4.48. Let t ∈ TΣ, c ∈ P (pos(t)), and n ∈ N. Moreover, for every e =
(r, ρ) ∈ ΦM,t,c let ke ∈ N and ce1, . . . , c

e
ke
∈ P (pos(t)) such that ce1 · · · c

e
ke

= indyield(ρ(rb)).

Let G = Gdep
M,t. Then

Hc,n+1
G = {e(η1, . . . , ηke) | e ∈ ΦM,t,c, η1 ∈ H

c1e,n
G , . . . , ηke ∈ H

ceke,n

G)} .

Before we show that the semantics coincide for distributive m-monoids, we need to
prove another technical lemma.

Lemma 4.49. Let A be distributive, t ∈ TΣ, and G = Gdep
M,t. Moreover, let h be the

unique ∆-homomorphism from T∆ to (A, θ), and n ∈ N. Then for every c ∈ P (pos(t)):

∑

η∈Hc,n
G

h(hM,t(η)) = T n(I0)(c) . (4.2)

Proof. We give a proof by induction on n.
Induction base. For n = 0 we have Hc,0

G = ∅ for every c ∈ P (pos(t)); hence, both sides
of Equation (4.2) are equal to 0.

Induction step. Let n ∈ N and c ∈ P (pos(t)). For every e = (r, ρ) ∈ ΦM,t,c let ke ∈ N

and ce1, . . . , c
e
ke
∈ P (pos(t)) such that ce1 · · · c

e
ke

= indyield(ρ(rb)). Then

∑

η∈Hc,n+1
G

h(hM,t(η))

=
∑

e∈ΦM,t,c

∑

η1∈H
ce
1

,n

G
,...,ηke∈H

ce
ke

,n

G

h
(

hM,t(e(η1, . . . , ηke))
)

(By Observation 4.48)

=
∑

e=(r,ρ)∈ΦM,t,c

∑

η1∈H
ce
1

,n

G ,...,ηke∈H
ce
ke

,n

G

h
(

ρ(rb)← hM,t(η1) · · · hM,t(ηke)
)

=
∑

e=(r,ρ)∈ΦM,t,c

h′e(ρ(rb)) , (by Lemma 3.14(1))

where for every e = (r, ρ) ∈ ΦM,t,c the mapping h′e is the unique ∆-homomorphism
from the T∆

(

ind(ρ(rb))
)

to (A, θ) such that for every c′ ∈ ind(ρ(rb)) we have h′e(c
′) =

∑

η∈Hc′,n
G

h(hM,t(η)). We used Lemma 3.14(1) with the following instantiations: for every

e = (r, ρ) ∈ ΦM,t,c and c′ ∈ ind(ρ(rb)) we let Ic′ = Hc′,n
G and, for every i ∈ Ic′ , s

c′

i = hM,t(i).
Let e ∈ ΦM,t,c and c′ ∈ ind(ρ(rb)). The induction hypothesis yields

h′e(c
′) =

∑

η∈Hc′,n
G

h(hM,t(η)) = T n(I0)(c′) . (4.3)

4.2. Semantics 81

This yields h′e(ρ(rb)) = hT n(I0)(ρ(rb)) due to Corollary 3.11. We obtain

∑

η∈Hc,n+1
G

h(hM,t(η)) =
∑

e=(r,ρ)∈ΦM,t,c

h′e(ρ(rb)) (shown above)

=
∑

(r,ρ)∈ΦM,t,c

hT n(I0)(ρ(rb)) = T n+1(I0)(c) . �

Now we show that the finitary versions of the fixpoint and the hypergraph semantics
coincide for distributive m-monoids.

Lemma 4.50. Let M be weakly non-circular and A be distributive. Then [[M]]hyp
A =

[[M]]fix
A .

Proof. Let t ∈ TΣ and G = Gdep
M,t. The set H

q(ε)
G is finite because M is weakly non-

circular. Hence, there is an n ∈ N such that H
q(ε)
G = H

q(ε),n
G . Let m = max

(

n, |P (pos(t))|
)

.
Let h be the unique ∆-homomorphism from T∆ to (A, θ). Then

[[M]]hyp
A (t) =

∑

η∈H
q(ε)
G

h(hM,t(η)) =
∑

η∈H
q(ε),m
G

h(hM,t(η))

= T m(I0)(q(ε)) (by Lemma 4.49)

= T |P (pos(t))|(I0)(q(ε)) (by Lemma 4.19)

= [[M]]fix
A (t) . �

Now we show that the infinitary versions of the fixpoint and the hypergraph semantics
coincide for distributive and related ω-complete and ω-continuous m-monoids.

Lemma 4.51. Let A be distributive. Moreover, let (A,≤) be an ω-continuous m-monoid
and (A,

∑

) be an ω-complete m-monoid such that (A,≤) and (A,
∑

) are related. Then

[[M]]hyp
(A,

P

) = [[M]]fix
(A,≤).

Proof. Let t ∈ TΣ and G = Gdep
M,t. For every n ∈ N let Hn = H

q(ε),n+1
G \ H

q(ε),n
G and

an =
∑

η∈Hn
h(hM,t(η)). Observe that (Hn | n ∈ N) is a generalized partition of H

q(ε)
G

because for every η ∈ H
q(ε)
G and n ∈ N we have η ∈ Hn iff n = height(η). Thus,

[[M]]hyp
(A,

P

)
(t) =

∑

η∈H
q(ε)
G

h(hM,t(η))

=
∑

n∈N

∑

η∈Hn

h(hM,t(η)) =
∑

n∈N
an

= ∨{aπ(0) + · · · + aπ(n) | n ∈ N} ,

where π = idN; this statement holds by Lemma 3.39(3) and since (A,≤) and (A,
∑

) are
related;

= ∨{a0 + · · · + an | n ∈ N}

= ∨
{

∑

η∈H0

h(hM,t(η)) + · · · +
∑

η∈Hn

h(hM,t(η)) | n ∈ N
}

= ∨
{

∑

η∈H
q(ε),n+1
G

h(hM,t(η)) | n ∈ N
}

(because (Hm | m ∈ {0, . . . , n}) is a generalized partition of H
q(ε),n+1
G)

82 4. M-weighted monadic datalog programs

= ∨
{

T n+1(I0)(q(ε)) | n ∈ N
}

(by Lemma 4.49)

= ∨
{

T n+1(I0) | n ∈ N
}

(q(ε)) (by Lemmas 4.26 and 4.28)

= T ω(q(ε)) = [[M]]fix
(A,≤)(t) . �

Example 4.52 (Continuation of Examples 4.30 and 4.44). Clearly, (A3,⊆) and (A3,∪)

are related. Since A3 is distributive, Lemma 4.51 yields [[M4]]
hyp
(A3,∪) = [[M4]]

fix
(A3,⊆). We

have already shown in Examples 4.30 and 4.44 that both [[M4]]
hyp
(A3,∪) and [[M4]]

fix
(A3,⊆) are

the set of all left-descending combs of the form σ(σ(· · · σ(σ(β, α), α) · · ·), α). 2

Theorem 4.53. Let A be a dm-monoid. Moreover, let (A,≤) be an ω-continuous m-
monoid and (A,

∑

) be an ω-complete m-monoid such that (A,≤) and (A,
∑

) are related.
Then

WMDhyp(Σ,∆,A) = WMDfix(Σ,∆,A) ,

WMDhyp
(

Σ,∆, (A,
∑

)
)

= WMDfix
(

Σ,∆, (A,≤)
)

.

Proof. This theorem is an immediate consequence of Lemma 4.50 and 4.51. �

CHAPTER 5

Normal forms

In this chapter we will study four syntactic subclasses of mwmd, called restricted, con-
nected, local, and proper mwmd. Let us give an informal definition of these classes.

Restricted: the positions of the variables in the body of rules must obey a certain
structure.

Connected: there are no rules having variables that form independent clusters.

Local: for every rule and every valid variable assignment for that rule the variables of
the rule are assigned to directly neighboring nodes of the input tree; the rules resemble
the rules in attribute grammars [32, 50] and attributed tree transducers [56, 60].

Proper: every user-defined predicate is unary.

For each of these subclasses (and intersections of them) we will study conditions that
allow a general mwmd to be transformed into a semantically equivalent mwmd belonging
to this subclass, i.e., we investigate what subclasses can be considered to be normal forms
of mwmd. The notion ‘semantically equivalent’ that we used in the previous sentence is
quite ambiguous because we did not specify which of the four variants of semantics, that
we defined in the previous chapter, this relates to. In this chapter we aim for normal form
constructions that allow for the strongest possible definition of semantic equivalence:
these are constructions that preserve all four kinds of semantics simultaneously. Since
equivalence proofs for such constructions are very laborious, we will, as a preliminary
step, first prove a generic equivalence result that we will employ for (almost every) of the
normal form constructions later in this chapter.

The connected normal form has been introduced by Gottlob and Koch [69, Theo-
rem 4.2]; it has also been studied in [122, 28]. The remaining three syntactic classes have
first been investigated in [28]. The constructions that we present in this section are based
on the constructions in [28].

This chapter is organized as follows. In Section 5.1 we define our syntactic classes
formally and state the normal form theorem that we prove in the remainder of this chapter.
In Section 5.2 we develop and prove our auxiliary generic equivalence result that we use in
the remaining three sections, where we deal with proper mwmd (Section 5.3), restricted
and connected mwmd (Section 5.4), and local mwmd (Section 5.5).

5.1 Syntactic Subclasses

In this section we define the four syntactic subclasses that we deal with in this chapter
formally. Afterwards we state the main theorem of this chapter.

Definition 5.1. Let r ∈ R. The variable connection relation ∼r of r is the transitive
reflexive closure of {(x, y) ∈ var(r)× var(r) | ∃ b ∈ rG : {x, y} ⊆ var(b)}. We call the rule
r restricted if for every equivalence class C ∈ var(r)/∼r with C ∩ var(rb) 6= ∅ there is

83

84 5. Normal forms

a wC ∈ pos(rb) such that the following statements are equivalent for every w′ ∈ pos(rb)
with rb(w

′) ∈ P (var(r)):

• rb(w′) ∈ P (C) and

• wC is a prefix of w′.

Moreover, we call r connected if ∼r = var(r) × var(r). We call M restricted if every
r ∈ R is restricted and we say that M is connected if every r ∈ R is connected. 2

Example 5.2. Consider the following two rules

r = q(y)← σ
(

q(z), σ(q(x), q(y))
)

; {child1(x, y), child2(x, x
′)} ,

r′ = q(z′)← σ
(

q(x), σ(q(z), q(y))
)

; {child1(x, y), child1(z, z
′), child2(z

′, z′′)} .

We have var(r) = {x, x′, y, z} and var(r′) = {x, y, z, z′, z′′}. Moreover, the equivalence
relation ∼r has precisely the two equivalence classes {x, y, x′} and {z}, and ∼r′ has the
equivalence classes {x, y} and {z, z′, z′′}. Therefore, neither of the rules r and r′ is con-
nected.

The rule r is restricted because for C1 = {x, y, x′} and C2 = {z} we obtain that
wC1 = 2 and wC2 = 1 satisfy the required properties. The rule r′ is not restricted because
for C3 = {x, y} there is no position wC3 having the required properties: (i) if wC3 = ε or
wC3 = 2, then for the position w′ = 21 ∈ pos(r′b) we have that: r′b(w

′) = q(z) 6∈ P (C3)
but wC3 is a prefix of w′; (ii) if wC3 = 1, then for the position w′ = 22 ∈ pos(r′b) we
have that: r′b(w′) = q(y) ∈ P (C3) but wC3 is not a prefix of w′; and (iii) if wC3 = 21 or
wC3 = 22, then for the position w′ = 1 ∈ pos(r′b) we have that: r′b(w

′) = q(x) ∈ P (C3)
but wC3 is not a prefix of w′.

Now consider the mwmd M1 from Example 4.5. It is not connected because the rule r3
is not connected (x 6∼r3 z). However, M1 is restricted. It is easy to check that the mwmd
M2 is both connected and restricted.

The mwmd M3 from Example 4.14 is not connected due to rule r10 (we have x 6∼r10 y)
but it is restricted. The mwmd M4 is both connected and restricted because var(r′10) =
{x}. 2

Every connected mwmd that we considered in Example 5.2 is also restricted. The following
lemma states that this holds in general.

Observation 5.3. If r ∈ R is connected, then it is also restricted.

Proof. This is obvious if var(r) = ∅. Otherwise var(r)/∼r contains a unique element
C. Then it is easy to see that for wC = ε we have, for every w′ ∈ pos(rb) with rb(w′) ∈
P (var(r)), that rb(w′) ∈ P (C) iff wC is a prefix of w′. �

Definition 5.4. We callM proper if P (0) = ∅, i.e., all user-defined predicates are unary.2

Definition 5.5. Let r ∈ R. We say that r is local if both of the following conditions
hold

• r is connected and

• var(r) = ∅ or there is an x ∈ var(r) such that for every b ∈ rG and y ∈ var(b) \ {x}
we have that b = childi(x, y) for some i ∈ [maxrk(Σ)].

5.1. Syntactic Subclasses 85

We say that M is local if M is proper and every r ∈ R is local. 2

Example 5.6. In this example we consider the mwmd M1 and M2 from Example 4.5
and the mwmd M3 and M4 from Example 4.14. Clearly, M2 is proper but neither M1,
M3, nor M4 are proper.

The rules r1 and r2 are local but r3 is not because it is not connected. The rule r4 is
local but r5 is not because the variable x occurs in the guard atom leaf(x) and y occurs
at the first position in the guard atom child2(y, x). The rule r6 is local because x occurs
in root(x) and in the first position in child1(x, z). The rule r7 is not local whereas r8 and
r9 are local.

Observe that r10 is not local because it is not connected; however, r11, r12, and r13 are
local. Therefore, M3 is not local. Note that even M4 is not local (although all rules in
M4 are local) because M4 is not proper. 2

Now we define semantic subclasses based on our syntactic subclasses.

Definition 5.7. LetA be an m-monoid over ∆. We define the following restrictions of the
class WMDfix(Σ,∆,A). By r–WMDfix(Σ,∆,A) (c–WMDfix(Σ,∆,A), l–WMDfix(Σ,∆,A),
p–WMDfix(Σ,∆,A), respectively) we denote the set of all tree series fixpoint-defined by
restricted (connected, local, proper respectively), weakly non-circular mwmd over Σ, ∆,
and A.

Likewise, we let pr–WMDfix(Σ,∆,A) (pc–WMDfix(Σ,∆,A), respectively) be the set of
all tree series fixpoint-defined by restricted and proper (connected and proper, respectively)
weakly non-circular mwmd over Σ, ∆, and A.

Similarly, we define such restrictions for WMDfix
(

Σ,∆, (A,≤)
)

, WMDhyp(Σ,∆,A), and

WMDhyp
(

Σ,∆, (A,
∑

)
)

(where (A,≤) is an arbitrary ω-continuous m-monoid and (A,
∑

)

is an arbitrary ω-complete m-monoid); e.g., pr–WMDhyp
(

Σ,∆, (A,
∑

)
)

denotes the set of
all tree series hypergraph-defined by proper and restricted mwmd over Σ, ∆, and (A,

∑

).2

In this chapter we will prove the following theorem.

Theorem 5.8. Let A be an m-monoid over ∆, (A,≤) be an ω-continuous m-monoid,
and (A,

∑

) be an ω-complete m-monoid. Let C be any of the classes WMDfix(Σ,∆,A),
WMDfix(Σ,∆, (A,≤)), WMDhyp(Σ,∆,A), or WMDhyp

(

Σ,∆, (A,
∑

)
)

.

If (i) C ∈ {WMDhyp(Σ,∆,A),WMDhyp
(

Σ,∆, (A,
∑

)
)

} or (ii) A is absorptive and

C ∈ {WMDfix(Σ,∆,A),WMDfix
(

Σ,∆, (A,≤)
)

}, then

l–C = c–C = pc–C ⊆ r–C = pr–C ⊆ C = p–C . (5.1)

If A is idempotent and distributive and at least one of the following two properties holds:
(i) C ∈ {WMDhyp(Σ,∆,A),WMDfix(Σ,∆,A),WMDfix

(

Σ,∆, (A,≤)
)

} or (ii) (A,
∑

) is

ω-idempotent and ω-distributive and C = WMDhyp
(

Σ,∆, (A,
∑

)
)

, then

l–C = c–C = pc–C = r–C = pr–C . (5.2)

Proof. By definition every local mwmd is both proper and connected. By Observa-
tion 5.3 every connected mwmd is also restricted. Then Equation (5.1) follows from
Corollaries 5.27 and 5.41. Moreover, Equation (5.2) follows from Corollary 5.34. �

86 5. Normal forms

The proof of Theorem 5.8 is based on semantics preserving constructions, i.e., for a
given mwmd we construct a semantically equivalent mwmd belong to a certain syntactic
subclass. It turns out that for some of our syntactic subclasses we can only carry out
constructions that preserve the hypergraph semantics but are not guaranteed to preserve
the fixpoint semantics. Therefore we have to give two definitions of semantic equivalence of
mwmd. The first one, called hyp-equivalence, only requires that the hypergraph semantics
of two mwmd coincides. The second definition, called complete equivalence, requires that
also the fixpoint semantics of two mwmd are equal.

When defining the semantic equivalence of two mwmd, we have to take another con-
dition into account, namely that the finitary semantics should be applicable for the first
mwmd iff it is applicable for the second mwmd or, equivalently, that the first mwmd
should be weakly non-circular iff the second mwmd is so.

Definition 5.9. Let M and M ′ be mwmd over Σ and ∆. We say that M and M ′ are
hyp-equivalent if all of the following conditions hold.

1. M is weakly non-circular iff M ′ is weakly non-circular.

2. If M and M ′ are weakly non-circular, then [[M]]hyp
A = [[M ′]]hyp

A for every m-monoid
A.

3. [[M]]hyp
(A,

P

) = [[M ′]]hyp
(A,

P

) for every ω-complete m-monoid (A,
∑

).

Moreover, we call M and M ′ completely equivalent if all of the following conditions
hold.

1. M and M ′ are hyp-equivalent.

2. If M and M ′ are weakly non-circular, then [[M]]fix
A = [[M ′]]fix

A for every absorptive
m-monoid A.

3. [[M]]fix
(A,≤) = [[M ′]]fix

(A,≤) for every ω-continuous m-monoid (A,≤) such that A is an
absorptive m-monoid. 2

5.2 Relatedness

In the introduction to this chapter we mentioned that proving semantic equivalence of two
mwmd wrt four kinds of semantics is a laborious task. In order to avoid the requirement to
give such an equivalence proof for each of the normal form constructions that we carry out
in this chapter, we follow the following approach: we define a property, called relatedness,
for pairs of mwmd in such a way that

(i) whenever two mwmd are related, then they are also semantically equivalent and

(ii) for every normal form construction and every given mwmd M we have that M is
related with the mwmd that is constructed from M .

Then we need to prove Condition (i) once, and for every construction we only need to
prove Condition (ii).

5.2. Relatedness 87

p(v′)

(r, ρ)

p(v) p(w)

(a)

p(v′)

(r1, ρ{x,y})

p(v) p′(v)

(r2, ρ{y,z})

p(w)

(b)

Figure 5.1: Fragments of the dependency hypergraph when using (a) rule r or (b) rules
r1 and r2 instead.

5.2.1 Motivation

Let us first give an intuitive explanation of the definition of the notion of related mwmd.
Roughly speaking, most of the normal form constructions that we will deal with later in
this chapter are carried out by breaking down the information transport in an mwmd into
smaller steps. Consider the rule r = p(x) ← σ

(

p(y), γ(p(z))
)

; {child1(x, y), child2(y, z)}.
This rule is not local but can be replaced (while preserving semantics) by the two local
rules r1 = p(x) ← σ(p(y), p′(y)) ; {child1(x, y)} and r2 = p′(y) ← γ(p(z)) ; {child2(y, z)},
where p′ is a new user-defined predicate. Then every rule instance of the original mwmd
which is of the form (r, ρ) is simulated by the rule instances (r1, ρ|{x,y}) and (r2, ρ|{y,z}).
This situation is represented in terms of dependency hypergraphs in Figure 5.1 (where
v′ = ρ(x), v = ρ(y), and w = ρ(z)); we can consider the hyperedge (r, ρ) to be simulated
by the hyperpath segment (r1, ρ|{x,y})

(

p(v), (r2, ρ|{y,z})(p(w)
)

.
We have just given a simple example of related mwmd; its core concept is that hy-

peredges in dependency hypergraphs of the first mwmd are simulated by hypergraph
segments in corresponding dependency hypergraphs of the second mwmd. More precisely,
two mwmd M and M ′ are related if for every input tree t the dependency hypergraphs G
and G′ of M and t, and M ′ and t, respectively, are correlated in the following sense (for
an example we refer to Figure 5.2).

• For every vertex (atom instance) in G there is a unique corresponding vertex in G′

(this is represented by dotted lines in Figure 5.2). We will model this correspondence
by an injective mapping. Let us refer to vertices of G′ that do not correspond to
vertices of G by auxiliary vertices; in Figure 5.2 they are represented by small circles.
In our introductory example the atom instance p′(v) is such an auxiliary vertex (see
Figure 5.1(b)).

• There is a one-to-one correspondence between hyperedges of G and those hyperpath
segments of G′ whose inner vertices are auxiliary vertices and whose output and
input vertices are not auxiliary vertices. This correspondence is required to satisfy
the following two conditions:

(A) it preserves input-output behavior, i.e., the input and output vertices of any hy-
peredge of G correspond to the input and output vertices of the corresponding

88 5. Normal forms

hyperpath segment (regarding the example in Figure 5.2: a possible correspon-
dence that satisfies this input-output condition is given in Table 5.1), and

(B) the tree of operations that are encoded by any hyperedge must agree with the
tree of operations that is encoded by its corresponding hyperpaths segment; for
instance, in Figure 5.1 both the hyperedge (r, ρ) and the hyperpath segment
(r1, ρ|{x,y})

(

p(v), (r2, ρ|{y,z})(p(w)
)

encode the term σ
(

p(v), γ(p(w))
)

.

c0
e8

c5
e9

e1 e2 c6 c10

e11 e12

c1 c2 c3 e10 c7 c8

e3 e4
e5 e6 c11

e13

e14

c4 c12 c13
e17

e7 e15 e16

c9 e18

G G′

Figure 5.2: A sketch of the relationships between dependency hypergraphs of related
mwmd.

hyperedge in G hyperpath segment in G′

e1 e9(c6, e11(c7))
e2 e9(c6, e12(c8))
e3 e8()
e4 e10(e13(c7))
e5 e14(e15(c9), e16())
e6 e14(e15(c9), e17())
e7 e18()

Table 5.1: A hyperedge-hyperpath segment-correspondence for Figure 5.2.

5.2.2 Formal definition

For the remainder of Section 5.2 we fix two mwmd M = (P,R, q) and M ′ = (P ′, R′, q′)

over Σ and ∆. In order to simplify notation we abbreviate, for every t ∈ TΣ, Gdep
M,t

by Gt and Gdep
M ′,t by G′

t. Furthermore, we fix the two families ν = (νt | t ∈ TΣ) and

π =
(

πt,c | t ∈ TΣ, c ∈ P (pos(t))
)

such that for every t ∈ TΣ and c ∈ P (pos(t)),

5.2. Relatedness 89

• νt : P (pos(t))→ P ′(pos(t)) is an injective mapping,

• πt,c : ΦM,t,c → H
νt(c),ran(νt)
G′

t
is a bijective mapping.

The mappings νt are the vertex-vertex correspondences and the mappings πt,c are the
hyperedge-hyperpath segment correspondences that we mentioned in Section 5.2.1.

In order to reduce notational overhead in the following derivations let us introduce some
more auxiliary definitions and abbreviations. Let t ∈ TΣ, c ∈ P (pos(t)), c′ ∈ P ′(pos(t)),
e ∈ ΦM ′,t, k = rk(e), and i ∈ [k]. Then we let

• Ht(c), H
′
t(c

′), and H ′
t(c

′, ran(νt)) be abbreviations for the three sets Hc
Gt

, Hc′

G′
t
, and

H
c′,ran(νt)
G′

t
respectively,

• ⊳t be an abbreviation for ≺G′
t
\

(

ran(νt)× P
′(pos(t))

)

• hνt denote the ∆-homomorphism from T∆
(

P (pos(t))
)

to T∆
(

P ′(pos(t))
)

extending
νt,

• He
i = H ′

t

(

ini(e), ran(νt)
)

if ini(e) 6∈ ran(νt) and He
i = {ini(e)} otherwise.

Unfortunately, this is a large number of definitions but the reader may rest assured that
without them notations in this section would be very cluttered. Now we define the notion
of relatedness. For our purposes we need to define two versions of this notion, which we
call (weak) relatedness and strong relatedness; the former version only guarantees that
two related mwmd are hyp-equivalent, whereas the latter version implies that two related
mwmd are even completely equivalent.

Definition 5.10. We call M and M ′ (weakly) related via ν and π if for every t ∈ TΣ:

• νt(q(ε)) = q′(ε) and

• for every c ∈ P (pos(t)) and (r, ρ) ∈ ΦM,t,c, hνt(ρ(rb)) = hM ′,t

(

πt,c(r, ρ)
)

.

M and M ′ are strongly related via ν and π if M and M ′ are related via ν and π, and
for every t ∈ TΣ, c ∈ P (pos(t)), η, η′ ∈ H ′

t(νt(c), ran(νt)), and w ∈ pos(η) ∩ pos(η′) with
η|w 6∈ ran(νt) and η′|w 6∈ ran(νt):

• if ρ(rb) 6∈ P ′(pos(t)), where (r, ρ) = η(w), and η(w′) = η′(w′) for every prefix w′ of
w,

• then η|w = η′|w. 2

Essentially the definition of weak relatedness states that the mappings πt,c (i.e., the
hyperedge-hyperpath segment correspondences) must satisfy Conditions (A) and (B) from
Section 5.2.1. Roughly speaking, the definition of strong relatedness states that every
auxiliary vertex in the dependency hypergraph G′

t that has more than one hyperpath
segment ending in it, may be the input vertex only of ε-rule instances. We will discuss
strong relatedness more thoroughly in Section 5.2.4.

In the remainder of Section 5.2 we will prove the following theorem.

Theorem 5.11. If M and M ′ are related via ν and π, then M and M ′ are hyp-equivalent.
If M and M ′ are strongly related via ν and π, then M and M ′ are completely equivalent.

Proof. This theorem follows from Lemmas 5.18 and 5.24. �

90 5. Normal forms

5.2.3 Weak relatedness

In this section we will prove the first part of Theorem 5.11. First let us unearth some
basic properties of related mwmd. The following observation is easy to prove by structural
induction on s.

Observation 5.12. Let t ∈ TΣ, s ∈ T∆

(

P (pos(t))
)

, l ∈ N, and c1, . . . , cl ∈ P (pos(t))
such that indyield(s) = c1 · · · cl.

Then indyield(hνt(s)) = νt(c1) · · · νt(cl) and, thus, ind(hνt(s)) = νt(ind(s)). Moreover,
for every s1, . . . , sl ∈ T∆

(

P (pos(t))
)

, hνt(s)← s1 · · · sl = s← s1 · · · sl.

Lemma 5.13. Let t ∈ TΣ and c′ ∈ P ′(pos(t)). Then

H ′
t(c

′, ran(νt)) = {e(η1, . . . , ηrk(e)) | e ∈ ΦM ′,t,c′ , η1 ∈ H
e
1 , . . . , ηrk(e) ∈ H

e
rk(e)} .

Proof. This is a consequence of Lemma 2.14 and Observation 4.11(1). �

Lemma 5.14. Let M and M ′ be related via ν and π and let t ∈ TΣ.

1. Let k ∈ N, e = (r, ρ) ∈ ΦM,t, and c1, . . . , ck ∈ P (pos(t)) such that c1 · · · ck =
indyield(ρ(rb)). Then νt(c1) · · · νt(ck) = indyield(πt,out(e)(e)).

2. Let c ∈ P (pos(t)), η ∈ H ′
t

(

νt(c), ran(νt)
)

, k ∈ N, and c′1, . . . , c
′
k ∈ P ′(pos(t))

with c′1 · · · c
′
k = indyield(η). Let (r, ρ) = π−1

t,c (η). Then ν−1
t (c′1) · · · ν

−1
t (c′k) =

indyield(ρ(rb)).

Proof. 1. By Observation 5.12, νt(c1) · · · νt(ck) = indyield
(

hνt(ρ(rb))
)

. Since M and M ′

are related, indyield
(

hνt(ρ(rb))
)

= indyield
(

hM ′,t(πt,out(e)(r, ρ))
)

. Moreover, Lemma 4.38
implies indyield

(

hM ′,t(πt,out(e)(r, ρ))
)

= indyield(πt,out(e)(e)).
2. Let l ∈ N and c1, . . . , cl ∈ P (pos(t)) such that c1 · · · cl = indyield(ρ(rb)). By

Statement 1, νt(c1) · · · νt(cl) = indyield(πt,c(e)) = indyield(η) = c′1 · · · c
′
k. Thus, l = k and

ci = ν−1
t (c′i) for every i ∈ [k]. �

Now we define a mapping from derivations of Gt to derivations of G′
t by lifting the

mappings πt,c from hyperedges to hyperpaths. Roughly speaking, this mapping is defined
as follows: every derivation of Gt is a tree of hyperedges; by applying the mappings πt,c
to these hyperedges we obtain a tree that is labeled with hyperpath segments; if M and
M ′ are related, then the hyperpath segments in the resulting tree can be ‘glued’ together;
this yields a derivation of M ′. For instance, consider the dependency hypergraphs in
Figure 5.2. When we lift the hyperedge-hyperpath segment correspondence from Table 5.1
to hyperpaths, then, e.g., the derivation e2(e3, e5(e7)) in G corresponds to the derivation
e9

(

e8, e12(e14(e15(e18), e16)
)

in G′.

Definition 5.15. Let M and M ′ be related via ν and π. For every t ∈ TΣ we define
the ΦM,t-algebra Πt = (TΦM′,t

, θ′) such that for every j ∈ N, e = (r, ρ) ∈ (ΦM,t)
(k), and

η1, . . . , ηk ∈ TΦM′,t
we let

θ′(e)(η1, . . . , ηk) = πt,out(e)(e)← η1 · · · ηk ;

note that this is well-defined because by Lemma 5.14(1), we have that k = rk(e) =
|indyield(ρ(rb))| = |indyield(πt,out(e)(e))|. Moreover, by hπt we will denote the unique
ΦM,t-homomorphism from TΦM,t

to Πt. For every c ∈ P (pos(t)) let hcπt
be the restriction

of hπt to Ht(c) (which is clearly a subset of TΦM,t
). 2

5.2. Relatedness 91

Before we prove the main lemma of this section, let us first investigate some properties
of the mapping hπt. If M and M ′ are related, then for every input tree t and atom
instance c we obtain that the mapping hcπt

is a bijection between derivations of Gt ending
in c and derivations of G′

t ending in νt(c). Moreover, this mapping preserves semantics in
the following sense: for any derivation η we have that η and hπt(η) encode the same tree
of operations. The third statement of the following lemma is a technical property that we
will employ in the next section.

Lemma 5.16. Let M and M ′ be related via ν and π. Moreover, let t ∈ TΣ.

1. hM ′,t(hπt(η)) = hM,t(η) for every η ∈ TΦM,t
.

2. For every c ∈ P (pos(t)), hcπt
is a bijection from Ht(c) to H ′

t(νt(c)).

3. Let c, d ∈ P (pos(t)) and c′ ∈ P ′(pos(t)) with νt(d) ≺G′
t
c′ and c′ ⊳∗t νt(c). Then

d ≺Gt c.

Proof. 1. We give a proof by structural induction on η. Let η ∈ TΦM,t
, k ∈ N, e =

(r, ρ) ∈ (ΦM,t)
(k), and η1, . . . , ηk ∈ TΦM,t

such that η = e(η1, . . . , ηk). We assume that
hM ′,t(hπt(ηi)) = hM,t(ηi) for every i ∈ [k] and show that hM ′,t(hπt(η)) = hM,t(η). We
derive

hM ′,t(hπt(η)) = hM ′,t

(

hπt(e(η1, . . . , ηk))
)

= hM ′,t

(

πt,out(e)(e)← hπt(η1) · · · hπt(ηk)
)

= hM ′,t(πt,out(e)(e))← hM ′,t(hπt(η1)) · · · hM ′,t(hπt(ηk)) (by Lemma 4.39)

= hM ′,t(πt,out(e)(e))← hM,t(η1) · · · hM,t(ηk) (by the induction hypothesis)

= hνt(ρ(rb))← hM,t(η1) · · · hM,t(ηk) (since M and M ′ are related)

= ρ(rb)← hM,t(η1) · · · hM,t(ηk) (by Observation 5.12)

= hM,t(e(η1, . . . , ηk)) = hM,t(η) .

2. First we show that for every c ∈ P (pos(t)) we have ran(hcπt
) ⊆ H ′

t(νt(c)). To this
end we show by structural induction that for every η ∈ TΦM,t

and c ∈ P (pos(t)) such
that η ∈ Ht(c) we have hcπt

(η) ∈ H ′
t(νt(c)). Let η ∈ TΦM,t

and c ∈ P (pos(t)) such that
η ∈ Ht(c). By Observation 4.11(4) there are k ∈ N, e = (r, ρ) ∈ ΦM,t,c, c1, . . . , ck ∈
P (pos(t)), and η1 ∈ Ht(c1), . . . , ηk ∈ Ht(ck) such that c1 · · · ck = indyield(ρ(rb)) and
η = e(η1, . . . , ηk). The induction hypothesis yields hciπt

(ηi) ∈ H
′
t(νt(ci)) for every i ∈ [k].

Moreover, Lemma 5.14(1) implies that indyield(πt,out(e)(e)) = νt(c1) · · · νt(ck). Thus,
we can apply Lemma 2.29 and the fact that πt,out(e)(e) ∈ H ′

t

(

νt(out(e)), ran(νt)
)

=
H ′
t

(

νt(c), ran(νt)
)

in order to obtain

hcπt
(η) = hcπt

(e(η1, . . . , ηk)) = πt,out(e)(e)← hπt(η1) · · · hπt(ηk)

= πt,out(e)(e)← hc1πt
(η1) · · · h

ck
πt

(ηk) ∈ H
′
t(νt(c)) .

Next we show that for every c ∈ P (pos(t)), hcπt
: Ht(c) → H ′

t(νt(c)) is a bijection.
Before we proceed with the main proof let us first define the mapping gc : H ′

t(νt(c)) →
Ht(c), for every c ∈ P (pos(t)), by structural recursion as follows. Let c ∈ P (pos(t)) and
η ∈ H ′

t(νt(c)). Moreover, let η′ = dec↑(η, ran(νt)), l ∈ N, and c′1, . . . , c
′
l ∈ ran(νt) such

that c′1 · · · c
′
l = indyield(η′). By Lemma 2.28 there are η̂1 ∈ H

′
t(c

′
1), . . . , η̂l ∈ H

′
t(c

′
l) such

that dec↓(η, ran(νt)) = η̂1 · · · η̂l; then we define

gc(η) = π−1
t,c (η′)

(

gν−1
t (c′1)(η̂1), . . . , gν−1

t (c′
l
)(η̂l)

)

.

Observe that gc(η) is well-defined for the following two reasons.

92 5. Normal forms

• η̂i is a proper subtree of η, for every i ∈ [l], due to Lemma 2.28.

• Let e = (r, ρ) = π−1
t,c (η′) ∈ ΦM,t,c and for every i ∈ [l] let ci = ν−1

t (c′i). Then
Lemma 5.14(2) yields indyield(ρ(rb)) = c1 · · · cl. Moreover, for every i ∈ [l],
gν−1

t (c′i)
(η̂i) ∈ Ht(ci) due to the definition of gν−1

t (c′i)
= gci . We obtain that gc(η) ∈

Ht(c) because of Observation 4.11(4).

Let c ∈ P (pos(t)). In order to show that hcπt
: Ht(c) → H ′

t(νt(c)) is a bijection, it
suffices to show that (i) hcπt

; gc is the identity relation on Ht(c) (this implies that hcπt
is

injective) and that (ii) gc ; hcπt
is the identity relation on H ′

t(νt(c)) (this implies that hcπt

is surjective onto H ′
t(νt(c))).

First we prove Statement (i). We show by structural induction that for every η ∈
TΦM,t

and c ∈ P (pos(t)) with η ∈ Ht(c) we have gc(h
c
πt

(η)) = η. Let η ∈ TΦM,t
and

c ∈ P (pos(t)) such that η ∈ Ht(c). By Observation 4.11(4) there are k ∈ N, e = (r, ρ) ∈
ΦM,t,c, c1, . . . , ck ∈ P (pos(t)), and η1 ∈ Ht(c1), . . . , ηk ∈ Ht(ck) such that c1 · · · ck =
indyield(ρ(rb)) and η = e(η1, . . . , ηk). Then

gc(h
c
πt

(η)) = gc(hπt(η)) = gc
(

hπt(e(η1, . . . , ηk))
)

= gc
(

πt,out(e)(e)← hπt(η1) · · · hπt(ηk)
)

= gc
(

πt,c(e)← hπt(η1) · · · hπt(ηk)
)

= gc
(

πt,c(e)← hc1πt
(η1) · · · h

ck
πt

(ηk)
)

. (because ηi ∈ Ht(ci) for every i ∈ [k])

By means of Lemma 2.29 we obtain dec↑
(

πt,c(e) ← hc1πt
(η1) · · · h

ck
πt

(ηk), ran(νt)
)

= πt,c(e)
and dec↓

(

πt,c(e) ← hc1πt
(η1) · · · h

ck
πt

(ηk), ran(νt)
)

= hc1πt
(η1) · · · h

ck
πt

(ηk). Together with the
fact that hciπt

(ηi) ∈ H
′
t(νt(ci)), for every i ∈ [l], this implies

gc
(

πt,c(e)← hc1πt
(η1) · · · h

ck
πt

(ηk)
)

= π−1
t,c (πt,c(e))

(

gν−1
t (νt(c1))

(hc1πt
(η1)), . . . , gν−1

t (νt(ck))(h
ck
πt

(ηk))
)

= e
(

gc1(h
c1
πt

(η1)), . . . , gck(hckπt
(ηk))

)

= e(η1, . . . , ηk) = η . (by the induction hypothesis)

Next we prove Statement (ii). We show by structural induction that for every η ∈ TΦM′,t

and c ∈ P (pos(t)) with η ∈ H ′
t(νt(c)) we have hcπt

(gc(η)) = η. Let η ∈ TΦM′,t
and

c ∈ P (pos(t)) such that η ∈ H ′
t(νt(c)). Moreover, let η′ = dec↑(η, ran(νt)), l ∈ N,

and c′1, . . . , c
′
l ∈ ran(νt) such that c′1 · · · c

′
l = indyield(η′). By Lemma 2.28 there are

η̂1 ∈ H ′
t(c

′
1), . . . , η̂l ∈ H ′

t(c
′
l) such that dec↓(η, ran(νt)) = η̂1 · · · η̂l. Let ci = ν−1

t (c′i) for
every i ∈ [l]. Then

hcπt
(gc(η)) = hcπt

(

π−1
t,c (η′)

(

gν−1
t (c′1)(η̂1), . . . , gν−1

t (c′l)
(η̂l)

))

= hπt

(

π−1
t,c (η′)

(

gc1(η̂1), . . . , gcl(η̂l)
))

= πt,c(π
−1
t,c (η′))← hπt(gc1(η̂1)) · · · hπt(gcl(η̂l)) (because out(π−1

t,c (η′)) = c)

= η′ ← hc1πt
(gc1(η̂1)) · · · h

cl
πt

(gcl(η̂l)) (because gci(η̂i) ∈ Ht(ci) for every i ∈ [l])

= η′ ← η̂1 · · · η̂l (by the induction hypothesis)

= η . (by Lemma 2.28)

3. We need to show that there is an η̃ ∈ Ht(c) and an i ∈ [rk(η̃(ε))] such that η̃|i ∈ Ht(d).
Since c′ ⊳∗t νt(c), there is an n ∈ N+ and there are c′1, . . . , c

′
n ∈ P ′(pos(t)) such that

c′1 = c′, c′n = νt(c), and c′i−1 ⊳ t c
′
i for every i ∈ {2, . . . , n}. Thus, c′1, . . . , c

′
n−1 6∈ ran(νt)

5.2. Relatedness 93

and c′i−1 ≺G′
t
c′i for every i ∈ {2, . . . , n}. Let c′0 = νt(d). Then we have c′i−1 ≺G′

t
c′i, for

every i ∈ [n], because νt(d) ≺G′
t
c′ by our assumption. By Lemma 2.23(1 ⇒ 2) there

are η ∈ H ′
t(c

′
n) = H ′

t(νt(c)) and w ∈ pos(η) such that |w| = n and c′n−|w′| = out(η(w′))

for every prefix w′ of w. We put η̃ = gc(η), where gc is the mapping from the proof of
Statement 2. Then η̃ ∈ Ht(c). It remains to show that there is an i ∈ [rk(η̃(ε))] such that
η̃|i ∈ Ht(d).

Let η′ = dec↑(η, ran(νt)). For every proper prefix position w′ of w with w′ 6= ε we
have |w| − |w′| ∈ [n− 1] and, hence, out(η(w′)) = c′

n−|w′| = c′|w|−|w′| 6∈ ran(νt). Therefore

Lemma 2.18(2) yields that w ∈ pos(η′).
Since out(η(w)) = c′

n−|w| = c′0 = νt(d) ∈ ran(νt) and |w| = n > 0, Lemma 2.18(1) yields

that νt(d) = out(η(w)) = η′|w. Thus, νt(d) ∈ ind(η′). Clearly, η′ ∈ H ′
t

(

νt(c), ran(νt)
)

because η ∈ H ′
t(νt(c)). Let e = (r, ρ) = π−1

t,c (η′). By the fact that νt(d) ∈ ind(η′) and due
to Lemma 5.14(2) we obtain d ∈ ind(ρ(rb)); hence, by Observation 4.11(2) there is an i ∈
rk(e) such that ini(e) = d. The definition of gc yields that η̃(ε) = gc(η)(ε) = π−1

t,c (η′) = e.
Then Observation 4.11(4) implies that η̃|i ∈ Ht(d). �

The following corollary is an immediate consequence of Lemma 5.16(2).

Corollary 5.17. Let M and M ′ be related via ν and π. Moreover, let t ∈ TΣ and
c ∈ P (pos(t)). Then Ht(c) = ∅ iff H ′

t(νt(c)) = ∅.

Now we are prepared to show that relatedness implies hyp-equivalence.

Lemma 5.18. Let M and M ′ be related via ν and π. Then M and M ′ are hyp-equivalent.

Proof. For every t ∈ TΣ we have that Ht(q(ε)) is infinite iff H ′
t(q

′(ε)) is infinite; this
holds due to Lemma 5.16(2) and to the fact that νt(q(ε)) = q′(ε). Thus, M is weakly
non-circular iff M ′ is weakly non-circular.

Assume that both M and M ′ are weakly non-circular and let A = (A,+,0, θ) be an

m-monoid. We show that [[M]]hyp
A = [[M ′]]hyp

A . Let t ∈ TΣ and let h be the unique
∆-homomorphism from T∆ to (A, θ). Then

[[M]]hyp
A (t) =

∑

η∈Ht(q(ε))
h(hM,t(η))

=
∑

η∈Ht(q(ε))
h(hM ′,t(hπt(η))) (by Lemma 5.16(1))

=
∑

η∈Ht(q(ε))
h(hM ′,t(h

q(ε)
πt

(η))) (because η ∈ Ht(q(ε)))

=
∑

η′∈H′
t(q

′(ε))
h(hM ′,t(η

′)) (by Lemma 5.16(2))

= [[M ′]]hyp
A (t) .

In a similar way one can show that [[M]]hyp
(A,

P

) = [[M ′]]hyp
(A,

P

) for every ω-complete m-

monoid (A,
∑

). �

5.2.4 Strong relatedness

In this section we prove the second part of Theorem 5.11. For two reasons this proof is
more involved than the proof in the previous section.

Firstly, weak relatedness does generally not imply equivalence of fixpoint semantics.
This is witnessed by the following example.

94 5. Normal forms

Example 5.19 (Continuation of Example 4.5). Let M = (P,R, q) and M ′ = (P ′, R′, q′)
be mwmd over Σex and ∆ex such that P = {q(1)}, P ′ = {q′(1), p(0)}, R = {rα, rβ}, and
R′ = {r, r′α, r

′
β} where

rα = q(x)← γ(α) ; ∅ , rβ = q(x)← γ(β) ; ∅ ,

r′α = p()← α ; ∅ , r′β = p()← β ; ∅ , r = q′(x)← γ(p()) ; ∅ .

For every t ∈ TΣex and w ∈ pos(t) we let νt(q(w)) = q′(w) and

πt,q(w)(rα, [x 7→ w]) = (r, [x 7→ w])
(

(r′α, [])()
)

,

πt,q(w)(rβ, [x 7→ w]) = (r, [x 7→ w])
(

(r′β, [])()
)

.

It is easy to see that M and M ′ are related via the two families (νt | t ∈ TΣex) and
(

πt,c | t ∈ TΣex , c ∈ P (pos(t))
)

. Thus, the hypergraph semantics of M and M ′ coincide
due to Lemma 5.18. However, in general this does not hold for the fixpoint semantics.
In order to prove this let A = (N,+, 0, θ) be the m-monoid over ∆ex such that for every
n, n′ ∈ N we have θ(α)() = θ(β)() = 1, θ(γ)(n) = (n + 1) · n, and θ(σ)(n, n′) = n · n′.
Clearly, A is absorptive but not distributive.

For the fixpoint interpretation I of M we have I(q(ε)) = θ(γ)
(

θ(α)()
)

+ θ(γ)
(

θ(β)()
)

=
2 + 2 = 4. On the other hand we obtain for the fixpoint interpretation I ′ of M ′ that
I ′(p()) = θ(α)() + θ(β)() = 1 + 1 = 2 and I ′(q′(ε)) = θ(γ)(I(p()) = (2 + 1) · 2 = 6. Hence,
[[M]]fix

A (t) = 4 6= 6 = [[M ′]]fix
A (t).

The reason why the fixpoint semantics of M and M ′ do not coincide is that M and M ′

are not strongly related. In fact, we obtain for t = α, c = q(ε), η = (r, [x 7→ ε])
(

(r′α, [])()
)

,
η′ = (r, [x 7→ ε])

(

(r′β, [])()
)

, and position w = ε that η, η′ ∈ H ′
t

(

q′(ε), ran(νt)
)

=

H ′
t

(

νt(c), ran(νt)
)

, η|w = η 6∈ ran(νt), η
′|w = η′ 6∈ ran(νt), η(w) = η′(w) = (r, [x 7→ ε]),

[x 7→ ε](rb) = γ(p()) 6∈ P ′(pos(t)), and η|w = η 6= η′ = η′|w. 2

Before we explain the second reason why the proof of the second part of Theorem 5.11
is more involved than the proof for the first part, let us first state an important tech-
nical lemma. The first two statements are basic properties of the set of derivations of
dependency hypergraphs of M ′. The third property states that, roughly speaking, every
auxiliary vertex of any dependency hypergraph of M ′ that is the input vertex of some
hyperedge that is not an ε-rule instance, has at most one derivation ending in it.

Lemma 5.20. Let t ∈ TΣ, c′ ∈ P ′(pos(t)), e = (r, ρ) ∈ ΦM ′,t,c′, and k = rk(e).

1. Let H ′
t(ini(e)) 6= ∅ for every i ∈ [k]. Then we have that H ′

t(ini(e), ran(νt)) 6= ∅ and
ini(e) ≺G′

t
c′, for every i ∈ [k].

2. Let i ∈ [k] such that H ′
t(ini(e)) = ∅. Then for every ηi ∈ H

e
i there is a d′ ∈ ind(ηi)

with H ′
t(d

′) = ∅.

3. Let c ∈ P (pos(t)) such that c′ ⊳∗t νt(c). Suppose that M and M ′ are strongly
related via ν and π, that H ′

t(ini(e)) 6= ∅ for every i ∈ [rk(e)], and that ρ(rb) 6∈
P ′(pos(t)). Let j ∈ [rk(e)] and η, η′ ∈ He

j such that H ′
t(d

′) 6= ∅ holds for every
d′ ∈ ind(η) ∪ ind(η′). Then η = η′.

Proof. 1. For every i ∈ [k] choose an ηi ∈ H ′
t(ini(e)); clearly, dec↑(ηi, ran(νt)) ∈

H ′
t(ini(e), ran(νt)). Moreover, Corollary 2.16 and Observation 4.11(1) imply that η =

5.2. Relatedness 95

e(η1, . . . , ηk) ∈ H ′
t(c

′). For every i ∈ [k] the fact that η|i = ηi ∈ H ′
t(ini(e)) yields

ini(e) ≺G′
t
c′.

2. Let ηi ∈ He
i and assume that H ′

t(d
′) 6= ∅ for every d′ ∈ ind(ηi). We will derive

a contradiction. First we consider the case that ini(e) ∈ ran(νt). Then ηi = ini(e) and
ind(ηi) = {ini(e)}. Hence H ′

t(ini(e)) 6= ∅, a contradiction.
Now we consider the case that ini(e) 6∈ ran(νt). Then ηi ∈ H ′

t

(

ini(e), ran(νt)
)

and
Lemma 2.30 yields that H ′

t(ini(e)) 6= ∅, a contradiction.
3. If inj(e) ∈ ran(νt), then He

j = {inj(e)} and, thus, η = inj(e) = η′ holds trivially.
For the remainder of the proof we assume that inj(e) 6∈ ran(νt). In order to show that

η = η′ we need to take a detour and construct a sequence of intermediate trees η0, η1, η2, η3

and η′0, η
′
1, η

′
2, η

′
3.

The assumption inj(e) 6∈ ran(νt) implies He
j = H ′

t

(

inj(e), ran(νt)
)

and, hence, η, η′ ∈

H ′
t

(

inj(e), ran(νt)
)

. Since H ′
t(d

′) 6= ∅ for every d′ ∈ ind(η) ∪ ind(η′), Lemma 2.30 yields
that there are η0, η

′
0 ∈ H

′
t(inj(e)) such that dec↑(η0, ran(νt)) = η and dec↑(η′0, ran(νt)) =

η′.
For every i ∈ [rk(e)] choose a η̃i ∈ H ′

t(ini(e)); such an η̃i exists by assumption. Let
η1 = e(η̃1, . . . , η̃j−1, η0, η̃j+1, . . . , η̃k) and η′1 = e(η̃1, . . . , η̃j−1, η

′
0, η̃j+1, . . . , η̃k). By Corol-

lary 2.16 and Observation 4.11(1) we have η1, η
′
1 ∈ H

′
t(c

′).
Since c′ ⊳∗t νt(c), there are n ∈ N, c′0, . . . , c

′
n−1 ∈ P

′(pos(t))\ran(νt), and c′n ∈ P
′(pos(t))

such that c′0 = c′, c′n = νt(c), and c′m−1 ≺G′
t
c′m for every m ∈ [n]. Therefore, Corol-

lary 2.22 yields that there are w ∈ (N+)n and e1, . . . , en ∈ ΦM ′,t such that out(el) = c′l,
for every l ∈ [n], and for every η̃′ ∈ H ′

t(c
′
0) = H ′

t(c
′) there is an η̃ ∈ H ′

t(c
′
n) with:

(a) w ∈ pos(η̃), (b) η̃|w = η̃′, and (c) η̃(w′) = en−|w′| for every proper prefix w′

of w. This holds in particular for η̃ = η1 and η̃ = η′1. More precisely, there are
η2, η

′
2 ∈ H

′
t(c

′
n) = H ′

t(νt(c)) such that (a) w ∈ pos(η2)∩ pos(η′2), (b) η2|w = η1, η
′
2|w = η′1,

and (c) η2(w
′) = en−|w′| = η′2(w

′) for every proper prefix w′ of w. Observe that Condi-
tion (b) implies η2(w) = η1(ε) = e = η′1(ε) = η′2(w). Hence, for every prefix w′ of w we
have

η2(w
′) = η′2(w

′) , η2(w) = e = η′2(w) . (5.3)

Due to Condition (c), we obtain for every proper prefix w′ of w that out(η2(w
′)) =

out(en−|w′|) = c′n−|w′|. Moreover, Condition (b) together with the fact that η1 ∈ H
′
t(c

′)

yields out(η2(w)) = out(η1(ε)) = c′ = c′0. Therefore, we have for every prefix w′ of w that

out(η2(w
′)) = out(η′2(w

′)) = c′n−|w′| . (5.4)

Finally, we let η3 = dec↑(η2, ran(νt)) and η′3 = dec↑(η′2, ran(νt)). Clearly, η3, η
′
3 ∈

H ′
t

(

νt(c), ran(νt)
)

. Observe that for every prefix w′ of w with w′ 6= ε we have n− |w′| =
|w| − |w′| ∈ {0, . . . , n − 1} and, thus, out(η2(w

′)) = out(η′2(w
′)) = c′n−|w′| 6∈ ran(νt) by

Equation (5.4). Moreover, out(η2(wj)) = out((η2|w)(j)) = out(η1(j)) = out(η0(ε)) =
inj(e) because η0 ∈ H ′

t(inj(e)). Likewise, out(η′2(wj)) = out(η′0(ε)) = inj(e). Hence,
out(η2(wj)) = out(η′2(wj)) = inj(e) 6∈ ran(νt) by assumption. Thus, we have for every
prefix w′ of wj with w′ 6= ε that

out(η2(w
′)) = out(η′2(w

′)) 6∈ ran(νt) . (5.5)

Therefore we obtain the following facts.

(i) w′ ∈ pos(η3) ∩ pos(η′3) for every prefix w′ of w due to Lemma 2.18(2).

96 5. Normal forms

(ii) η3(w
′) = η2(w

′) = η′2(w
′) = η′3(w

′) for every prefix w′ of w due to Fact (i),
Lemma 2.18(1), and Equations (5.3) and (5.5). In particular, η3(w) = e = η′3(w).

(iii) Lemma 2.18(3) implies that η3|wj = dec↑(η2|wj, ran(νt)) = dec↑(η1|j , ran(νt)) =
dec↑(η0, ran(νt)) = η and, likewise, η′3|wj = η′. This implies in particular that
η3(w) 6∈ ran(νt) and η′3(w) 6∈ ran(νt), because wj ∈ pos(η3) ∩ pos(η′3).

The facts that M and M ′ are strongly related via ν and π, e = (r, ρ), ρ(rb) 6∈ P ′(pos(t)),
η3, η

′
3 ∈ H

′
t

(

νt(c), ran(νt)
)

, and Facts (ii) and (iii) imply that η3|w = η′3|w. Then Fact (iii)
yields that η = η′. �

Now let us discuss the second reason that makes the proof of the second part of Theo-
rem 5.11 more difficult. Let us consider an example. Assume that M contains (possibly
among others) the rule r = p()← σ(q(), q());∅ and that M ′ is obtained from M by replac-
ing r by the rules r1 = p()← σ(q(), q′()) ; ∅ and r2 = q′()← q() ; ∅. Then it is easy to see
that M and M ′ are strongly related. For the following discussion let us fix an m-monoid
A = (A,+,0, θ). For every n ∈ N let use denote the value of T nM (I0)(q()) by an and
assume that also T nM ′(I0)(q()) = an. Then we obtain that for every n ∈ N with n ≥ 2 we
have T nM (I0)(p()) = θ(σ)(an−1, an−1) and T nM ′(I0)(p()) = θ(σ)(an−1, an−2). Hence, the in-
troduction of an intermediate step in the information transport of the mwmd M ′ (i.e., the
atom instance q′()) implies that the input values of the operation θ(σ) are, roughly speak-
ing, out of sync. Thus, the sequences

(

T nM(I0)(p()) | n ∈ N
)

and
(

T nM ′(I0)(p()) | n ∈ N
)

have ostensibly nothing in common. The differences between these two sequences intensify
if there are even more intermediate steps in M ′ or if the information is fed back, which
happens if the value of q() depends on the value of p().

We will resolve this problem differently for the finitary and infinitary fixpoint semantics.
In the case of the finitary semantics we will show that the sequence a0, a1, a2, . . . will be
ultimately constant, i.e., it will be constant for almost all indices; this implies that also
the sequences

(

θ(σ)(an−1, an−1) | n ∈ N
)

and
(

θ(σ)(an−1, an−2) | n ∈ N
)

will coincide
for almost all indices. In the case of the infinitary semantics we will show that the
sequences

(

T nM(I0)(p()) | n ∈ N
)

and
(

T nM ′(I0)(p()) | n ∈ N
)

are mutually cofinal and,
thus, that their suprema are equal. We conclude that we have to prove the following three
statements.

(i) For the finitary semantics: there are N,M ∈ N such that for every n,m ∈ N with
n ≥ N and m ≥M we have T nM (I0)(p()) = TmM ′(I0)(p()).

(ii) For the infinitary semantics: for every n ∈ N there is an m ∈ N with T nM (I0)(p()) ≤
TmM ′(I0)(p()), where ≤ is the order of the considered ω-continuous m-monoid.

(iii) For the infinitary semantics: for every m ∈ N there is an n ∈ N with TmM ′(I0)(p()) ≤
T nM (I0)(p()).

In general we have to prove these three statements not only for the atom instance p() but
for every1 atom instance in M and its corresponding atom instance in M ′.

The proofs of Statements (i) to (iii) are rather technical and laborious. Fortunately,
they share a common structure; this allows us to extract common parts of their proofs.

1Actually, Statement (i) does generally not hold for every atom instance. However, we are only required
to prove it for a special subset of atom instances; these are, roughly speaking, those atom instances
that q(ε) depends on, where q is the query predicate.

5.2. Relatedness 97

In the following generic lemma we have aggregated the common part of Statements (i)
to (iii). One of the parameters of this lemma is a reflexive relation, denoted by ⊲⊳. When
we will apply this lemma later in this section, we will instantiate this relation with the
following particular relations: the identity relation on the carrier set of the considered
m-monoid (for the proof of Statement (i)), the partial order relation of the ω-continuous
m-monoid (for the proof of Statement (ii)), and the inverse of the partial order relation
(for the proof of Statement (iii)).

Let us give an informal description of the following lemma. For all natural num-
bers n and m and atom instance c let us call the triple (n,m, c) proper if T nM (I0)(c) ⊲⊳
T mM ′(I0)(νt(c)) holds. Now the following lemma states that the triple (n + 1,m, c) is
proper given that certain other triples (n′,m′, d) (with smaller indices, i.e., n′ < n + 1
and m′ < m) are proper. This allows us to employ the following lemma in order to give
inductive proofs of Statements (i) to (iii).

Lemma 5.21. Let M and M ′ be strongly related via ν and π, A = (A,+,0, θ) be an
absorptive m-monoid over ∆, and t ∈ TΣ. Moreover, let ⊲⊳ be a reflexive relation on A
such that + and θ(δ), for every δ ∈ ∆, are monotone wrt ⊲⊳. Then for every c ∈ P (pos(t))
there is an l⊲⊳c ∈ N such that the following implication holds for every n,m ∈ N:

(i) if

• l⊲⊳c ≤ m or a ⊲⊳ 0 for every a ∈ A, and

• T nM(I0)(d) ⊲⊳ T m−j
M ′ (I0)(νt(d)) for every d ∈ P (pos(t)) with d ≺Gt c and for

every j ∈ [min(m, l⊲⊳c)],

(ii) then T n+1
M (I0)(c) ⊲⊳ T mM ′(I0)(νt(c)).

Proof. Let c ∈ P (pos(t)). We define the set C = {c′ ∈ P ′(pos(t)) | c′ ⊳∗t νt(c)} and
the relation < = ⊳t ∩ (C × C). Since ΦM,t,c is finite, also H ′

t

(

νt(c), ran(νt)
)

is finite due
to the definition of πt,c. Hence, Lemma 2.26 yields2 that <

+ is irreflexive. Since C is
finite and <

+ is an irreflexive relation on C, we obtain that < is well-founded on C. For
every c′ ∈ C we define the number kc′ ∈ N by well-founded recursion on < as follows:
kc′ = 1 + max{kd′ | d

′ ∈ C, d′ < c′}. Clearly, νt(c) ∈ C; we put l⊲⊳c = kνt(c).
Let n,m ∈ N and assume that Condition (i) holds. We need to show that Condition (ii)

holds as well. Choose an I ∈ IM ′ such that I(νt(d)) = T nM(I0)(d) for every d ∈ P (pos(t)).
Such an I exists because νt is injective. Before we proceed, we state an important fact
concerning the interpretation I.

Fact A. Let η ∈ TΦM′,t
(ran(νt)) such that there is a d′ ∈ ind(η) with H ′

t(d
′) = ∅. Then

hI(hM ′,t(η)) = 0.
Proof of Fact A. By Lemma 4.38 there is a d′ ∈ ind(hM ′,t(η)) with H ′

t(d
′) = ∅.

For this particular d′ we have d′ ∈ ind(hM ′,t(η)) = ind(η) ⊆ ran(νt). We obtain by
means of Corollary 5.17 that Ht(ν

−1
t (d′)) = ∅ and, hence, T nM (I0)(ν−1

t (d′)) = 0 due to
Lemma 4.17(1). The definition of I implies that hI(d

′) = I(d′) = 0. Thus, hI(hM ′,t(η)) =
0 by Lemma 3.9(1).

Continuation of the main proof. Now we define a set D ⊆ C as follows. For every c′ ∈ C
we let c′ ∈ D iff the following equation holds for every j ∈ {0, . . . ,min(m, l⊲⊳c − kc′)}:

∑

η∈H′
t(c

′,ran(νt))
hI(hM ′,t(η)) ⊲⊳ T

m−j
M ′ (I0)(c′) . (5.6)

2Here we apply Lemma 2.26 with the following instantiations: G = G′
t = Gdep

M′,t
, ⊳ = ⊳t, V = P ′(pos(t)),

v = νt(c), U = ran(νt), and V ′ = C.

98 5. Normal forms

We claim that νt(c) ∈ D. This claim implies Condition (ii) due to the following derivation:

T n+1
M (I0)(c) =

∑

(r,ρ)∈ΦM,t,c

hT n
M (I0)(ρ(rb))

=
∑

η∈H′
t(νt(c),ran(νt))

hT n
M (I0)

(

ρη((rη)b)
)

(where (rη, ρη) = π−1
t,c (η))

=
∑

η∈H′
t(νt(c),ran(νt))

hI
(

hνt

(

ρη((rη)b)
))

(it is easy to check that hνt ; hI = hT n
M

(I0) due to the definition of I)

=
∑

η∈H′
t(νt(c),ran(νt))

hI(hM ′,t(η)) (because M and M ′ are related)

⊲⊳ T mM ′(I0)(νt(c)) . (by our claim that νt(c) ∈ D, for the instance j = 0)

It remains to prove our claim, i.e., νt(c) ∈ D. To this end we show by well-founded
induction on < that for every c′ ∈ C we have c′ ∈ D. Let c′ ∈ C and assume that d′ ∈ D
for every d′ ∈ C with d′ < c′. We show that c′ ∈ D. Let j ∈ {0, . . . ,min(m, l⊲⊳c −kc′)}. We
prove that Equation (5.6) holds. First we consider the case that j = m. Then l⊲⊳c −kc′ ≥ m,
which implies l⊲⊳c ≥ m + kc′ ≥ m + 1 > m. By Condition (i) we conclude that a ⊲⊳ 0
for every a ∈ A. Hence,

∑

η∈H′
t(c

′,ran(νt))
hI(hM ′,t(η)) ⊲⊳ 0 = T 0

M ′(I0)(c′) = T m−j
M ′ (I0)(c′),

which proves Equation (5.6).
It remains to consider the case j < m. Let j′ = j + 1. Equation (5.6) results from the

following derivation:

∑

η∈H′
t(c

′,ran(νt))
hI(hM ′,t(η))

=
∑

e∈ΦM′,t,c′

∑

(η1,...,ηrk(e))∈H
e
1×···×He

rk(e)

hI(hM ′,t(e(η1, . . . , ηrk(e))) (by Lemma 5.13)

⊲⊳
∑

(r,ρ)∈ΦM′,t,c′
h
T m−j′

M′ (I0)
(ρ(rb)) . (⋆)

= T m−j
M ′ (I0)(c′) .

It remains to prove (⋆). Since + is monotone wrt ⊲⊳, it suffices to show for every e =
(r, ρ) ∈ ΦM ′,t,c′ that

∑

(η1,...,ηk)∈He
1×···×He

k

hI(hM ′,t(e(η1, . . . , ηk)) ⊲⊳ h
T m−j′

M′ (I0)
(ρ(rb)) , (5.7)

where k = rk(e).
Let e = (r, ρ) ∈ ΦM ′,t,c′ and k = rk(e). We distinguish two cases in order to prove

Equation (5.7).
Case 1: There is an i ∈ [k] such that H ′

t(ini(e)) = ∅. We show that the left- and
the right-hand side of Equation (5.7) are equal to 0. For every ηi ∈ He

i there is a
d′ ∈ ind(ηi) with H ′

t(d
′) = ∅ because of Lemma 5.20(2). Thus, for every (η1, . . . , ηk) ∈

He
1 × · · · ×H

e
k there is a d′ ∈ ind(e(η1, . . . , ηk)) with H ′

t(d
′) = ∅; then Fact A yields that

hI
(

hM ′,t(e(η1, . . . , ηk))
)

= 0. Since this holds for arbitrary (η1, . . . , ηk) ∈ H
e
1 × · · · ×H

e
k,

we obtain that the left-hand side of Equation (5.7) is equal to 0.
Now consider the right-hand side of Equation (5.7). Since there is an i ∈ [k] such that

H ′
t(ini(e)) = ∅, we conclude that there is a d′ ∈ ind(ρ(rb)) such that H ′

t(d
′) = ∅ because

of Observation 4.11(2). Lemma 4.17(2) yields that the right-hand side of Equation (5.7)
is equal to 0. Since both the left- and the right-hand side of Equation (5.7) are equal to
0 and since ⊲⊳ is reflexive, we obtain that Equation (5.7) holds.

5.2. Relatedness 99

Case 2: H ′
t(ini(e)) 6= ∅ for every i ∈ [k]. Then Lemma 5.20(1) yields that ini(e) ≺G′

t
c′

for every i ∈ [k]. Let us state and prove another fact before we proceed with the main
proof of Case 2.

Fact B. For every for every i ∈ [k] we have

∑

η∈He
i

hI(hM ′,t(η)) ⊲⊳ T
m−j′

M ′ (I0)(ini(e)) .

Proof of Fact B. Let i ∈ [k]. First we consider the case that ini(e) 6∈ ran(νt). Then
ini(e) ⊳t c

′ because ini(e) ≺G′
t
c′. This implies ini(e) ∈ C because c′ ∈ C. Hence, ini(e) <

c′ and the induction hypothesis yields that ini(e) ∈ D. Moreover, ini(e) < c′ implies
kini(e) < kc′ . Since also j < m and j ∈ {0, . . . ,min(m, l⊲⊳c − kc′)}, we conclude j′ = j+ 1 ∈
{0, . . . ,min(m, l⊲⊳c − kini(e))}. Thus, ini(e) ∈ D implies

∑

η∈H′
t(ini(e),ran(νt))

hI(hM ′,t(η)) ⊲⊳

T m−j′

M ′ (I0)(ini(e)). Then Fact B follows from the fact that He
i = H ′

t(ini(e), ran(νt)) when-
ever ini(e) 6∈ ran(νt).

Now we consider the case that ini(e) ∈ ran(νt). Let d ∈ P (pos(t)) such that νt(d) =
ini(e). Then He

i = {ini(e)} = {νt(d)} and
∑

η∈He
i
hI(hM ′,t(η)) = hI

(

hM ′,t(νt(d))
)

=

hI(νt(d)) = I(νt(d)) = T nM (I0)(d) by the definition of I. It remains to prove that

T nM (I0)(d) ⊲⊳ T m−j′

M ′ (I0)(νt(d)). Since νt(d) = ini(e) ≺G′
t
c′ and c′ ⊳∗t νt(c) (because

c′ ∈ C) we obtain that d ≺Gt c due to Lemma 5.16(3). Therefore Condition (i) of

this Lemma yields that T nM(I0)(d) ⊲⊳ T m−j′

M ′ (I0)(νt(d)) because j′ ∈ [min(m, l⊲⊳c)] (which
follows from the facts that j < m, kc′ ≥ 1 and j′ − 1 = j ∈ {0, . . . ,min(m, l⊲⊳c − kc′)}).

Continuation of the main proof of Case 2. We distinguish two subcases.

Case 2.1. ρ(rb) ∈ P
′(pos(t)). Then k = rk(e) = 1 and indyield(ρ(rb)) = ρ(rb) = in1(e).

We prove Equation (5.7) as follows by means of Fact B:

∑

η1∈He
1

hI(hM ′,t(e(η1)) =
∑

η1∈He
1

hI
(

ρ(rb)← hM ′,t(η1)
)

=
∑

η1∈He
1

hI(hM ′,t(η1)) ⊲⊳ T
m−j′

M ′ (I0)(in1(e)) = h
T m−j′

M′ (I0)
(ρ(rb)) .

Case 2.2. ρ(rb) 6∈ P ′(pos(t)). Let i ∈ [k]. First we show that He
i 6= ∅. If ini(e) ∈

ran(νt), then He
i = {ini(e)} 6= ∅. If ini(e) 6∈ ran(νt), then He

i = H ′
t(ini(e), ran(νt)) and

Lemma 5.20(1) yields that He
i 6= ∅.

Let η, η′ ∈ He
i . We make one observation.

• Assume that H ′
t(d

′) 6= ∅ for every d′ ∈ ind(η) ∪ ind(η′). Since c′ ∈ C, we have
c′ ⊳∗t νt(c). Therefore, all premises of Lemma 5.20(3) are satisfied and we obtain
that η = η′.

Hence, η = η′ or there is a d′ ∈ ind(η)∪ ind(η′) such that H ′
t(d

′) = ∅. Therefore and since
He
i 6= ∅ we conclude that there is an η̃i ∈ H

e
i such that for every η′ ∈ He

i \ {η̃i} there is
a d′ ∈ ind(η′) with H ′

t(d
′) = ∅ (hence, hI(hM ′,t(η

′)) = 0 by Fact A). Thus, by means of
Fact B we obtain that

hI(hM ′,t(η̃i)) =
∑

η∈He
i

hI(hM ′,t(η)) ⊲⊳ T
m−j′

M ′ (I0)(ini(e)) . (5.8)

Note that, if there is an η ∈ He
i such that H ′

t(d
′) 6= ∅ for every d′ ∈ ind(η), then η̃i is

uniquely determined (because then η̃i must be this particular η). Otherwise, if for every

100 5. Normal forms

η ∈ He
i there is a d′ ∈ ind(η) with H ′

t(d
′) = ∅, then η̃i can be chosen arbitrarily from He

i .
We choose η̃1 ∈ H

e
1 , . . . , η̃k ∈ H

e
k in such a way that for every i, l ∈ [k] with He

i = He
l we

have η̃i = η̃l. Such a choice clearly exists.
For every i, l ∈ [k] with ini(e) = inl(e) we have that also He

i = He
l and, thus, η̃i = η̃l.

Hence, the mapping g : ind(ρ(rb))→ T∆(P ′(pos(t))) with g(ini(e)) = hM ′,t(η̃i), for every
i ∈ [k], is well-defined. Let h′ be the unique ∆-homomorphism from T∆

(

ind(ρ(rb))
)

to
(A, θ) extending g ; hI . Then for every i ∈ [k] we obtain by means of Equation (5.8)

that h′(ini(e)) = hI(g(ini(e))) = hI(hM ′,t(η̃i)) ⊲⊳ T
m−j′

M ′ (I0)(ini(e)) = h
T m−j′

M′ (I0)
(ini(e)).

Therefore we can apply Lemma 3.10 and obtain that h′(ρ(rb)) ⊲⊳ h
T m−j′

M′ (I0)
(ρ(rb)). We

derive
∑

(η1,...,ηk)∈He
1×···×He

k

hI(hM ′,t(e(η1, . . . , ηk))

= hI(hM ′,t(e(η̃1, . . . , η̃k)) (by Fact A and the definition of η̃1, . . . , η̃k)

= hI
(

ρ(rb)← hM ′,t(η̃1) · · · hM ′,t(η̃k)
)

= hI
(

ρ(rb)← g(in1(e)) · · · g(ink(e))
)

= h′(ρ(rb)) (by Lemma 3.14(2))

⊲⊳ h
T m−j′

M′ (I0)
(ρ(rb)) .

This finishes the proof of Equation (5.7). �

Now we will prove Statement (i), i.e., that the finitary fixpoint semantics coincide given
that M and M ′ are strongly related.

Lemma 5.22. Let M and M ′ be strongly related via ν and π, and A = (A,+,0, θ) be
an absorptive m-monoid over ∆. Suppose that M is weakly non-circular. Then [[M]]fix

A =
[[M ′]]fix

A .

Proof. Let t ∈ TΣ. We define the set C = {c ∈ P (pos(t)) | c ≺∗
Gt
q(ε)} and the relation

< = ≺Gt ∩ (C × C). Since M is weakly non-circular, Ht(q(ε)) is finite. Then <
+ is

irreflexive due to Lemma 2.26.3 Thus, < is well-founded on C because C is finite. For
every c ∈ C we define the number kc ∈ N by well-founded recursion as follows: kc =
1 + max{kd | d ∈ C, d < c}. We claim that for every c ∈ C there is a number jc ∈ N such
that for every n,m ∈ N with n ≥ kc and m ≥ jc we have T n+1

M (I0)(c) = T mM ′(I0)(νt(c)).
This claim together with Lemma 4.19 and the facts that q(ε) ∈ C and νt(q(ε)) = q′(ε)

yields T
|P (pos(t))|
M (I0)(q(ε)) = T

|P ′(pos(t))|
M ′ (I0)(q′(ε))); hence, [[M]]fix

A (t) = [[M ′]]fix
A (t).

It remains to prove our claim. We give a proof by well-founded induction on the relation
<. Let c ∈ C and let lidA

c be the number from Lemma 5.21 (note that idA is a reflexive
relation on A and that + as well as θ(δ), for every δ ∈ ∆, are monotone wrt idA). We
put jc = lidA

c + max{jd | d ∈ P (pos(t)), d < c}.
Let n,m ∈ N such that n ≥ kc andm ≥ jc. We show that T n+1

M (I0)(c) = T mM ′(I0)(νt(c)).
By Lemma 5.21 it suffices to show that

• lidA
c ≤ m and

• T nM (I0)(d) = T m−j
M ′ (I0)(νt(d)) for every d ∈ P (pos(t)) with d ≺Gt c and for every

j ∈ [min(m, lidA
c)].

3Note that we applied Lemma 2.26 with the instantiations G = Gt = Gdep
M,t, U = ∅, ⊳ =≺Gt

, and V ′ = C.

5.2. Relatedness 101

The first item follows from m ≥ jc ≥ lidA
c . Now we prove that the second item holds as

well. Let d ∈ P (pos(t)) with d ≺Gt c and let j ∈ [min(m, lidA
c)]. Since c ∈ C, we have

c ≺∗
Gt

q(ε) and, thus, d ≺∗
Gt

q(ε). This implies d ∈ C and d < c. Hence, kc > kd and

jc ≥ lidA
c + jd. Then the facts that n ≥ kc, m ≥ jc, and j ≤ lidA

c imply n − 1 ≥ kd and
m− j ≥ jd. Due to the induction hypothesis we obtain T nM(I0)(d) = T m−j

M ′ (I0)(νt(d)). �

Now we will prove the equivalence of the infinitary fixpoint semantics; this involves the
proofs of Statements (ii) and (iii).

Lemma 5.23. Let M and M ′ be strongly related via ν and π, and A = (A,+,0, θ) be an
absorptive m-monoid over ∆. Moreover, let (A,≤) be an ω-continuous m-monoid. Then
[[M]]fix

(A,≤) = [[M ′]]fix
(A,≤).

Proof. Let t ∈ TΣ. We claim that

(i) For every n there is an m such that for every c ∈ P (pos(t)) we have T nM (I0)(c) ≤
T mM ′(I0)(νt(c)).

(ii) For every m there is an n such that for every c ∈ P (pos(t)) we have T mM ′(I0)(νt(c)) ≤
T nM(I0)(c).

Due to these claims and the fact that νt(q(ε)) = q′(ε), the sets {T nM (I0)(q(ε)) | n ∈ N}
and {T nM ′(I0)(q′(ε)) | n ∈ N} are mutually cofinal. Lemmas 3.25(2), 4.26, and 4.28 imply
that T ωM (q(ε)) = ∨{T nM(I0)(q(ε)) | n ∈ N} = ∨{T nM ′(I0)(q′(ε)) | n ∈ N} = T ωM ′(q′(ε)).
Hence, [[M]]fix

(A,≤)(t) = [[M ′]]fix
(A,≤)(t).

It remains to prove both claims. By Observation 3.28(2) we have that + and θ(δ), for
every δ ∈ ∆, are monotone wrt ≤ because (A,≤) is an ω-continuous m-monoid. Let ≥ be
the inverse relation of ≤. Clearly, + and θ(δ), for every δ ∈ ∆, are also monotone wrt ≥.

First we prove Claim (i). To this end we show by induction on n that for every n ∈ N

there is an Mn ∈ N such that for every m ∈ N with m ≥Mn and every c ∈ P (pos(t)) we
have T nM (I0)(c) ≤ T mM ′(I0)(νt(c)).

Induction base. For n = 0 we put Mn = 0. Clearly, for every m ∈ N with m ≥Mn and
every c ∈ P (pos(t)) we have T 0

M (I0)(c) = 0 ≤ T mM ′(I0)(νt(c)).

Induction step. Let n ∈ N and assume that there is an Mn ∈ N such that for every
m ∈ N with m ≥ Mn and every c ∈ P (pos(t)) we have T nM (I0)(c) ≤ T mM ′(I0)(νt(c)). We
let Mn+1 = Mn + max{l≤c | c ∈ P (pos(t))}, where l≤c is the number from Lemma 5.21, for
every c ∈ P (pos(t)). Let m ∈ N with m ≥Mn+1 and let c ∈ P (pos(t)). We need to show
that T n+1

M (I0)(c) ≤ T mM ′(I0)(νt(c)). In view of Lemma 5.21 it suffices to show that

• l≤c ≤ m and

• T nM(I0)(d) ≤ T m−j
M ′ (I0)(νt(d)) for every d ∈ P (pos(t)) and j ∈ [min(m, l≤c)].

The first item follows from the fact that m ≥ Mn+1 ≥ l≤c and the second item follows
from the fact that j ≤ l≤c implies m− j ≥Mn+1− l

≤
c ≥Mn and the induction hypothesis.

Next we prove Claim (ii). We show by induction on m that for every m ∈ N there is
an Nm ∈ N such that for every n ∈ N with n ≥ Nm and every c ∈ P (pos(t)) we have
T nM (I0)(c) ≥ T mM ′(I0)(νt(c)).

Induction base. For m = 0 we put Nm = 0. Clearly, for every n ∈ N with n ≥ Nm and
every c ∈ P (pos(t)) we have T nM (I0)(c) ≥ 0 = T 0

M ′(I0)(νt(c)).

102 5. Normal forms

Induction step. Let m ∈ N and assume that there is an Nm ∈ N such that for every
n ∈ N with n ≥ Nm and every c ∈ P (pos(t)) we have T nM (I0)(c) ≥ T mM ′(I0)(νt(c)). We let
Nm+1 = Nm + 1. Let n ∈ N with n ≥ Nm+1 and let c ∈ P (pos(t)). We need to show that
T nM (I0)(c) ≥ T m+1

M ′ (I0)(νt(c)).

Let d ∈ P (pos(t)). Clearly, n ≥ Nm+1 and, hence n−1 ≥ Nm. Then the induction hy-
pothesis yields T n−1

M (I0)(d) ≥ T mM ′(I0)(νt(d)). Since Lemma 4.28 implies T mM ′(I0)(νt(d)) ≥

T m
′

M ′ (I0)(νt(d)) for every m′ ∈ N with m′ ≤ m, we have T n−1
M (I0)(d) ≥ T m+1−j

M ′ (I0)(νt(d))
for every j ∈ [m].

Therefore Lemma 5.21 together with the fact that a ≥ 0, for every a ∈ A, yields that
T nM (I0)(c) ≥ T m+1

M ′ (I0)(νt(c)). �

Lemma 5.24. Let M and M ′ be strongly related via ν and π. Then M and M ′ are
completely equivalent.

Proof. Clearly, M and M ′ are related and therefore hyp-equivalent due to Lemma 5.18.
The remainder of this proof follows from Lemmas 5.22 and 5.23. �

This finishes the proof of Theorem 5.11. We conclude this section with a lemma that
provides a simple condition that guarantees that two mwmd are strongly related. This
lemma will be useful later in this chapter because it simplifies proofs that two particular
mwmd are strongly related.

Lemma 5.25. Let M and M ′ be related via ν and π. Suppose that for every t ∈ TΣ,
c′ ∈ P ′(pos(t)), e = (r, ρ) ∈ ΦM ′,t,c′, and i ∈ [rk(e)] with ρ(rb) 6∈ P ′(pos(t)) and ini(e) 6∈
ran(νt) we have that |H ′

t(ini(e), ran(νt))| ≤ 1. Then M and M ′ are strongly related.

Proof. Let t ∈ TΣ, c ∈ P (pos(t)), η, η′ ∈ H ′
t

(

νt(c), ran(νt)
)

, w ∈ pos(η) ∩ pos(η′), and
(r, ρ) ∈ ΦM ′,t, such that such that η|w 6∈ ran(νt), η

′|w 6∈ ran(νt), (r, ρ) = η(w) = η′(w),
ρ(rb) 6∈ P ′(pos(t)), and η(w′) = η′(w′) for every prefix w′ of w. We show that η|w = η′|w.

Let e = (r, ρ), c′ = out(e), and k = rk(e). By Lemma 2.15 we have that η|w, η
′|w ∈

H ′
t(c

′, ran(νt)). Then in order to show that η|w = η′|w it suffices to show that, for every
i ∈ [k], we have |He

i | ≤ 1 due to Lemma 5.13. Let i ∈ [k]. If ini(e) ∈ ran(νt) we have
He
i = {ini(e)} and, hence |He

i | = 1. If ini(e) 6∈ ran(νt), then He
i = H ′

t(ini(e), ran(νt)) and
|He

i | ≤ 1 follows by assumption. �

5.3 Proper

In this section we show that for every mwmd there is a completely equivalent proper
mwmd. Moreover, we show that we can carry out this construction in such a way that
restrictedness and connectedness are preserved; hence, for every restricted mwmd there is
a completely equivalent proper and restricted mwmd, and likewise for connected mwmd.

Let us motivate our construction. Given an mwmd M having a nullary user-defined
predicate p(0) we need to construct an mwmd M ′ that has a unary predicate p′(1) instead.
The simplest way to construct M ′ is by replacing in every rule r every occurrence of p()
by p′(x), where x is a new variable, and adding the atom root(x) to the guard of the rule.
Hence, the atom instance p′(ε) in M ′ does simulate the behavior of the atom instance p()
in M ; p() corresponds to p′(ε). The other atom instances involving p′ (e.g., p′(211)) are
virtually inactive; they have no effect on the behavior of M ′.

5.3. Proper 103

This naive construction is simple but it is easy to see that in general it does neither
preserve restrictedness nor connectedness (the new variable x is not connected to the other
variables is the rule). A more sophisticated approach is not to introduce a new variable x
in the rule but use one of the variables y that is already present in the rule r; then replace
p() by p′(y) instead of p′(x). This construction does preserve connectedness (but not
necessarily restrictedness; for the sake of simplicity let us disregard this problem in this
informal motivation). However, now the transport of information may be disconnected: if
p() is the head of r, then the head of the resulting rule r′ is p′(y) and for any rule instance
(r′, ρ) of r′ the output vertex is p′(ρ(y)) instead of p′(ε), as it should be. Similarly, for
every occurrence of p() in the body of r the according input vertex of the rule instance
(r′, ρ) is p′(ρ(y)) instead of p′(ε).

We can remedy this by introducing transport rules inM ′ that reconnect the information
transport. These are rules for transporting information upwards to the root of the tree
and rules for transporting information downwards from the root of the tree. The upward
transport rules are of the form p′(x) ← p′(y) ; childi(x, y) and ensure that, if p() is the
head of the rule r, then the output vertex p′(ρ(y)) of the rule instance (r′, ρ) is connected
to the atom instance p′(ε). The downward transport rules are of the form p′(y)← p′(x) ;
childi(x, y) and ensure that, if p() occurs in the body of the rule r, then the atom instance
p′(ε) is connected to any input vertex p′(ρ(y)) of the rule instance (r′, ρ).

Unfortunately, this construction introduces loops in the information transport and,
thus, the resulting mwmd M ′ may not be weakly non-circular anymore. This is due to
the problem that upward and downward information transport are not separated, both
of them are based on the predicate p′. We solve this problem as follows: instead of p′

we introduce two variants of this predicate, namely p′in and p′out. We will use p′out for
upward information transport and will replace the atom p() in the head of any rule by
p′out(y) (for an appropriate variable y). Likewise, p′in is used for downward information
transport and we will replace any occurrence of p() in the body of any rule by p′in(y).
Additionally, we need to add a rule to M ′ that ensures that, roughly speaking, upward
and downward transport are connected to each other at the root of the input tree, i.e.,
the rule p′in(x)← p′out(x) ; root(x). Then the atom instance p() in M corresponds both to
p′in(ε) and p′out(ε) in M ′.

Lemma 5.26 (cf. [28, Lemma 5]). Let M be an mwmd over Σ and ∆. Then there is
a proper mwmd M ′ over Σ and ∆ such that

1. M and M ′ are completely equivalent, and

2. if M is restricted, then M ′ is restricted,

3. if M is connected, then M ′ is connected.

Proof. The construction that we carry out in this proof depends on whether M is
restricted or connected. First we assume that M is either connected or not restricted. We
consider the case that M is restricted but not connected at the end of this proof.

Let M = (P,R, q). For every rule r ∈ R we define the variable xr as follows: (i) if
var(r) 6= ∅, then we choose xr ∈ var(r) arbitrarily and (ii) otherwise we choose xr ∈ V
arbitrarily.

We define M ′ = (P ′, R′, q) as follows:

P ′ = P (1) ∪ {p
(1)
in | p ∈ P

(0)} ∪ {p
(1)
out | p ∈ P

(0)} ,

104 5. Normal forms

R′ = {r̄ | r ∈ R} ∪ {rup
p,i | p ∈ P

(0), i ∈ [maxrk(Σ)]}

∪ {rdown
p,i | p ∈ P (0), i ∈ [maxrk(Σ)]}

∪ {rtrans
p | p ∈ P (0)} ,

where for every r ∈ R the rule r̄ is obtained from r as follows:

• (i) if rh = p(x) for some p ∈ P (1) and x ∈ V, then r̄h = rh and (ii) if rh = p() for
some p ∈ P (0), then r̄h = pout(xr),

• r̄b originates from rb by replacing for every p ∈ P (0) every occurrence of p() by
pin(xr),

• r̄G = rG if var(r) 6= ∅ and r̄G = {root(xr)} otherwise.

Moreover, for every p ∈ P (0) and i ∈ [maxrk(Σ)] we let

rup
p,i = pout(xε)← pout(xi) ; childi(xε, xi) ,

rdown
p,i = pin(xi)← pin(xε) ; childi(xε, xi) ,

rtrans
p = pin(xε)← pout(xε) ; root(xε) .

We have to show that Conditions 1, 2, and 3 of this lemma hold. First let us prove
Conditions 2 and 3. Since we assumed that M is either connected or not restricted, it
suffices to show that M ′ is connected whenever M is connected because every connected
mwmd is also restricted due to Observation 5.3. Assume that M is connected. For every
p ∈ P (0) and i ∈ [maxrk(Σ)] the rules rup

p,i, r
down
p,i , and rtrans

p are obviously connected.
It remains to show that r̄ is connected for every r ∈ R; if var(r) 6= ∅, then obviously
var(r) = var(r̄) and ∼r = ∼r̄; if var(r) = ∅, then var(r̄) = {xr} and r̄ is trivially
connected.

Now we show Condition 1, i.e., that M and M ′ are completely equivalent. In view of
Lemma 5.24 it suffices to show that there are families ν and π such that M and M ′ are
strongly related via ν and π.

Let t ∈ TΣ. We define the injective mapping νt : P (pos(t)) → P ′(pos(t)) as follows for
every p ∈ P and w ∈ pos(t): (i) if p ∈ P (0), then νt(p()) = pout(ε), and (ii) if p ∈ P (1),
then νt(p(w)) = p(w).

Let c′ ∈ P ′(pos(t)) and let us study the set ΦM ′,t,c′ . First consider the case that
c′ = pin(ε) for some p ∈ P (0). Then ΦM ′,t,c′ = {etrans

p }, where etrans
p is the hyperedge

(rtrans
p , [xε 7→ w]). Observe that rk(etrans

p) = 1 and in1(e
trans
p) = pout(ε).

Next we consider the case that c′ = pin(wi) for some p ∈ P (0), w ∈ pos(t), and
i ∈ N+ such that wi ∈ pos(t). Then we obtain that ΦM ′,t,c′ = {edown

p,w,i }, where edown
p,w,i =

(rdown
p,i , [xε 7→ w, xi 7→ wi]). Clearly, rk(edown

p,w,i) = 1 and in1(e
down
p,w,i) = pin(w).

Now assume that c′ = p(w) for some p ∈ P (1) and w ∈ pos(t). Then we have that
also c′ ∈ P (pos(t)). Observe that for every (r, ρ) ∈ ΦM ′,t,c′ the rule r must be of the
form r̄0 for some r0 ∈ R such that rh = (r̄0)h = (r0)h = p(x) for some x ∈ V; hence,
var(r0) 6= ∅ and, thus, xr ∈ var(r0), var(r) = var(r0), and rG = (r̄0)G = (r0)G; we obtain
that (r0, ρ) ∈ ΦM,t,c′. The converse holds as well, i.e., for every (r0, ρ) ∈ ΦM,t,c′ we have
(r̄0, ρ) ∈ ΦM ′,t,c′ . We conclude that ΦM ′,t,c′ = {(r̄, ρ) | (r, ρ) ∈ ΦM,t,c′}. Let (r, ρ) ∈
ΦM,t,c′. Then rk((r̄, ρ)) = rk((r, ρ)) and for every i ∈ [rk((r, ρ))] we have that ini((r̄, ρ)) =
ini((r, ρ)) if ini((r, ρ)) ∈ P

(1)(pos(t)), and ini((r̄, ρ)) = p′in(ρ(xr)) if ini((r, ρ)) = p′() for
some p′ ∈ P (0).

5.3. Proper 105

In a similar fashion one can analyze the case that c′ = pout(w) for some p ∈ P (0) and
w ∈ pos(t). For every i ∈ N+ let eup

p,w,i = (rup
p,i, [xε 7→ w, xi 7→ wi]); then we obtain that

ΦM ′,t,c′ = {eup
p,w,i | i ∈ N+, wi ∈ pos(t)}

∪ {(r̄, ρ) | (r, ρ) ∈ ΦM,t,p(), var(r) 6= ∅, ρ(xr) = w}

∪ {(r̄, [xε 7→ ε]) | (r, ∅) ∈ ΦM,t,p(), var(r) = ∅, w = ε} .

The last line results from the fact that for every r ∈ R with var(r) = ∅ we have that
rG = ∅, xr = xε, and r̄G = {root(xε)}. For every i ∈ N+ with wi ∈ pos(t) we have that
rk(eup

p,w,i) = 1 and in1(e
up
p,w,i) = pout(wi).

Now we are prepared to study the sets H ′
t(c

′, ran(νt)) for every c′ ∈ P ′(pos(t)), where
ran(νt) = P (1)(pos(t)) ∪ {pout(ε) | p ∈ P

(0)}. Note that in the remainder of this proof
we will make heavy use of Lemma 5.13 without referring to it explicitely. If c′ = pin(w)
for some w ∈ pos(t), then there are n ∈ N and i1, . . . , in ∈ N+ such that w = i1 · · · in.
Then it is easy to see that H ′

t(pin(w), ran(νt)) = {ηin,w}, where the single element ηin,p,w

is defined as

ηin,p,w = edown
p,i1···in−1,in

(edown
p,i1···in−2,in−1

(· · · (edown
p,ε,i1

(etrans
p (pout(ε))) · · ·)) .

Clearly, hM ′,t(ηin,p,w) = pout(ε).
The other cases are slightly more complex. In order to deal with them in a succinct way

let us introduce an auxiliary definition. Let (r, ρ) ∈ ΦM,t. We let kr,ρ = rk((r, ρ)) and, for
every i ∈ [kr,ρ], let ηr,ρi = ini((r, ρ)) if ini((r, ρ)) ∈ P

(1)(pos(t)) and let ηr,ρi = ηin,p′,ρ(xr) if

ini((r, ρ)) = p′() for some p′ ∈ P (0); observe that hM ′,t(η
r,ρ
i) = νt(ini((r, ρ))).

Now we consider the case that c′ = p(w) for some p ∈ P (1) and w ∈ pos(t). It is easy
to check that

H ′
t(p(w), ran(νt)) = {(r̄, ρ)(ηr,ρ1 , . . . , ηr,ρkr,ρ

) | (r, ρ) ∈ ΦM,t,c′} ,

and that hM ′,t(r̄, ρ)(η
r,ρ
1 , . . . , ηr,ρkr,ρ

) = hνt(ρ(rb)) for every (r, ρ) ∈ ΦM,t,c′ .

Finally, we consider the atom instances of the form pout(w) for some p ∈ P (0) and
w ∈ pos(t). Let (r, ρ) ∈ ΦM,t,p(). Let ρ′ = ρ if var(r) 6= ∅ and let ρ = [xε 7→ ε]
otherwise. Moreover, let w = ρ′(xr). It is easy to see that the hyperpath segment ηout

r,ρ =
(r̄, ρ′)(ηr,ρ1 , . . . , ηr,ρkr,ρ

) is an element of the set H ′
t(pout(w), ran(νt)) and that hM ′,t(η

out
r,ρ) =

hνt(ρ(rb)). There are n ∈ N and i1, . . . , in ∈ N+ such that w = i1 · · · in. We let

η̂out
r,ρ = eup

p,ε,i1
(eup
p,i1···i1,i2

(· · · (eup
p,i1···in−1,in

(ηout
r,ρ)) · · ·)) .

Clearly, η̂out
r,ρ ∈ H

′
t(pout(ε), ran(νt)) and hM ′,t(η̂

out
r,ρ) = hM ′,t(η

out
r,ρ) = hνt(ρ(rb)); we obtain

that

H ′
t(pout(ε), ran(νt)) = {η̂out

r,ρ | (r, ρ) ∈ ΦM,t,p()} .

For every c ∈ P (pos(t)) we define the mapping πt,c : ΦM,t,c → H ′
t

(

νt(c), ran(νt)
)

as follows:

if c ∈ P (1)(pos(t)), then, for every (r, ρ) ∈ ΦM,t,c, we let πt,c(r, ρ) = (r̄, ρ)(ηr,ρ1 , . . . , ηr,ρkr,ρ
).

Otherwise, if c = p() for some p ∈ P (0), then for every (r, ρ) ∈ ΦM,t,c we let πt,c(r, ρ) =
η̂out
r,ρ .
We have already shown that for every c ∈ P (pos(t)) and (r, ρ) ∈ ΦM,t,c we have

hνt(ρ(rb)) = hM ′,t(πt,c(r, ρ)). Therefore and due to the fact that νt(q(ε)) = q(ε) we

106 5. Normal forms

conclude that M and M ′ are related via the families ν = (νt | t ∈ TΣ) and π =
(

πt,c | t ∈
TΣ, c ∈ P (pos(t))

)

.

It remains to show that M and M ′ are also strongly related via ν and π. By Lemma 5.25
it suffices to show that for every t ∈ TΣ, c′ ∈ P ′(pos(t)), e = (r′, ρ′) ∈ ΦM ′,t,c′ , and i ∈
[rk(e)] with ρ′(r′b) 6∈ P ′(pos(t)) and ini(e) 6∈ ran(νt) we have that |H ′

t

(

ini(e), ran(νt)
)

| ≤ 1.
It is easy to check that the condition ρ′(r′b) 6∈ P

′(pos(t)) yields that r′ = r̄ for some r ∈ R.
Then the condition ini(e) 6∈ ran(νt) implies that ini(e) = pin(w) for some w ∈ pos(t). We
have already shown that H ′

t

(

pin(w), ran(νt)
)

= {ηin,w}; hence, |H ′
t

(

ini(e), ran(νt)
)

| ≤ 1.

This finishes the proof for the case that M is either connected or not restricted. Now
let us consider the case that M is restricted but not connected. We will give an informal
proof because this case can be handled similarly to the first one.

Due to Condition 2 the mwmd M ′ needs to be restricted, too. The construction that
we carried out above (for the case that M is either connected or not restricted) will
not satisfy Condition 2 in general. This is witnessed by the following example. Assume
that R contains a rule r such that rb = δ

(

σ(p(x), r(), p(x)), σ(p(y), r(), p(y))
)

, where

σ ∈ ∆(3), δ ∈ ∆(2), p ∈ P (1), and r ∈ P (0). Moreover, assume that rG = ∅; hence,
x 6∼r y, i.e., the rule r is not connected, but it is easy to check that r is restricted.
When applying the construction that we described above, we obtain for the rule r̄ that
r̄b = δ

(

σ(p(x), rin(xr), p(x)), σ(p(y), rin(xr), p(y))
)

where xr is some variable xr ∈ var(r)
(e.g., xr = x or xr = y). Then we have that xr 6∼r̄ x or xr 6∼r̄ y must hold. This implies
that r̄ is not restricted.

The reason for this problem is that we used the same variable xr at every occurrence
of the predicate rin. This is not necessary. Instead we could replace the first occurrence
of xr by the variable x and the second occurrence of xr by the variable y, i.e., r̄b =
δ
(

σ(p(x), rin(x), p(x)), σ(p(y), rin(y), p(y))
)

; this yields a restricted rule.

In general the mwmd M ′ is defined similarly to the case that M is either connected or
not restricted. However, for every r ∈ R the body r̄b of the rule r̄ is obtained from rb by
replacing for every p ∈ P (0) and w ∈ pos(rb) with rb(w) = p() the occurrence of p() in rb
at the position w by pin(x), where the variable x is defined as follows:

(i) if there is an equivalence class C ∈ var(r)/∼r such that C ∩ var(rb) 6= ∅, and wC
is a prefix of w (where wC is the position from Definition 5.1), then choose x ∈ C
arbitrary,

(ii) otherwise let x = xp,w be a new variable that does not occur in r and add root(xp,w)
to r̄G.

Then the rule r̄ is restricted. The proof that M and M ′ are completely equivalent is
similar to the case that M is either connected or not restricted. �

The following corollary is an immediate consequence of Lemma 5.26 and the definition
of completely equivalent mwmd.

Corollary 5.27. Let A be an m-monoid over ∆, (A,≤) be an ω-continuous m-monoid,
and (A,

∑

) be an ω-complete m-monoid. Then for every x ∈ {ε, r, c}

x–WMDhyp(Σ,∆,A) = px–WMDhyp(Σ,∆,A) ,

x–WMDhyp
(

Σ,∆, (A,
∑

)
)

= px–WMDhyp
(

Σ,∆, (A,
∑

)
)

,

5.4. Connected 107

moreover, if A is absorptive, then

x–WMDfix(Σ,∆,A) = px–WMDfix(Σ,∆,A) ,

x–WMDfix
(

Σ,∆, (A,≤)
)

= px–WMDfix
(

Σ,∆, (A,≤)
)

.

Note that if x = ε, then, e.g., x–WMDhyp(Σ,∆,A) denotes WMDhyp(Σ,∆,A).

5.4 Connected

In this section we deal with restricted and connected mwmd. Clearly, the class of restricted
mwmd is a subclass of the class of all mwmd and the class of connected mwmd is a subclass
of the class of all restricted mwmd (see Observation 5.3). We will study whether (i) every
mwmd can be transformed into a (hyp- or completely) equivalent restricted one and
(ii) whether such a transformation exists from the class of restricted mwmd to the class
of connected mwmd. It turns out that the answer to both problems is negative. In fact,
in this section we will prove the following three statements.

Statement C1: We will show that there is a restricted mwmd such that there is no hyp-
equivalent connected mwmd (see Lemma 5.30).

Statement C2: However, we show that for every restricted mwmd there is a connected
mwmd such that their hyperpath and fixpoint semantics coincide for a certain sub-
class of m-monoids, namely the class of idempotent and distributive m-monoids (see
Corollary 5.34).

Statement C3: We will show that there is an mwmd such that there is no a hyp-equivalent
restricted mwmd (see Lemma 5.35).

Proof of Statement C1

We show that there is a restricted mwmd such that there is no hyp-equivalent connected
mwmd. First let us give two lemmas that state basic properties of connected mwmd.

For the remainder of this chapter we fix a ranked alphabet Σ and a signature ∆.
Moreover we fix an mwmd M = (P,R, q) over Σ and ∆.

Lemma 5.28. Let r ∈ R be connected and let X ⊆ var(r), x ∈ X, and y ∈ var(r) \X.
Then there are z ∈ X, z′ ∈ var(r) \X, and i ∈ [maxrk(Σ)] such that childi(z, z

′) ∈ rG or
childi(z

′, z) ∈ rG.

Proof. Since r is connected, we have x ∼r y. Therefore there are n ∈ N, x0, . . . , xn ∈
var(r), and b1, . . . , bn ∈ rG such that x0 = x, xn = y, and for every j ∈ [n] we have that
{xj−1, xj} ∈ var(bj). Since x = x0 ∈ X and y = xn 6∈ X, there is a j ∈ [n] such that
xj−1 ∈ X and xj 6∈ X. Hence, xj−1 6= xj and by using the fact that xj−1 ∈ var(bj) and
xj ∈ var(bj) we obtain that there is an i ∈ [maxrk(Σ)] such that either bj = childi(xj−1, xj)
or bj = childi(xj , xj−1). �

Lemma 5.29. Let M = (P,R, q) be a connected mwmd over Σ and ∆, and let t ∈ TΣ.

108 5. Normal forms

1. Let (r, ρ), (r′, ρ′) ∈ ΦM,t such that r = r′. If there is an x ∈ var(r) with ρ(x) = ρ′(x),
then ρ = ρ′.

2. Let r ∈ R. Then |{e ∈ ΦM,t | pr1(e) = r}| ≤ |pos(t)|. Moreover, we have |ΦM,t| ≤
|R| · |pos(t)|.

3. Let c ∈ P (pos(t)). If c ∈ P (1)(pos(t)), then |ΦM,t,c| ≤ |R|. Moreover, if c ∈
P (0)(pos(t)), then |ΦM,t,c| ≤ |R| · |pos(t)|.

Proof. 1. Suppose that there is an x ∈ var(r) such that ρ(x) = ρ′(x). Assume, contrary
to our claim, that ρ 6= ρ′. This assumption implies that there is a y ∈ var(r) with ρ(y) 6=
ρ′(y). Let X = {z ∈ var(r) | ρ(z) = ρ′(z)}. Then x ∈ X and y 6∈ X. Hence, Lemma 5.28
yields that there are z ∈ X, z′ ∈ var(r)\X, and i ∈ [maxrk(Σ)] such that childi(z, z

′) ∈ rG
or childi(z

′, z) ∈ rG. The fact that (r, ρ), (r′, ρ′) ∈ ΦM,t implies ρ(b), ρ′(b) ∈ Bt. This
yields a contradiction to the facts that ρ(z) = ρ′(z), ρ(z′) 6= ρ′(z′), and childi(z, z

′) ∈ rG
or childi(z

′, z) ∈ rG for some i ∈ [maxrk(Σ)]. Therefore our assumption ρ 6= ρ′ was false.
2. The first part is an immediate consequence of Statement 1 and the second part

follows from the first part.
3. First we consider the case that c ∈ P (1)(pos(t)). Thus, there is a p ∈ P (1) and

w ∈ pos(t) such that p(w) = c. Let (r, ρ), (r′, ρ′) ∈ ΦM,t,c such that r = r′. Then
ρ(rh) = c = ρ′(rh), i.e., there is an x ∈ var(r) such that rh = p(x), ρ(x) = w = ρ′(x).
Statement 1 yields that ρ = ρ′. We conclude that |ΦM,t,c| ≤ |R|.

Now consider the case that c ∈ P (0)(pos(t)). Clearly, |ΦM,t,c| ≤ |ΦM,t| ≤ |R| · |pos(t)|
by Statement 2. �

Now we are prepared to prove Statement C1.

Lemma 5.30. There is a ranked alphabet Σ, a signature ∆, and a restricted mwmd M
over Σ and ∆ such that there is no connected mwmd M ′ over Σ and ∆ that is hyp-
equivalent to M .

Proof. Let Σ = {α(0), γ(1)}, ∆ = {α(0)}. Consider the mwmd M = (P,R, p) over Σ and
∆ such that P = {p(1)} and R =

{

r1, r2}, where r1 and r2 are defined as follows:

r1 = p(x)← p(y) ; {child1(x, y), labelγ(z)} ,

r2 = p(x)← α ; {leaf(x)} .

Clearly, M is weakly non-circular (it is even non-circular) and M is not connected because
x 6∼r1 z. However, M is restricted. We show that there is no connected mwmd M ′ over
Σ and ∆ that is hyp-equivalent to M .

It suffices to prove that there is an m-monoid A over ∆ such that for every weakly
non-circular and connected mwmd M ′ over Σ and ∆ we have [[M]]hyp

A 6= [[M ′]]hyp
A . We

define the m-monoid A by letting A = (N,+, 0, θ) where θ(α)() = 1. Note that A is

distributive. Now we show that [[M]]hyp
A 6= [[M ′]]hyp

A holds for every weakly non-circular
and connected mwmd M ′ over Σ and ∆.

Let n ∈ N and t = γn(α) ∈ TΣ. We show by induction that for every index i ∈ {0, . . . , n}
we have that T i+1(I0)(p(wi)) = ni, where wi is the unique position in pos(t) such that
|wi| = n− i.

Induction base. Suppose that i = 0. Clearly, w0 is the leaf position in t; thus,
T (I0)(p(w0)) =

∑

(r,ρ)∈ΦM,t,p(w0)
hI0(ρ(rb)) = hI0(α) = 1 = n0.

5.4. Connected 109

Induction step. Let i ∈ [n]. Assume T i(I0)(p(wi−1)) = ni−1. Then T i+1(I0)(p(wi)) =
T (T i(I0))(p(wi)) =

∑

(r,ρ)∈ΦM,t,p(wi)
hT i(I0)(ρ(rb)) =

∑

j∈[n] hT i(I0)

(

ρj(p(y))
)

, where ρj =

[x 7→ wi, y 7→ wi1, z 7→ wj] for every j ∈ [n]; this holds because the label γ occurs
at positions {w1, . . . , wn} in t. Since wi1 = wi−1, we derive

∑

j∈[n] hT i(I0)

(

ρj(p(y))
)

=
∑

j∈[n] T
i(I0)(p(wi−1)) = n · ni−1 = ni due to the induction hypothesis. This finishes the

inductive proof.
In particular, we have T n+1(I0)(p(wn)) = nn. By means of the fact that |P (pos(t))| =

∣

∣{p(w) | w ∈ pos(t)}
∣

∣ = size(t) = n + 1 and the fact that wn = ε we obtain that

nn = T |P (pos(t))|(I0)(p(ε)) = [[M]]fix
A (γn(α)) by the definition of the fixpoint semantics.

Assume, contrary to our claim, that there is a weakly non-circular and connected mwmd
M ′ = (P ′, R′, q) over Σ and ∆ such that [[M ′]]fix

A = [[M]]fix
A (note that here it does not

matter which kind of semantics we compare due to Lemma 4.50 and the facts that M
and M ′ are weakly non-circular and A is distributive); hence, for every n ∈ N we have
[[M ′]]fix

A (γn(α)) = nn. We will derive a contradiction. First let us present a claim.
Claim A. There is a constant k ∈ N+ such that [[M ′]]fix

A (γn(α)) ≤ (n + 1)k · kn+1 for
every n ∈ N.

Claim A contradicts the assumption that [[M ′]]fix
A (γn(α)) = nn, for every n ∈ N, because

for n > 42k we have

[[M ′]]fix
A (γn(α)) ≤ (n + 1)k · kn+1

≤ 2(n+1)k · 2k(n+1) (∀ i, j ∈ N+ : i ≤ 2i; thus, ij ≤ (2i)j = 2ij)

≤ 2(n+n)k · 2k(n+n) = 22kn · 22kn = 42kn = (42k)n < nn = [[M ′]]fix
A (γn(α)) .

We conclude that there is no weakly non-circular and connected mwmd M ′ over Σ and
∆ such that [[M]]fix

A = [[M ′]]fix
A .

It remains to prove Claim A. We put k = max{|P ′|, |R′||P
′|}. Let n ∈ N, t = γn(α), and

G′ = Gdep
M ′,t. We show that [[M ′]]fix

A (t) ≤ (n + 1)k · kn+1. Since M ′ is weakly non-circular,

the set H
q(ε)
G′ is finite. Let C = {c ∈ P ′(pos(t)) | c ≺∗

G′ q(ε)} and < = ≺G′ ∩ (C × C).
Then <

+ is irreflexive because of Lemma 2.26. Together with the fact that C is finite this
implies that < is well-founded on C. For every c ∈ C we define the number lc ∈ N and
the number jc ∈ N by well-founded recursion on < as follows:

lc = 1 + max{ld | d ∈ C, d < c} ,

jc =

{

1 + max{jd | d ∈ C, d < c} , if c ∈ P ′(0)(pos(t)),

max{jd | d ∈ C, d < c} , otherwise.

Let us state another claim.
Claim B. For every c ∈ C and m ∈ N with m ≥ lc we have that T mM ′(I0)(c) ≤

(n + 1)jc · |R′|lc .
It is easy to show by well-founded induction on < that for every c ∈ C we have

lc ≤ |P
′(pos(t))| ≤ |P ′| · |pos(t)| = |P ′| · (n + 1) and jc ≤ |P

′(0)(pos(t))| = |P ′(0)| ≤ |P ′|.
Then Claim B together with the fact that lq(ε) ≤ |P

′(pos(t))| implies for c = q(ε) that

[[M ′]]fix
A (t) = T

|P ′(pos(t))|
M ′ (I0)(q(ε)) ≤ (n+ 1)|P

′| · |R′||P
′|·(n+1)

= (n+ 1)|P
′| · (|R′||P

′|)n+1

≤ (n+ 1)k · kn+1 . (because k = max{|P ′|, |R′||P
′|})

110 5. Normal forms

This proves Claim A. It remains to show Claim B. We give a proof by well-founded
induction on <.

Let c ∈ C and assume that for every d ∈ C with d < c and every m′ ∈ N with
m′ ≥ ld we have T m

′

M ′ (I0)(d) ≤ (n + 1)jd · |R′|ld . Let m ∈ N with m ≥ lc. We show that
TmM ′(I0)(c) ≤ (n+ 1)jc · |R′|lc .

This is trivial if R′ = ∅. Now assume that |R′| ≥ 1. Clearly, m ≥ lc ≥ 1; we put
m′ = m− 1 ∈ N. Let us state yet another claim.

Claim C. For every (r, ρ) ∈ ΦM ′,t,c we have

hT m′

M′ (I0)(ρ(rb)) ≤

{

(n+ 1)jc · |R′|lc−1 , if c ∈ P ′(1)(pos(t)),

(n+ 1)jc−1 · |R′|lc−1 , otherwise.

Claim C together with Lemma 5.29(3) and the fact that pos(t) = n+ 1 implies that

T mM ′(I0)(c) =
∑

(r,ρ)∈ΦM′,t,c

h
T m′

M′ (I0)
(ρ(rb)) ≤ (n+ 1)jc · |R′|lc .

This proves Claim B. It remains to show Claim C.

Let (r, ρ) ∈ ΦM ′,t,c. Since ∆ = {α} we obtain that either (i) ρ(rb) = α or (ii) ρ(rb) ∈
P ′(pos(t)). If Case (i) holds, then hT m′

M′ (I0)(ρ(rb)) = 1 and, thus, Claim C holds because

we assumed that |R′| ≥ 1. Now let us consider Case (ii). Let d = ρ(rb) ∈ P ′(pos(t)).
Then Lemma 2.20(3 ⇒ 1) implies that (ii.i) Hd

G′ = ∅ or (ii.ii) d ≺G′ c. In Case (ii.i)
Lemma 4.17(2) yields h

T m′

M′ (I0)
(ρ(rb)) = 0 and therefore Claim C holds trivially.

It remains to analyze Case (ii.ii). It is easy to see that d < c and, thus, ld < lc, which
implies m′ ≥ ld. We obtain that h

T m′

M′ (I0)
(ρ(rb)) = T m

′

M ′ (I0)(d) ≤ (n + 1)jd · |R′|ld by the

induction hypothesis of the inductive proof of Claim B. Clearly, the fact ld < lc implies
ld ≤ lc − 1. Moreover, if c ∈ P ′(1)(pos(t)), then jd ≤ jc and if c ∈ P ′(0)(pos(t)), then
jd ≤ jc − 1. We conclude that Claim C holds. �

Remark 5.31. Recall that in Lemma 4.42 we determined an upper bound on the number
of derivations of weakly non-circular mwmd and showed that this bound is tight; more
precisely, for every n ∈ N we constructed a weakly non-circular mwmd Mn over Σ and ∆
such that, for every input tree t, the number of derivations of Mn on the input tree t is
2(2n·size(t)). Observe that the mwmd Mn we constructed in Lemma 4.42 is connected (it
is even local). Does such a weakly non-circular and connected mwmd Mn exist for every
signature ∆ (recall that in Lemma 4.42 we required that ∆ is not monadic)?

The answer is no! Let ∆ and A = (A,+, 0, θ) be as in the proof of Lemma 5.30. We
have shown that for every weakly non-circular and connected mwmd M ′ = (P ′, R′, q) over
Σ and ∆ there is a k ∈ N+ such that [[M ′]]fix

A (γm(α)) ≤ (m+ 1)k · km+1 for every m ∈ N.

Since A is distributive, Lemma 4.50 yields that [[M ′]]hyp
A (γm(α)) ≤ (m + 1)k · km+1 for

every m ∈ N. Let m ∈ N, t = γm(α), and G′ = Gdep
M ′,t. Since ∆ = {α}, we have for

every η ∈ H
q(ε)
G′ that hM ′,t(η) = α and, hence h(hM ′,t(η)) = 1, where h is the unique

∆-homomorphism from T∆ to (A, θ). Thus, the fact [[M ′]]hyp
A (γm(α)) ≤ (m + 1)k · km+1

implies |H
q(ε)
G′ | ≤ (m+ 1)k · km+1. It is easy to check that for every n ∈ N and k ∈ N there

is an m ∈ N such that (m + 1)k · km+1 < 2(2n·(m+1)) = 2(2n·size(γn(α))). Hence, there is no
Mn with the required properties. 2

5.4. Connected 111

Proof of Statement C2

Now we show that for every restricted mwmd there is a connected mwmd such that their
hyperpath and fixpoint semantics coincide for a certain subclass of m-monoids. In the
following, we motivate informally the constructions that are involved in this result. To
this end, consider the rule

r = p(x)← δ(q(x), p(y)) ; {labelγ(z)} .

Let t ∈ TΣ. We can make two observations: First, the variable z is not connected (i.e.,
related by ∼r) to any variable occurring in rh or rb. Thus, if t contains a node labeled γ,
we can omit the guard, and otherwise, we can omit the whole rule, each time preserving
semantics for t. This idea can be used for a construction which does not depend on t,
but suffice it to say that this involves duplication of all the remaining rules. Therefore,
in order to have a terminating procedure, our construction deals with all rules at once.
Second, the variable y, while trivially connected to some variable in the body, is not
connected to the variable in the head. In this case, we may replace p(y) by p′(), where p′

is a new nullary predicate, adding a rule p′()← p(y) ; ∅.
This example suggests that there are two different ways of a rule not to be connected

(first that a non-connected variable occurs only in the guard and second that a non-
connected variable occurs in the head or body) and that both require different construc-
tions. We will refer to a rule that is either connected or not connected only in the second
sense as semiconnected.

Definition 5.32. Let r ∈ R. We define the set of independent guards of r as follows:
I(r) = {b ∈ rG | ∀x ∈ var(r) : ∀ y ∈ var(rh) ∪ var(rb) : x 6∼r y} and for every R′ ⊆ R
the set I(R′) =

⋃

r∈R′ I(r). We call M semiconnected iff r is connected or I(r) = ∅ for
every r ∈ R. 2

In order to simplify matters we split the construction of an “equivalent” connected
mwmd from a given restricted mwmd M into two phases: (i) first we construct an “equiv-
alent” semiconnected mwmd Msc and (ii) then we construct a hyp-equivalent connected
mwmd Mc from the semiconnected mwmd Msc that we constructed in Phase (i) (we put
the word equivalent into quotes because the semiconnected mwmd of Phase (i) is neither
hyp- nor completely equivalent to M ; in fact, M and Msc will only exhibit equivalent
behavior for idempotent and distributive m-monoids).

We postpone the construction of the “equivalent” semiconnected mwmd from a given
restricted mwmd (i.e., Phase (i)) to Chapter 8 (see Corollary 8.18) where we will develop
tools that allow us to give a simple correctness proof of the construction. In the current
section we will instead deal with the problem to construct a hyp-equivalent connected
mwmd from a given semiconnected one (i.e., Phase (ii)).

Lemma 5.33 (cf. [28, Lemma 3]). Let M be a restricted and semiconnected mwmd
over Σ and ∆. Then there is a connected mwmd M ′ over Σ and ∆ such that M and M ′

are hyp-equivalent.

Proof. Let M = (P,R, q) and for every r ∈ R let n(r) = 0 if var(r) = ∅ and n(r) =
|var(r)/∼r| − 1 otherwise; clearly, r is connected iff n(r) = 0. Let n(M) =

∑

r∈R n(r);
then M is connected iff n(M) = 0. If M is already connected, then we put M ′ = M ;

112 5. Normal forms

the assertion follows trivially. For the remainder of the proof assume that M is not yet
connected, i.e., n(M) > 0.

In this proof we do not give a direct construction of the connected mwmd M ′, instead
we construct a semiconnected mwmd M1 = (P1, R1, q1) such that n(M1) = n(M)− 1, M
and M1 are hyp-equivalent, and M1 is restricted if M is so. Then it is obvious that we can
perform this construction a finite number of times and generate a sequence of pairwise
hyp-equivalent mwmd M1,M2, . . . ,Mn(M) = M ′ in order to construct M ′.

Since n(M) > 0, there is an r ∈ R such that |var(r)/∼r| > 1. Choose an equivalence
class C ∈ var(r)/∼r such that C ∩ var(rh) = ∅. Observe that the fact that M is semicon-
nected implies C∩var(rb) 6= ∅. Since M is restricted we obtain that for every w′ ∈ pos(rb)
with rb(w) ∈ P (var(r)), we have that (i) w is a prefix of w′ iff (ii) rb(w

′) ∈ P (C).

Let G = {a ∈ rG | var(a) ⊆ C}. We define M1 = (P ′, R′, q) where P ′ = P ∪ {p(0)} and
R′ = (R \ {r}) ∪ {r1, r2}, where

r1 = rh ← rb[p()]w ; rG \G ,

r2 = p()← rb|w ;G .

Clearly, this construction preserves semiconnectedness and restrictedness. It remains to
show that M andM1 are hyp-equivalent. In view of Lemma 5.18 it suffices to show that M
andM1 are related via some family ν = (νt | t ∈ TΣ) and π =

(

πt,c | t ∈ TΣ, c ∈ P (pos(t))
)

.
Let t ∈ TΣ. For every c ∈ P (pos(t)) we let νt(c) = νt(c). Let c ∈ P (pos(t)) and
(r′, ρ) ∈ ΦM,t,c. If r′ 6= r, then we let πt,c(r

′, ρ) = (r′, ρ)(c1, . . . , ck), where k ∈ N and
c1, . . . , ck ∈ P (pos(t)) such that c1 · · · ck = indyield(ρ(rb)). Now assume that r′ = r.
Then there are k, l, j ∈ N and atom instances c1, . . . , ck, d1, . . . , dl, e1, . . . , ej ∈ P (pos(t)),
such that indyield

(

ρ(rb[p()]w)
)

= c1 · · · ckp()d1 · · · dl and indyield
(

ρ(rb|w)
)

= e1 · · · ej ;
clearly, then we have that indyield(ρ(rb)) = c1 · · · cke1 · · · ejd1 · · · dl. We let πt,c(r

′, ρ) =
(r1, ρ|var(r)\C)(c1, . . . , ck, (r2, ρ|C)(e1, . . . , ej), d1, . . . , dl).

It is easy to check that M and M1 are related via ν and π. �

The following corollary follows from Corollary 8.18 and Lemma 5.33.

Corollary 5.34. Let A be an idempotent dm-monoid over ∆, (A,
∑

) be an ω-idempotent,
ω-distributive ω-complete m-monoid, and (A,≤) be an ω-continuous m-monoid. Then

r–WMDhyp(Σ,∆,A) = c–WMDhyp(Σ,∆,A) ,

r–WMDhyp
(

Σ,∆, (A,
∑

)
)

= c–WMDhyp
(

Σ,∆, (A,
∑

)
)

,

r–WMDfix(Σ,∆,A) = c–WMDfix(Σ,∆,A) ,

r–WMDfix
(

Σ,∆, (A,≤)
)

= c–WMDfix
(

Σ,∆, (A,≤)
)

.

Proof. Since every connected mwmd is also restricted, the right-hand sides of all four
equations are trivially contained in their respective left-hand sides. We show that the
left-hand sides are contained in their respective right-hand sides, too.

The first two equations follows from Corollary 8.18 and Lemma 5.33. The third equation
follows from the first one together with Theorem 4.53. The last equation follows from
the second one, Theorem 4.53, and the following two facts: (i) there is an ω-complete
m-monoid (A,

∑′) that is related to (A,≤) (see Lemma 3.40) and (ii) (A,
∑′) is ω-

idempotent and ω-distributive due to Lemma 3.39(3). �

5.4. Connected 113

Proof of Statement C3

Now we show that there is an mwmd such that there is no hyp-equivalent restricted
mwmd.

Lemma 5.35. There is a ranked alphabet Σ, a signature ∆, and an mwmd M over Σ
and ∆ such that there is no restricted mwmd M ′ over Σ and ∆ that is hyp-equivalent to
M .

Proof. Let Σ = {γ(1), α(0)} and ∆ = Σ ∪ {δ(4)}. Moreover, let M = (P,R, q) be an
mwmd over Σ and ∆ such that P = {q(1), p(1)} and R = {r, rγ , rα} with

r = q(x)← δ
(

p(y), p(z), p(y), p(z)
)

; ∅ ,

rγ = p(x)← γ(p(y)) ; {labelγ(x), child1(x, y)} ,

rα = p(x)← α ; {labelα(x)} .

Observe that M is not restricted because the rule r is not restricted. Moreover, M is
weakly non-circular (it is even non-circular). Assume, contrary to our claim, that there
is a restricted mwmd M ′ over Σ and ∆ that is hyp-equivalent to M . We will derive a
contradiction.

Since M and M ′ are hyp-equivalent, the mwmd M ′ is weakly non-circular and for
every m-monoid A over ∆ we have that [[M]]hyp

A = [[M ′]]hyp
A . This holds in particular for

the m-monoid A that is defined by letting A = (P(T∆),∪, ∅, θ) where for every δ′ ∈ ∆,
θ(δ′) is δ′-language top concatenation. Note that A is idempotent and distributive; thus,
Corollary 5.34 yields that there is a connected mwmd M0 = (P0, R0, q0) over Σ and ∆

such that [[M]]hyp
A = [[M ′]]hyp

A = [[M0]]
hyp
A . It is easy to check that for every t ∈ TΣ we

obtain

[[M0]]
hyp
A (t) = [[M]]hyp

A (t) =
{

δ
(

t|w, t|v , t|w, t|v
)

| w, v ∈ pos(t)
}

. (5.9)

Let t ∈ TΣ such that |R0| < |pos(t)|; such a tree exists. Moreover, let G = Gdep
M0,t

and
w, v ∈ pos(t). Due to the definition of the hypergraph semantics and Equation (5.9) we

obtain that there is a derivation ηw,v ∈ H
q0(ε)
G such that δ(t|w, t|v, t|w, t|v) ∈ h(hM0,t(ηw,v)),

where h is the unique ∆-homomorphism from T∆ to (A, θ). Observe that h(s) = {s}
for every s ∈ T∆; thus, hM0,t(ηw,v) = δ(t|w, t|v, t|w, t|v). This implies that there is a
position uw,v ∈ pos(ηw,v) such that δ occurs in the tree ρw,v((rw,v)b), where (rw,v, ρw,v) =
ηw,v(uw,v).

Note that ρw,v((rw,v)b) is of the form δ(s1, s2, s3, s4), where for every i ∈ [4] either si =
γni(ci) (with ci ∈ P0(pos(t))) or si = t|w (for i ∈ {1, 3}) or si = t|v (for i ∈ {2, 4}); it is

easy to check that if si = γni(ci), then for every η ∈ Hci
G we have that ηw,v[η]uw,v ·i ∈ H

q0(ε)
G

and, hence, hM0,t

(

ηw,v[η]uw,v ·i

)

= δ(t|w′ , t|v′ , t|w′ , t|v′) for some w′, v′ ∈ pos(t).

For i = 1 we have hM0,t

(

ηw,v[η]uw,v ·i

)

= δ
(

γni(hM0,t(η)), t|v , t|w, t|v
)

. Thus, we have
γni(hM0,t(η)) = t|w′ = t|w. Likewise, we obtain for i = 3 that γni(hM0,t(η)) = t|w and for
i = 2 or i = 4 that γni(hM0,t(η)) = t|v.

We conclude that for every derivation η′ with η′(ε) = (rw,v, ρw,v) we have hM0,t(η) =
δ(t|w, t|v , t|w, t|v). Thus, for every w′, v′ with (w, v) 6= (w′, v′) we have that (rw,v, ρw,v) 6=
(rw′,v′ , ρw′,v′). Hence, |pos(t)|2 ≤ |ΦM0,t|. By Lemma 5.29(2) and the assumption |R0| <
|pos(t)| we obtain that |ΦM0,t| ≤ |R0| · |pos(t)| < |pos(t)|2, a contradiction. �

114 5. Normal forms

5.5 Local

In this section we show that for every connected and proper mwmd there is a completely
equivalent local mwmd. First we give a brief explanation of our construction. Let r be
the rule q(xε) ← p(x21) ; {child2(xε, x2), child1(x2, x21), labelσ(x2)}. In order to make r
local we split it into local components while introducing an auxiliary predicate p′; hence,
we obtain two rules

q(xε)← p′(x2) ; {child2(xε, x2)} ,

p′(xε)← p(x1) ; {child1(xε, x1), labelσ(xε)} .

Special care has to be taken if both the head and the body of the given rule belong entirely
to one of the local components: consider the rule r′ which originates from r by replacing
the variable x21 in the body by xε. In this case we have to make a detour and construct
three rules

q(xε)← p′(x2) ; {child2(xε, x2)} ,

p′(xε)← p′′(xε) ; {child1(xε, x1), labelσ(xε)} ,

p′′(x2)← p(xε) ; {child2(xε, x2)} .

Before we carry on with the construction of a local mwmd from a given connected and
proper one, let us first make an observation concerning connected mwmd which makes it
possible to simplify further considerations significantly. Consider the rule

r = p(x)← δ(q(x), p(y)) ; {child1(z, x), child2(z, y)} .

For every t ∈ TΣ and valid r, t-variable assignment ρ, we obtain ρ(x) = ρ(z)1 and ρ(y) =
ρ(z)2. Hence, we may reflect this fact in syntax by rephrasing r to

p(x1)← δ(q(x1), p(x2)) ; {child1(xε, x1), child2(xε, x2)} .

Now we formalize this concept.

Definition 5.36. Let r ∈ R be connected. A mapping f : var(r) → N∗ is called r-
position mapping if

(i) var(r) = ∅ or ε ∈ ran(f),

(ii) for every x, y ∈ var(r) and i ∈ [maxrk(Σ)] such that childi(x, y) ∈ rG we have that
f(x) · i = f(y). 2

Lemma 5.37. Let r ∈ R be connected.

1. If there is no r-position mapping, then the set {e ∈ ΦM,t | pr1(e) = r} is empty for
every t ∈ TΣ.

2. If f and f ′ are r-position mappings, then f = f ′ and for every t ∈ TΣ and (r, ρ) ∈
ΦM,t there is a w ∈ pos(t) such that w · f(x) = ρ(x) for every x ∈ var(r).

5.5. Local 115

Proof. 1. Assume that there a t ∈ TΣ and e ∈ ΦM,t such that pr1(e) = r. We show
that there is an r-position mapping f : var(r)→ N∗. This is trivial if var(r) = ∅. For the
remainder of the proof of Statement 1 we assume that var(r) 6= ∅. Let ρ = pr2(e) and let
w be the longest common prefix of ran(ρ). For every x ∈ var(r) let f(x) = wx, where wx
is the unique string in N∗ such that w · wx = ρ(x).

We show that f is an r-position mapping. Condition (ii) follows from the fact that for
every x, y ∈ var(r) and i ∈ [maxrk(Σ)] with childi(x, y) ∈ rG we have that ρ(x) · i = ρ(y).
It remains to prove Condition (i), i.e., that ε ∈ ran(f). It suffices to show that there is
an x ∈ var(r) with ρ(x) = w. Clearly, there are x, y ∈ var(r) such that w is the longest
common prefix of ρ(x) and ρ(y). If ρ(x) is a prefix of ρ(y) or the other way around, then
w ∈ {ρ(x), ρ(y)}. Now assume that neither ρ(x) is a prefix of ρ(y) nor ρ(y) a prefix of
ρ(x). Then there are i1, i2 ∈ [maxrk(Σ)] with i1 6= i2 such that wi1 is a prefix of ρ(x) and
wi2 is a prefix of ρ(y). Let X = {z ∈ var(r) | wi1 is a prefix of ρ(z)}. Then x ∈ X and
y 6∈ X. By Lemma 5.28 there are z ∈ X and z′ ∈ var(r) \X such that childi(z, z

′) ∈ rG
or childi(z

′, z) ∈ rG for some i ∈ [maxrk(Σ)]; it is easy to see that this implies that
childi1(z

′, z) ∈ rG and ρ(z′) = w.
2. This statement is trivial if var(r) = ∅. For the remainder of the proof we assume

that var(r) 6= ∅. Let f and f ′ be r-position mappings. First we show that f = f ′. By
the definition of r-position mappings there is an x0 ∈ var(r) such that f(x0) = ε. Let
w = f ′(x0).

Assume that there is a y ∈ var(r) such that w · f(y) 6= f ′(y). We define the set
X = {z ∈ var(r) | w · f(z) = f ′(z)}. Clearly, x0 ∈ X and y 6∈ X. By Lemma 5.28 there
are z ∈ X and z′ ∈ var(r) \X such that childi(z, z

′) ∈ rG or childi(z
′, z) ∈ rG for some

i ∈ [maxrk(Σ)]. If childi(z, z
′) ∈ rG, then the fact that z ∈ X and that f and f ′ are

r-position mappings implies w · f(z′) = w · f(z) · i = f ′(z) · i = f ′(z′); hence, z′ ∈ X, a
contradiction. Likewise, the case childi(z

′, z) ∈ rG yields a contradiction. We conclude
that w · f(y) = f ′(y) holds for every y ∈ var(r). Together with the fact that ε ∈ ran(f ′)
we obtain that w = ε. Hence, f = f ′.

With similar arguments one can show that for every t ∈ TΣ and (r, ρ) ∈ ΦM,t there is
a w ∈ pos(t) such that w · f(x) = ρ(x) for every x ∈ var(r). �

Remark 5.38. Note that it is decidable whether a connected r ∈ R admits an r-position
mapping f and that f can be constructed effectively for the following reasons. It is
easy to check that for every r-position mapping f we have that ran(f) ⊆ W , where
W = {w ∈ [maxrk(Σ)]∗ | |w| < |var(r)|}. The set W is finite and, hence, there are only
finitely many mappings from var(r) to W . Thus, it suffices to enumerate all mappings
from var(r) to W and to check whether such a mapping is an r-position mapping in order
to decide whether an r-position mapping exists and in order to construct one effectively.2

The description of the construction of a local mwmd M ′ from a given proper and
connected mwmd M is much simpler if every rule of M admits an injective r-position
mapping. Fortunately, we can assume that this is the case.

Lemma 5.39. Let M be a connected and proper mwmd over Σ and ∆. Then there is
a connected and proper mwmd M ′ over Σ and ∆ such that M and M ′ are completely
equivalent and every rule r of M ′ admits an injective r-position mapping.

Proof. Let M = (P,R, q). We let M ′ = (P,R′, q) where

R′ = {r̄ | r ∈ R, there is an r-position mapping} ,

116 5. Normal forms

and for every r ∈ R that admits an r-position mapping f the rule r̄ is constructed as
follows. The mapping f is uniquely determined due to Lemma 5.37(2). We define the
equivalence relation ∼ on var(r) as follows for every x, y ∈ var(r): x ∼ y iff f(x) = f(y).
For every equivalence class C modulo ∼ choose a representative xC ∈ C. Then r̄ originates
from r by replacing for every y ∈ var(r) every occurrence of y in r by x[y]∼ . It is easy to
check that r̄ admits an r̄-position mapping and that this r̄-position mapping is injective.

Clearly, M ′ is connected and proper. It remains to show that M and M ′ are completely
equivalent. By Lemma 5.37(1), for every r ∈ R \ R′, the set {e ∈ ΦM,t | pr1(e) = r}
is empty for every t ∈ TΣ. It is easy to check that by means of Lemma 5.37(2) we
obtain that for every t ∈ TΣ and m-monoid A over ∆ we have that the immediate

consequence operators TM,t,A and TM ′,t,A coincide and that H
q(ε)
G = H

q(ε)
G′ , where G = Gdep

M,t

and G′ = Gdep
M ′,t. It is easy to see that this implies that M and M ′ are completely

equivalent. �

Now we are prepared to present the main lemma of this section.

Lemma 5.40 (cf. [28, Lemma 6]). Let M be a connected and proper mwmd over Σ and
∆. Then there is a local mwmd Mloc over Σ and ∆ such that M and M ′ are completely
equivalent.

Proof. Let M = (P,R, q). In view of Lemma 5.39 we can assume that every rule r ∈ R
admits an injective r-position mapping; by Lemma 5.37(2) this r-position mapping is
unique; we will denote this unique mapping by fr in this proof.

First let us introduce an auxiliary notion. For every b ∈ spΣ(V) we define var1(b) ∈
var(b) as follows: (i) if var(b) = {x} for some x ∈ V, then var1(b) = x, and (ii) if
b = childi(x, y) for some i ∈ [maxrk(Σ)] and x, y ∈ V, then var1(b) = x. Let us state a
fact.

Fact A. Let r ∈ R. Then the following two statements are equivalent: (i) r is local iff
(ii)

∑

b∈rG
|fr(var1(b))| = 0.

Proof of Fact A. “⇒”: By Statement (i) there is an x ∈ var(r) such that for every b ∈ rG
and y ∈ var(b) \ {x} we have that b = childi(x, y) for some i ∈ [maxrk(Σ)]. Hence, for
every b ∈ rG, var1(b) = x. Therefore it suffices to show that fr(x) = ε. Let y ∈ var(r) \x.
Since r is connected, there is a b ∈ rG such that y ∈ var(b). Then b = childi(x, y) for some
i ∈ [maxrk(Σ)]; hence, fr(y) = fr(x) · i. We obtain that fr(x) = ε because ε ∈ ran(fr).

“⇐”: If var(r) = ∅, then r is local for trivial reasons. Now assume that var(r) 6= ∅.
Hence, there is an x ∈ var(r) such that fr(x) = ε. We show that for every b ∈ rG and
y ∈ var(b) \ {x} we have that b = childi(x, y) for some i ∈ [maxrk(Σ)]. Let b ∈ rG and
y ∈ var(b) \ {x}. By Statement (ii), |fr(var1(b))| = 0; hence, fr(var1(b)) = ε. Since fr
is injective, var1(b) = x. This together with the fact that y ∈ var(b) \ {x} implies that
b = childi(x, y) for some i ∈ [maxrk(Σ)].

Continuation of the main proof. For every r ∈ R we abbreviate
∑

b∈rG
|fr(var1(b))| by

nr. We put n(M) =
∑

r∈R(2nr − 1). Clearly, M is local iff n(M) = 0 due to Fact A. If
M is already local, then we put Mloc = M ; the assertion of the lemma follows trivially.
For the remainder of the proof assume that M is not yet local, i.e., n(M) > 0.

In this proof we do not give a direct construction of the local mwmd Mloc, instead
we construct a connected and proper mwmd M1 = (P1, R1, q) such that n(M1) < n(M),
M and M1 are completely equivalent, and every rule of M1 admits an injective position
mapping. Then it is obvious that we can perform this construction a finite number of times

5.5. Local 117

and generate a sequence of pairwise completely equivalent mwmd M1,M2, . . . ,Mn = Mloc,
for some n ∈ N+, in order to construct Mloc.

Since M is not local, there is a rule r ∈ R that is not local. Select an x ∈ var(r)
such that x ∈ {var1(b) | b ∈ rG} and |fr(x)| is maximal in {|fr(var1(b))| | b ∈ rG}.
Then fr(x) 6= ε due to Fact A.

We let B be the set of all atoms b ∈ {rh} ∪ ind(rb) such that fr(x) is a proper prefix of
fr(y), where y is the unique variable in var(b). Moreover, we let G = {b ∈ rG | var1(b) =
x}. We define M1 = (P1, R1, q) by case distinction.

Case 1: B = ∅. Then we let P1 = P ∪ {p
(1)
1 , p

(1)
2 } and R1 = (R \ {r}) ∪ {r1, r2, r3}:

r1 = rh ← p1(x) ; rG \G ,

r2 = p1(x)← p2(x) ;G ,

r3 = p2(x)← rb ; rG \G .

Now we show that M1 has all required properties.

Proper. Clearly, M1 is proper.

Connected. Now we show that M1 is connected. It suffices to show that r1, r2, and r3
are connected. First let us consider the rule r1. Assume that there are x, y ∈ var(r1) such
that x 6∼r1 y.

First we show that fr(x) is not a proper prefix of fr(y). Assume, contrary to our claim,
that fr(x) is a proper prefix of fr(y). Then y 6∈ var(rh) ∪ var(rb) because B = ∅. Hence,
y ∈ var(rG \ G); let b ∈ rG \ G such that y ∈ var(b). Then y 6= var1(b) because |fr(x)|
is maximal in the set {|fr(var1(b))| | b ∈ rG}. Then b = childi(z, y) for some z ∈ var(r)
and i ∈ [maxrk(Σ)]. Since |fr(x)| is maximal in the set {|fr(var1(b))| | b ∈ rG}, fr(x) is a
proper prefix of fr(y), and fr is injective, we obtain that z = x. But then the fact that
var1(b) = z = x implies that b ∈ G; this contradicts the statement b ∈ rG \G. Therefore,
the assumption that fr(x) is a proper prefix of fr(y) was wrong.

Consider the set X = {z ∈ var(r) | x ∼r1 z∨ fr(x) is a proper prefix of fr(z)}. Clearly,
x ∈ X and y 6∈ X. By Lemma 5.28 (applied to the connected rule r, not r1) there are
z ∈ X and z′ ∈ var(r) \ X such that childi(z, z

′) ∈ rG or childi(z
′, z) ∈ rG for some

i ∈ [maxrk(Σ)].

Assume that x 6∼r1 z. Then z ∈ X implies that fr(x) is a proper prefix of fr(z). Since
z′ ∈ X, fr(x) is not a proper prefix of fr(z

′). This implies that childi(z
′, z) ∈ rG for some

i ∈ [maxrk(Σ)] and that x = z′. But then x ∼r1 z
′ = x, which contradicts the fact that

z′ 6∈ X. Hence, the assumption x 6∼r1 z was wrong.

We have shown that x ∼r1 z and that childi(z, z
′) ∈ rG or childi(z

′, z) ∈ rG for some
i ∈ [maxrk(Σ)]; hence, childi(z, z

′) ∈ (r1)G or childi(z
′, z) ∈ (r1)G because fr(x) is not a

proper prefix of fr(z
′) and z′ 6= x, which follows from z′ 6∈ X. This implies that x ∼r1 z

′, a
contradiction to the fact that z′ 6∈ X. Hence, the assumption that there are x, y ∈ var(r1)
with x 6∼r1 y was wrong. We conclude that r1 is connected. For similar reasons the rule
r3 is connected, too.

The rule r2 is obviously connected, because x ∈ var(b) for every b ∈ G; hence, x ∼r2 y
for every y ∈ var(r2).

Existence of injective position mappings. It suffices to show that r1, r2, and r3 admit
injective position mappings. Observe that fr|var(r1) and fr|var(r3) are injective r1- and
r3-position mappings, respectively. Moreover, there is a unique r2-position mapping fr2
such that fr2(y) = fr(x) · fr(y) for every y ∈ var(r2); clearly, fr2 is injective.

118 5. Normal forms

Proof that n(M1) < n(M). It suffices to show that 2nr1−1+2nr2−1+2nr3−1 < 2nr−1.
Clearly, nr2 = 0 because fr2(x) = ε. It is easy to check that nr1 < nr and nr3 < nr because
rG\G is a proper subset of G (G is nonempty because x ∈ {var1(b) | b ∈ rG}) and because
for every b ∈ G we have |fr(var1(b))| = |fr(x)| > 0 (this follows from the fact that fr(x) 6=
ε). Hence, 2nr1 −1+2nr2 −1+2nr3 −1 ≤ 2nr−1−1+20−1+2nr−1−1 = 2nr−2 < 2nr−1.

Completely equivalent. Due to Lemma 5.24 it suffices to show that there are families ν
and π such that M and M ′ are strongly related via ν and π.

Let t ∈ TΣ. We define the injective mapping νt : P (pos(t)) → P1(pos(t)) by νt(c) = c
for every c ∈ P (pos(t)). For every c ∈ P (pos(t)) we define the mapping πt,c : ΦM,t,c →

H
c,P (pos(t))
G1

, where G1 = Gdep
M1,t

, as follows for every e = (r′, ρ′) ∈ ΦM,t,c . If r′ 6= r,
then we let πt,c(r

′, ρ′) = (r′, ρ′)(c1, . . . , ck), where k ∈ N and c1, . . . , ck ∈ P (pos(t))
such that c1 · · · ck = indyield(ρ′(r′b)). Otherwise, if r′ = r, then we let πt,c(r

′, ρ′) =
(r1, ρ

′|var(r1))
(

(r2, ρ
′|var(r2))

(

(r3, ρ
′|var(r3))(c1, . . . , ck)

))

, for some k ∈ N and c1, . . . , ck ∈
P (pos(t)) such that c1 · · · ck = indyield(ρ′(r′b)).

Let ν = (νt | t ∈ TΣ) and π = (πt,c | t ∈ TΣ, c ∈ P (pos(t))). It is easy to see that M
and M ′ are related via ν and π. Now we show that M and M ′ are even strongly related
via ν and π. By Lemma 5.25 it suffices to show that for every t ∈ TΣ, c′ ∈ P1(pos(t)),
e = (r′, ρ′) ∈ ΦM1,t,c′ , and i ∈ [rk(e)] with ρ′(r′b) 6∈ P1(pos(t)) and ini(e) 6∈ ran(νt) we have

that |H
ini(e),P (pos(t))
G1

| ≤ 1, where G1 = Gdep
M1,t

. This is vacuously true because it is easy to
check that there are no c′ ∈ P1(pos(t)), e = (r′, ρ′) ∈ ΦM1,t,c′, and i ∈ [rk(e)] such that
ρ′(r′b) 6∈ P1(pos(t)) and ini(e) 6∈ ran(νt). Case 2: B 6= ∅. Then we let P1 = P∪{b̄ | b ∈ B}
where b̄ is a new unary predicate for every b ∈ B, and R1 = (R \ {r})∪ {r̄} ∪R′, where r̄
is obtained from r by replacing every occurrence of every b ∈ B by b̄(x) and replacing rG
by rG \G, and R′ is the smallest set such that for every b ∈ B:

• if b = rh, then R′ contains the rule b← b̄(x) ;G

• if b ∈ ind(rb), then R′ contains the rule b̄(x)← b ;G

The proof that M1 has all required properties is similar to the proof of Case 1, therefore
we will only sketch this proof.

Connected and Existence of injective position mappings. The rule r̄ is connected and
admits an injective position mapping for the same reasons that the rules r1 and r3 of
Case 1 are connected and admit injective position mappings. The rules in R′ are connected
and have injective position mappings for the same reasons that the rule r2 of Case 1 is
connected has an injective position mapping.

Proof that n(M1) < n(M). Clearly, nr̄ < nr for the same reason that nr1 < nr in
Case 1. Moreover, for every rule r′ ∈ R′ we have nr′ = 0 for the same reasons that
nr2 = 0 in Case 1.

Completely equivalent. For every t ∈ TΣ, c ∈ P (pos(t)), and (r′, ρ′) ∈ ΦM,t,c we let
νt(c) = c, and πt,c(r

′, ρ′) be defined similarly to Case 1 if r′ 6= r, and if r′ = r we let

πt,c(r
′, ρ′) =

{

(r̄, ρ′|var(r̄))(η1, . . . , ηk) , if rh 6∈ B ,
(

rb ← rb(x) ;G, ρ′|var(G)

)(

(r̄, ρ′|var(r̄))(η1, . . . , ηk)
)

, otherwise,

where k ∈ N and b1, . . . , bk ∈ P (pos(t)) such that indyield(r′b) = b1 · · · bk, and for every
i ∈ [k] we have ηi = ρ′(bi) if bi 6∈ B and ηi =

(

b̄i(x)← bi ;G, ρ
′|var(G)

)

(ρ′(bi)) otherwise. It
is easy to see thatM andM ′ are related via ν and π. Now we show thatM andM ′ are even
strongly related via ν and π. By means of Lemma 5.25 it suffices to show that for every

5.5. Local 119

t ∈ TΣ, c′ ∈ P1(pos(t)), e = (r′, ρ′) ∈ ΦM1,t,c′, and i ∈ [rk(e)] with ρ′(r′b) 6∈ P1(pos(t))

and ini(e) 6∈ ran(νt) we have that |H
ini(e),P (pos(t))
G1

| ≤ 1, where G1 = Gdep
M1,t

. It is easy to
check that the conditions ρ′(r′b) 6∈ P1(pos(t)) and ini(e) 6∈ ran(νt) imply that r′ = r̄ and
ini(e) = ρ′(b̄(x)) for some b ∈ B ∩ ind(rb). Note that for every e′ ∈ ΦM1,t,ρ(b̄(x)) we have

that pr1(e
′) = b̄(x)← b ;G. therefore,

H
ρ(b̄(x)),P (pos(t))
G1

= {(r′, ρ′)(ρ′(b)) | (r′, ρ′) ∈ ΦM1,t,ρ(b̄(x))
} .

By Lemma 5.29(1) we obtain that |ΦM1,t,ρ(b̄(x))| ≤ 1, hence |H
ini(e),P (pos(t))
G1

| ≤ 1. �

The following corollary is an immediate consequence of Lemma 5.40 and the definition
of completely equivalent mwmd.

Corollary 5.41. Let A be an m-monoid over ∆, (A,≤) be an ω-continuous m-monoid,
and (A,

∑

) be an ω-complete m-monoid. Then

l–WMDhyp(Σ,∆,A) = pc–WMDhyp(Σ,∆,A) ,

l–WMDhyp
(

Σ,∆, (A,
∑

)
)

= pc–WMDhyp
(

Σ,∆, (A,
∑

)
)

,

moreover, if A is absorptive, then

l–WMDfix(Σ,∆,A) = pc–WMDfix(Σ,∆,A) ,

l–WMDfix
(

Σ,∆, (A,≤)
)

= pc–WMDfix
(

Σ,∆, (A,≤)
)

.

120 5. Normal forms

CHAPTER 6

Deciding circularity

In Chapter 4, we laid out two types of semantics for mwmd, namely fixpoint and hy-
pergraph semantics. For each of these semantics we defined a variant, called finitary
semantics, that is only applicable to weakly non-circular mwmd but is defined for arbi-
trary (absorptive) m-monoids. Such a semantics is only then of practical value if it is
decidable whether a given mwmd is weakly non-circular.

In this chapter we prove that there is an effective procedure that decides whether an
mwmd is weakly non-circular. For the sake of completeness we will show that such a
decision procedure for the property of non-circularity exists, too.

Theorem 6.1. Let Σ be a ranked alphabet and ∆ be a signature. Moreover, let M be an
mwmd over Σ and ∆.

1. It is effectively decidable whether M is non-circular.

2. It is effectively decidable whether M is weakly non-circular.

This theorem is a consequence of Theorem 6.2 and Corollaries 6.12 and 6.15.
The definitions of weak non-circularity and non-circularity of mwmd are inspired by and

adapted from the definitions of non-circularity for attribute grammars [32, 50], attributed
tree transducers [56, 60], and weighted monadic datalog [122]. It is self-evident that
decision procedures for non-circularity of these devices are of central importance in their
respective theories. A decision procedure for the non-circularity of attribute grammars,
called a circularity test, has first been studied by Knuth [90, 89] (also see [3] and [94,
Figure 3.6, Lemma 3.25]). A similar circularity test for attributed tree transducers has
been proposed in [56] and investigated in [60, Figure 5.7, Lemma 5.17]. Both of these
circularity tests are based on the inductive construction of a finite set of graphs, called
is-graphs, that are checked for cycles. It is worth pointing out that the problem to
decide whether a given attribute grammar or attributed tree transducer is non-circular, is
inherently exponential [79, 78]. Since attributed tree transducers are special mwmd (see
Chapter 8), every circularity test for mwmd will also have exponential time complexity.

In this thesis we will not follow the approach to develop a circularity test that is based
on the construction of is-graphs, or any similar methods. This is due to the following two
reasons.

• Attribute grammars and attributed tree transducers are similar to local mwmd. A
circularity test that is based on is-graphs is easy to define for local mwmd but very
hard to extend to mwmd that have an arbitrary structure.

• The property of non-circularity can nicely be captured with is-graphs. However,
this does not hold for weak non-circularity. Though one can extend the notion of
is-graphs such that they can be used for testing weak non-circularity, this extension

121

122 6. Deciding circularity

is not straightforward and the correctness proof of the decision procedure is fairly
tedious.

Due to these reasons we will use the following approach instead. Let M = (P,R, q) be
an mwmd and let LM be the set of input trees t such that the set of derivations of the
dependency hypergraph of M and t that end in q(ε) is infinite. Clearly, M is weakly
non-circular iff LM is empty. We will show that there effectively is an MSO-logic formula
that defines LM ; this implies that LM is a recognizable tree language. The decidability
of weak non-circularity of mwmd follows from the fact that the emptiness problem of
recognizable tree languages is decidable.

This chapter is organized as follows. In Section 6.1 we will recall the basic concepts of
recognizable tree languages and MSO-logic. In Section 6.2 we will give a stepwise con-
struction of the MSO-formula that defines the tree language LM and prove its correctness
along the way.

In this chapter we fix a ranked alphabet Σ and a signature ∆.

6.1 Recognizable tree languages

In this section we recall basic concepts of finite state tree automata [37, 38, 128], recog-
nizable tree languages [65, 66], and monadic second order logic [131, 38].

Finite state tree automata

A (bottom-up) finite state tree automaton [37, 49, 66, 128] (for short: fta) over Σ is
a triple M = (Q, δ, F), where Q is a finite non-empty set, δ = (δk | k ∈ N) is a family of
sets δk ⊆ Q

k ×Σ(k) ×Q, and F ⊆ Q. We refer to the elements in Q and F as states and
final states, respectively. In the sequel we will simply write δ instead of δk, for every
k ∈ N.

Let M = (Q, δ, F) be an fta. We call M deterministic if for every k ∈ N, σ ∈ Σ(k),
and q1, . . . , qk ∈ Q there is at most one p ∈ Q with (q1 · · · qk, σ, p) ∈ δ. Let t ∈ TΣ. A
successful run ofM on t is a mapping κ : pos(t)→ Q such that κ(ε) ∈ F and for every
w ∈ pos(t) we have that (κ(w1) · · · κ(wk), t(w), κ(w)) ∈ δ, where k = rk(t(w)). The tree

language L(M) ⊆ TΣ recognized by M is the set of all trees t ∈ TΣ such that there is a
successful run of M on t. If a tree language L ⊆ TΣ is recognized by an fta over Σ, then
L is called recognizable. The following theorem is well-known (see [38, Corollary 1.12(i)]
or [131, Theorem 7]).

Theorem 6.2. If M is an fta over Σ, then it is effectively decidable whether L(M) = ∅.

Monadic second order logic

As usual in monadic second order logic [131, 38] (for short: MSO-logic), we use first-order
variables, like x, x1, x2, . . . , y, z and second-order variables, like X,X1,X2, . . . , Y, Z. We
assume that the set V is contained in the set of all first-order variables. We define the
set MSO(Σ) of MSO-logic formulas over Σ by the following EBNF with nonterminal
ϕ (cf. [66]):

ϕ ::= labelσ(x) | edgei(x, y) | x ∈ X | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ)

6.1. Recognizable tree languages 123

∀x.ϕ | ∀X.ϕ | ∃x.ϕ | ∃X.ϕ ,

where i ∈ [maxrk(Σ)], σ ∈ Σ, x and y are first-order variables, and X is a second-order
variable. We will drop parentheses if no confusions arise. Moreover, we will use the
following abbreviations for every ϕ,ψ ∈ MSO(Σ) and all first-order variables x, y:

(ϕ→ ψ) = (¬ϕ ∨ ψ) , (ϕ implies ψ)

(ϕ↔ ψ) = (ϕ→ ψ) ∧ (ψ → ϕ) , (ϕ and ψ are equivalent)

(x ≡ y) = ∀X.(x ∈ X ↔ y ∈ X) , (x and y are at the same position)

true = ∀x.∀X.((x ∈ X)→ (x ∈ X)) . (a tautology)

false = ¬true . (a contradiction)

The set of free variables of a formula ϕ ∈ MSO(Σ), denoted by Free(ϕ), is defined as
usual; if Free(ϕ) = ∅, then ϕ is called a sentence.

Let V be a finite set of first-order and second-order variables. Let t ∈ TΣ. A V-
assignment for t is a function with domain V which maps first-order variables to elements
of pos(t) and second-order variables to subsets of pos(t). By ΨV ,t we denote the set of all
V-assignments for t.

Let ϕ ∈ MSO(Σ) and V be a finite set of variables containing Free(ϕ). For every
t ∈ TΣ and ρ ∈ ΨV ,t we define the relation “(t, ρ) satisfies ϕ”, denoted by (t, ρ) |= ϕ
as usual; if V = ∅, then we also write t |= ϕ instead of (t, ρ) |= ϕ. We define the set
LV(ϕ) = {(t, ρ) | t ∈ TΣ, ρ ∈ ΨV ,t, (t, ρ) |= ϕ} and abbreviate LFree(ϕ)(ϕ) by L(ϕ). The
following consistency lemma is folklore.

Lemma 6.3. Let ϕ ∈ MSO(Σ) and V be a finite set of variables containing Free(ϕ).
Then for every t ∈ TΣ and ρ ∈ ΨV ,t the following holds: (t, ρ) |= ϕ iff (t, ρ|Free(ϕ)) |= ϕ.

A tree language L ⊆ TΣ is called definable (in MSO-logic) if there is a sentence ϕ ∈
MSO(Σ) such that L = L(ϕ).

In the subsequent lemmas, whose purpose is to prove Theorem 6.1, we distinguish
between “existence” and “effective existence” of an object (e.g., a formula or an fta). We
give a brief explanation of this distinction. Let A and B be sets and τ be a relation
from A to B. If for every a ∈ A the set τ({a}) is nonempty, then we say that for every
a ∈ A there is a b ∈ B such that (a, b) ∈ τ . If we say instead that for every a ∈ A there
effectively is a b ∈ B such that (a, b) ∈ τ , then we imply that there is an algorithm (or a
Turing machine [132], etc.) that, for every input a ∈ A, computes an output ba ∈ B with
(a, ba) ∈ τ ; we call this an effective construction of ba from a. For the sake of brevity,
we will not explicitly mention the set A; it will always be clear from the context. For
example, in the first statement of the following well-known theorem the set A consists
of all pairs (Σ′, ϕ) such that Σ′ is a ranked alphabet and ϕ ∈ MSO(Σ′) (both encoded
appropriately in some finite way such that A is a countable set and not a proper class).

Theorem 6.4 (cf. [38, Corollary 3.11], [131, Theorem 17]).

1. Let ϕ ∈ MSO(Σ) be a sentence. Then there effectively is an ftaM over Σ such that
L(M) = L(ϕ).

2. Let L ⊆ TΣ. Then L is recognizable iff L is definable.

124 6. Deciding circularity

In order to simplify notation we will adhere to the following convention with regard to
free variables and assignments. Let n ∈ N, X1, . . . ,Xn be first- or second-order variables,
and ϕ ∈ MSO(Σ). Then we write ϕ(X1, . . . ,Xn) instead of ϕ in order to express that
Free(ϕ) ⊆ {X1, . . . ,Xn}. Moreover, for every t ∈ TΣ and {X1, . . . ,Xn}-assignment ρ for t
we will sometimes write t |= ϕ(W1, . . . ,Wn) instead of (t, ρ) |= ϕ, where Wi = ρ(Xi) for
every i ∈ [n].1

6.2 Defining circularity

In this section we show that for every mwmd M = (P,R, q) there effectively exists an
MSO-logic sentence such that for every input tree t the sentence holds for t iff the set of
derivations of the dependency hypergraph of M and t that end in q(ε) is infinite; thus the
language defined by the sentence is empty iff M is weakly non-circular. For completeness
we will also give an effective construction of a sentence that holds for an input tree t iff
the dependency graph of M and t is cyclic; thus, the language defined by the sentence is
empty iff M is non-circular.

For the sake of simplicity we will restrict ourselves to proper mwmd. This is no real
restriction since for every mwmd M there effectively exists a proper mwmd that is weakly
non-circular iff M is so (see Lemma 5.26). Apart from this it is easy to extend our
construction to arbitrary mwmd.

The basic idea of the construction of the MSO-logic formula that expresses that the
mwmd M is weakly non-circular is to employ Lemma 2.25: the set of derivations in the
dependency hypergraph G of M and t that end in q(ε) is infinite iff there is an atom
instance c such that c ≺+

G c ≺∗
G q(ε). Therefore, it suffices to show that (i) the relation

≺G can be defined in MSO-logic and that (ii) transitive and transitive reflexive closures
of relations can be expressed in MSO-logic.

Let us first discuss Statement (ii). It is well-known that transitive closures of relations
on the semantic domain can be defined in MSO-logic. However, the relation ≺G is not a
relation on the semantic domain pos(t) but on the set of atom instances P (pos(t)). Since
we assume that M is proper, the set P (pos(t)) can be considered to be |P | copies of the set
pos(t); therefore, we have to extend the concept of the definition of transitive closures of
relations on the semantic domain to, roughly speaking, the definition of transitive closures
of relations on a finite number of copies of the semantic domain (see Lemma 6.8).

Now let us analyze Statement (i). In order to define the relation ≺G we will make use of
Lemma 2.20 and Observation 4.11(1,2): for two atom instances c and c′ we have c ≺G c′

iff there is a hyperedge in G such that c′ is its output vertex and c one of its input vertices
and every input vertex c′′ has a nonempty set of derivations ending in c′′. Hence, we are
left with the task to show that the set of hyperedges of the dependency graph G and their
respective input and output vertices are, roughly speaking, definable in MSO-logic (see
Lemma 6.10); moreover, we need to show that the set of atom instances that have no
derivations ending in them is definable in MSO-logic (see Lemma 6.13).

Throughout this section we fix a proper mwmd M = (P,R, q) over Σ and ∆.

For the sake of simplicity let us assume that the set P is of the form {p1, . . . , pn} for

1Note that Wi might be a single position or a set of positions in t, depending on whether Xi is a first-order
or a second-order variable, respectively.

6.2. Defining circularity 125

some n ∈ N and pairwise distinct predicates p1, . . . , pn such that q = p1. Moreover, we fix
distinct first-order variables x, y and pairwise distinct second order variables X1, . . . ,Xn.

Definition 6.5. For every t ∈ TΣ let the partial order ≤t on
(

P(pos(t))
)n

be defined as
follows for every d, d′ ∈

(

P(pos(t))
)n

: d ≤t d
′ iff pri(d) ⊆ pri(d

′) for every i ∈ [n]. In the
sequel we will simply write P(pos(t))n instead of

(

P(pos(t))
)n

. 2

The following well-known fixpoint theorem is due to Knaster and Tarski [125, Theo-
rem 1].

Theorem 6.6. Let (B,≤) be a complete lattice and let g : B → B be monotone wrt ≤.
Then ∧{b ∈ B | g(b) ≤ b} is the least fixpoint of g.

In what follows, let us call a mapping f from the power set of atom instances to the
power set of atom instances a closure operator if it is monotone, i.e., for all sets C and D
of atom instances we have that C ⊆ D implies f(C) ⊆ f(D). Moreover, let us call the set
⋃

n∈N
fn(∅) the closure of f . The following lemma states that for a given closure operator

that is definable in MSO-logic, also the closure of this closure operator is definable in
MSO-logic; the proof of this lemma makes use of Theorem 6.6. It is rather technical
because the semantic domain of MSO-logic on trees is pos(t) and not the set of atom
instances P (pos(t)); therefore, MSO-definable closure operators are not expressed by a
single MSO-logic formula but by a family of n MSO-logic formulas. We will use the
following lemma in order to show that transitive closures of relations on atom instances
are definable in MSO-logic, and that the set of atom instances that have no derivations
ending in them is definable in MSO-logic.

Lemma 6.7. Let ϕ =
(

ϕj(x, y,X1, . . . ,Xn) | j ∈ [n]
)

be a family over MSO(Σ). More-
over, let f =

(

ft,v | t ∈ TΣ, v ∈ pos(t)
)

be a family such that for every t ∈ TΣ, v ∈ pos(t),
W1, . . . ,Wn ⊆ pos(t), and j ∈ [n] we have ft,v : P(pos(t))n → P(pos(t))n and

prj
(

ft,v(W1, . . . ,Wn)
)

=
{

w ∈ pos(t) | t |= ϕj(v,w,W1, . . . ,Wn)
}

. (6.1)

Suppose that for every t ∈ TΣ and v ∈ pos(t), ft,v is monotone wrt ≤t. Then for every
j ∈ [n] there effectively is a formula closeϕj (x, y) in MSO(Σ) such that for every t ∈ TΣ

and v ∈ pos(t):

{

w ∈ pos(t) | t |= closeϕj (v,w)
}

=
⋃

m∈N
prj

(

(ft,v)
m(∅, . . . , ∅)

)

. (6.2)

Proof. We define the formula ψ(x,X1, . . . ,Xn) ∈ MSO(Σ) and for every j ∈ [n] we
define closeϕj (x, y) ∈ MSO(Σ) as follows:

ψ =
∧

k∈[n]
∀y.(ϕk → (y ∈ Xk)) ,

closeϕj = ∀X1 · · · ∀Xn.ψ → (y ∈ Xj) .

It is easy to see that Free(ψ) ⊆ {x,X1, . . . ,Xn) and Free(closeϕj) ⊆ {x, y}, for every
j ∈ [n]; moreover, the construction of closeϕj is clearly effective.

Let t ∈ TΣ and v ∈ pos(t). Observe that
(

P(pos(t))n,≤t) is a complete lattice; in
fact, we have for every D ⊆ P(pos(t))n and j ∈ [n] that prj(∧tD) =

⋂

d∈D prj(d) and
prj(∨tD) =

⋃

d∈D prj(d), where ∧t and ∨t denote the infimum and supremum wrt ≤t,
respectively. Moreover, ft,v is ω-continuous wrt ≤t because of Observation 3.28(2) and

126 6. Deciding circularity

due to the facts that (i) ft,v is monotone wrt ≤t by assumption and (ii) every ω-chain wrt
≤t is ultimately constant because P(pos(t))n is finite. Thus, we obtain for every j ∈ [n]
that

{

w ∈ pos(t) | t |= closeϕj (v,w)
}

= {w ∈ pos(t) | ∀(W1, . . . ,Wn)∈ P(pos(t))n :t |= ψ(v,W1, . . . ,Wn)⇒ w ∈Wj}

=
⋂

d∈{(W1,...,Wn)∈P(pos(t))n | t|=ψ(v,W1,...,Wn)}
prj(d)

= prj
(

∧t{(W1, . . . ,Wn) ∈ P(pos(t))n | t |= ψ(v,W1, . . . ,Wn)}
)

= prj
(

∧t{(W1, . . . ,Wn) ∈ P(pos(t))n | ft,v(W1, . . . ,Wn) ≤t (W1, . . . ,Wn)}
)

(⋆)

= prj(lfp(ft,v)) (by Theorem 6.6, where lfp(ft,v) is the least fixpoint of ft,v)

= prj
(

∨t{(ft,v)
m(∅, . . . , ∅) | m ∈ N}

)

(by Theorem 3.29)

=
⋃

m∈N
prj

(

(ft,v)
m(∅, . . . , ∅)

)

.

It remains to prove Equation (⋆). For every (W1, . . . ,Wn) ∈ P(pos(t))n we have

t |= ψ(v,W1, . . . ,Wn)

iff ∀k ∈ [n] : ∀w ∈ pos(t) : t |= ϕk(v,w,W1, . . . ,Wn)⇒ w ∈Wk

iff ∀k ∈ [n] : ∀w ∈ pos(t) : w ∈ prk
(

ft,v(W1, . . . ,Wn)
)

⇒ w ∈Wk (by Eq. (6.1))

iff ∀k ∈ [n] : prk(ft,v(W1, . . . ,Wn)) ⊆Wk

iff ft,v(W1, . . . ,Wn) ≤t (W1, . . . ,Wn) . �

The following lemma states that transitive closures of relations on atom instances are
definable in MSO-logic.

Lemma 6.8. Let χ = (χi,j(x, y) | i, j ∈ [n]) be a family over MSO(Σ) and for every
t ∈ TΣ let τt =

{

(pi(v), pj(w)) | i, j ∈ [n], v, w ∈ pos(t), t |= χi,j(v,w)}. Then for every
i, j ∈ [n] there effectively is a formula transχi,j(x, y) ∈ MSO(Σ) such that for every t ∈ TΣ

and v,w ∈ pos(t) we have t |= transχi,j(v,w) iff (pi(v), pj(w)) ∈ τ+
t .

Proof. First let us define some families of auxiliary formulas. For every i ∈ [n] we let
the family ϕi = (ϕi,j(x, y,X1, . . . ,Xn) | j ∈ [n]) over MSO(Σ) be defined by letting for
every j ∈ [n]:

ϕi,j = χi,j ∨
(

∨

k∈[n]
∃x.(x ∈ Xk ∧ χk,j)

)

.

Observe that Free(ϕi,j) ⊆ {x, y,X1, . . . ,Xn} for every i, j ∈ [n]. For every t ∈ TΣ,
i, j ∈ [n], v,w ∈ pos(t), and W1, . . . ,Wn ⊆ pos(t) we obtain

t |= ϕi,j(v,w,W1, . . . ,Wn)

iff t |= χi,j(v,w) or ∃ k ∈ [n] : ∃ v′ ∈Wk : t |= χk,j(v
′, w)

iff (pi(v), pj(w)) ∈ τt or ∃ k ∈ [n] : ∃ v′ ∈Wk : (pk(v
′), pj(w)) ∈ τt . (6.3)

For every i ∈ [n] we define the family fi =
(

fi,t,v | t ∈ TΣ, v ∈ pos(t)
)

such that for
every t ∈ TΣ, v ∈ pos(t), W1, . . . ,Wn ⊆ pos(t), and j ∈ [n] we have fi,t,v : P(pos(t))n →
P(pos(t))n and

prj
(

fi,t,v(W1, . . . ,Wn)
)

=
{

w ∈ pos(t) | t |= ϕi,j(v,w,W1, . . . ,Wn)
}

.

6.2. Defining circularity 127

By means of Equivalence (6.3) it is easy to check that for every i ∈ [n], t ∈ TΣ, and
v ∈ pos(t) the mapping fi,t,v is monotone wrt ≤t. Thus, we can employ Lemma 6.7 as

follows. For every i, j ∈ [n] we define transχi,j(x, y) ∈ MSO(Σ) by letting transχi,j = closefi

j

(this construction is effective due to Lemma 6.7); then we obtain for every t ∈ TΣ and
v,w ∈ pos(t) that

t |= transχi,j(v,w) iff t |= closefi

j (v,w)

iff w ∈
⋃

m∈N
prj

(

(fi,t,v)
m(∅, . . . , ∅)

)

(by Lemma 6.7)

iff (pi(v), pj(w)) ∈ τ+
t . (⋆)

It remains to prove Equivalence (⋆). To this end we introduce an auxiliary notion. For

the remainder of the proof we fix a t ∈ TΣ; we let τ
(0)
t = ∅ and, for every m ∈ N, we

let τ
(m+1)
t = τt ∪ (τ

(m)
t ; τt). Clearly, for every m ∈ N, τ

(m)
t is a relation on P (pos(t)).

Furthermore, it is easy to check that
⋃

m∈N
τ

(m)
t = τ+

t . Thus, in order to prove Equivalence
(⋆) it suffices to show that for every m ∈ N, i, j ∈ [n], and v,w ∈ pos(t) we have:

w ∈ prj
(

(fi,t,v)
m(∅, . . . , ∅)

)

iff (pi(v), pj(w)) ∈ τ
(m)
t . We give a proof by induction on m.

Induction base. This is trivial because prj
(

(fi,t,v)
0(∅, . . . , ∅)

)

= ∅ = τ
(0)
t .

Induction step. Let m ∈ N. We derive

w ∈ prj
(

(fi,t,v)
m+1(∅, . . . , ∅)

)

iff w ∈ prj
(

fi,t,v((fi,t,v)
m(∅, . . . , ∅))

)

iff t |= ϕi,j
(

v,w,pr1((fi,t,v)
m(∅, . . . , ∅)), . . . ,prn((fi,t,v)

m(∅, . . . , ∅))
)

(by the definition of fi,t,v)

iff (pi(v), pj(w)) ∈ τt or ∃ k ∈ [n] : ∃ v′ ∈ prk((fi,t,v)
m(∅, . . . , ∅)) :

(pk(v
′), pj(w)) ∈ τt . (by Equivalence (6.3))

iff (pi(v), pj(w)) ∈ τt or ∃ k ∈ [n] : ∃ v′ ∈ pos(t) : (pi(v), pk(v
′)) ∈ τ

(m)
t ∧

(pk(v
′), pj(w)) ∈ τt . (by the induction hypothesis)

iff (pi(v), pj(w)) ∈ τt or (pi(v), pj(w)) ∈ (τ
(m)
t ; τt)

iff (pi(v), pj(w)) ∈ τ
(m+1)
t . �

In what follows, we need to show that it is definable in MSO-logic whether, for a given
rule r and input tree t, a particular r, t-variable assignment ρ is valid. To this end we will
not distinguish between r, t-variable assignments and V-assignments for t if V = var(r).

The following lemma states that it is definable in MSO-logic whether a guard (i.e., a
finite set of structural atoms) is satisfied by a given variable assignment.

Lemma 6.9. Let G ⊆ spΣ(V) be finite. Then there effectively is a formula guardG ∈
MSO(Σ) with Free(guardG) = var(G) such that for every finite set V ⊆ V containing
Free(guardG), every t ∈ TΣ, and every ρ ∈ ΨV ,t we have (t, ρ) |= guardG iff ρ(G) ⊆ Bt.

Proof. First we show that for every g ∈ spΣ(V) there is a ψg ∈ MSO(Σ) such that
(i) Free(ψg) = var(g) and (ii) for every finite set V ⊆ V containing Free(ψg), every t ∈ TΣ,
and every ρ ∈ ΨV ,t we have (t, ρ) |= ψg iff ρ(g) ∈ Bt. We distinguish four cases.

• g = root(z) for some z ∈ V. Then we let ψg = ∀z′.
∧

i∈[maxrk(Σ)] ¬edgei(z
′, z).

128 6. Deciding circularity

• g = leaf(z) for some z ∈ V. Then we let ψg = ∀z′.
∧

i∈[maxrk(Σ)] ¬edgei(z, z
′).

• g = labelσ(z) for some σ ∈ Σ and z ∈ V. Then we let ψg = labelσ(z
′).

• g = childi(z, z
′) for some i ∈ [maxrk(Σ)] and z, z′ ∈ V. Then we let ψg = edgei(z, z

′).

It is easy to check that Properties (i) and (ii) are satisfied in each case.
Now let guardG =

∧

g∈G ψg. Observe that this construction is effective. Clearly,
Free(guardG) =

⋃

g∈G Free(ψg) =
⋃

g∈G var(g) = var(G). Let V ⊆ V be a finite set
containing Free(guardG), let t ∈ TΣ and let ρ ∈ ΨV ,t. Then (t, ρ) |= guardG iff ∀ g ∈ G :
(t, ρ) |= ψg iff ∀ g ∈ G : ρ(g) ∈ Bt iff {ρ(g) | g ∈ G} ⊆ Bt iff ρ(G) ⊆ Bt. �

The following lemma states that it is definable in MSO-logic whether the dependency
hypergraph of M and an input tree t contains a hyperedge satisfying a certain MSO-logic
definable property. First we need to fix some notation. For every r ∈ R let kr ∈ N

and pairwise distinct xr1, . . . , x
r
kr
∈ V such that var(r) = {xr1, . . . , x

r
kr
} and xr1 is the

unique variable that occurs in the head of r; without loss of generality we assume that
{xr1, . . . , x

r
kr
} and {x, y} are disjoint. Moreover, for every j ∈ [n] let Rj be the set of all

r ∈ R such that pj is the unique predicate that occurs in the head of r.

Lemma 6.10. Let ψ = (ψk(y,Xk) | k ∈ [n]) be a family over MSO(Σ), j ∈ [n], and i ∈

{0, . . . , n}. Then there is a formula hyperedgeψi,j(x, y,X1, . . . ,Xn) in MSO(Σ) that can be
constructed effectively such that for every t ∈ TΣ, v,w ∈ pos(t), and W1, . . . ,Wn ⊆ pos(t)
the following statements are equivalent:

1. t |= hyperedgeψi,j(v,w,W1, . . . ,Wn),

2. there is a (r, ρ) ∈ ΦM,t,pj(w) such that

• i ∈ [n] implies pi(v) ∈ ind(ρ(rb)) and

• t |= ψk(v
′,Wk) for every pk(v

′) ∈ ind(ρ(rb)).

Proof. First we assume that i ∈ [n]. We define hyperedgeψi,j(x, y,X1, . . . ,Xn) and for
every r ∈ R we define ϕ∃,r(x, x

r
1, . . . , x

r
kr

), ϕ∀,r(X1, . . . ,Xn, x
r
1, . . . , x

r
kr

) in MSO(Σ) as
follows:

hyperedgeψi,j =
∨

r∈Rj

∃xr1 · · · ∃x
r
kr
.
(

(y ≡ xr1) ∧ guardrG ∧ ϕ∃,r ∧ ϕ∀,r

)

,

ϕ∃,r =
∨

l∈[kr]
pi(xr

l
)∈ind(rb)

(x ≡ xrl) ,

ϕ∀,r =
∧

k∈[n]

∧

l∈[kr]
pk(xr

l)∈ind(rb)

∀y.((y ≡ xrl)→ ψk) .

It is easy to check that, for every r ∈ R, Free(ϕ∃,r) ⊆ {x, x
r
1, . . . , x

r
kr
}, Free(ϕ∀,r) ⊆

{X1, . . . ,Xn, x
r
1, . . . , x

r
kr
}, and Free(hyperedgeψi,j) ⊆ {x, y,X1, . . . ,Xn} (by using the fact

that Free(guardrG) = var(rG) ⊆ var(r) due to Lemma 6.9). The construction of the

formula hyperedgeψi,j is effective due to Lemma 6.9.
Let t ∈ TΣ, v,w ∈ pos(t), and W1, . . . ,Wn ⊆ pos(t). Moreover, let the assignment

ρ0 ∈ Ψ{x,y,X1,...,Xn},t be defined by ρ0(x) = v, ρ0(y) = w, and ρ0(Xl) = Wl for every
l ∈ [n]. Then

t |= hyperedgeψi,j(v,w,W1, . . . ,Wn) iff (t, ρ0) |= hyperedgeψi,j

6.2. Defining circularity 129

iff ∃ r ∈ Rj : ∃ ρ ∈ Ψvar(r),t : w = ρ(xr1), (t, ρ0 ∪ ρ) |= (guardrG ∧ ϕ∃,r ∧ ϕ∀,r)

(because var(r) and {x, y} are disjoint by assumption)

iff ∃r ∈ Rj :∃ρ ∈ Ψvar(r),t :w = ρ(xr1), (t, ρ) |= guardrG , (t, ρ0 ∪ ρ) |= (ϕ∃,r ∧ ϕ∀,r)

(by Lemma 6.3 and because Free(guardrG) ⊆ var(r) by Lemma 6.9)

iff ∃ r ∈ Rj : ∃ ρ ∈ Ψvar(r),t : w = ρ(xr1), ρ(rG) ⊆ Bt, (t, ρ0 ∪ ρ) |= (ϕ∃,r ∧ ϕ∀,r)

(by Lemma 6.9)

iff ∃ r ∈ R : ∃ ρ ∈ Ψvar(r),t : ρ(rh) = pj(w), ρ(rG) ⊆ Bt, (t, ρ0 ∪ ρ) |= (ϕ∃,r ∧ ϕ∀,r)

(because rh = pj(x
r
1) and w = ρ(xr1) together are equivalent to ρ(rh) = pj(w))

iff ∃ (r, ρ) ∈ ΦM,t,pj(w) : (t, ρ0 ∪ ρ) |= ϕ∃,r, (t, ρ0 ∪ ρ) |= ϕ∀,r .

The last equivalence follows from the definition of ΦM,t,pj(w). Let (r, ρ) ∈ ΦM,t,pj(w). It
remains to show that:

(i) (t, ρ0 ∪ ρ) |= ϕ∃,r iff pi(v) ∈ ind(ρ(rb)) and

(ii) (t, ρ0 ∪ ρ) |= ϕ∀,r iff t |= ψk(v
′,Wk) for every pk(v

′) ∈ ind(ρ(rb)).

First we prove Statement (i):

(t, ρ0 ∪ ρ) |= ϕ∃,r

iff ∃ l ∈ [kr] : pi(x
r
l) ∈ ind(rb) and ρ0(x) = ρ(xrl)

iff ∃ l ∈ [kr] : pi(x
r
l) ∈ ind(rb) and v = ρ(xrl)

iff pi(v) ∈ ind(ρ(rb)) .

Next we prove Statement (ii):

(t, ρ0 ∪ ρ) |= ϕ∀,r

iff ∀ k ∈ [n] : ∀ l ∈ [kr] : pk(x
r
l) ∈ ind(rb) implies

(

∀w′ ∈ pos(t) : w′ = ρ(xrl)⇒ (t, ρ0[y 7→ w′] ∪ ρ) |= ψk
)

iff ∀ k ∈ [n] : ∀ l ∈ [kr] : pk(x
r
l) ∈ ind(rb) implies (t, ρ0[y 7→ ρ(xrl)] ∪ ρ) |= ψk

iff ∀ k ∈ [n] : ∀ l ∈ [kr] : pk(x
r
l) ∈ ind(rb) implies t |= ψk(ρ(x

r
l),Wk)

iff ∀ k ∈ [n] : ∀ v′ ∈ pos(t) : pk(v
′) ∈ ind(ρ(rb)) implies t |= ψk(v

′,Wk)

iff ∀ pk(v
′) ∈ ind(ρ(rb)) : t |= ψk(v

′,Wk) .

This finishes the proof of the case that i ∈ [n]. Now assume that i = 0. Then we let

hyperedgeψi,j =
∨

r∈Rj

∃xr1 · · · ∃x
r
kr
.
(

(y ≡ xr1) ∧ guardrG ∧ ϕ∀,r

)

.

The remainder of the proof is similar to the proof of the case that i ∈ [n]. �

Now we show that non-circularity can be expressed in MSO-logic.

Lemma 6.11. There effectively is a sentence ϕnc ∈ MSO(Σ) such that L(ϕnc) is the set
of all trees t ∈ TΣ such that the dependency graph of M and t is cyclic.

Proof. We define the sentence ϕnc ∈ MSO(Σ) and for every i, j, k ∈ [n] we define
formulas ψk(y,Xk) and χi,j(x, y) in MSO(Σ) as follows:

ψk = true ,

130 6. Deciding circularity

χi,j = ∀X1 · · · ∀Xn.hyperedgeψi,j ,

ϕnc =
∨

i∈[n]
∃x.∃y.((x ≡ y) ∧ transχi,i) ,

where ψ = (ψk | k ∈ [n]) and χ = (χi,j | i, j ∈ [n]). It is easy to see that, for every
i, j, k ∈ [n], we have Free(ψk) ⊆ {y,Xk}, Free(χi,j) ⊆ {x, y} (by using Lemma 6.10)
and that ϕnc is a sentence (by Lemma 6.8). The construction of ϕnc is effective due to
Lemmas 6.8 and 6.10.

Let t ∈ TΣ and let E be the set of edges of the dependency graph of M and t. It
remains to prove that t |= ϕnc iff (c, c) ∈ E+ for some c ∈ P (pos(t)). We claim that for
every i, j ∈ [n] and v,w ∈ pos(t), t |= χi,j(v,w) iff (pi(v), pj(w)) ∈ E. This claim implies

t |= ϕnc

iff ∃ i ∈ [n] : ∃ v ∈ pos(t) : t |= transχi,i(v, v)

iff ∃ i ∈ [n] : ∃ v ∈ pos(t) : (pi(v), pi(v)) ∈ E
+ (by Lemma 6.8 and the claim)

iff ∃ c ∈ P (pos(t)) : (c, c) ∈ E+ .

It remains to prove the claim. For every i, j ∈ [n] and v,w ∈ pos(t):

t |= χi,j(v,w)

iff ∀W1, . . . ,Wn ⊆ pos(t) : t |= hyperedgeψi,j(v,w,W1, . . . ,Wn)

iff ∀W1, . . . ,Wn ⊆ pos(t) : ∃ (r, ρ) ∈ ΦM,t,pj(w) :
(

pi(v) ∈ ind(ρ(rb)) and
(

∀ pk(v
′) ∈ ind(ρ(rb)) : t |= ψk(v

′,Wk)
))

(by Lemma 6.10)

iff ∀W1, . . . ,Wn ⊆ pos(t) : ∃ (r, ρ) ∈ ΦM,t,pj(w) : pi(v) ∈ ind(ρ(rb))

(since ψk = true for every k ∈ [n])

iff ∃ (r, ρ) ∈ ΦM,t,pj(w) : pi(v) ∈ ind(ρ(rb))

(because this statement is independent from W1, . . . ,Wn)

iff (pi(v), pj(w)) ∈ E . (by Observation 4.11(3))

�

The following corollary is an immediate consequence of Theorem 6.4(1) and Lemma 6.11.

Corollary 6.12. There effectively is an fta Mnc such that L(Mnc) = ∅ iff M is non-
circular.

Before we show that also weak non-circularity can be expressed in MSO-logic, we prove
that the set of atom instances that have no derivations ending in them is definable in
MSO-logic.

Lemma 6.13. For every k ∈ [n] there effectively is a formula nonemptyk(y) in MSO(Σ)

such that for every t ∈ TΣ and w ∈ pos(t): t |= nonemptyk(w) iff H
pk(w)
G 6= ∅, where

G = Gdep
M,t.

Proof. First let us introduce some auxiliary formulas. For every j, k ∈ [n] we define
ψk(y,Xk) and ϕj(x, y,X1, . . . ,Xn) in MSO(Σ) as follows:

ψk = y ∈ Xk , ϕj = hyperedgeψ0,j ,

6.2. Defining circularity 131

where ψ = (ψk | k ∈ [n]). Obviously, Free(ψk) ⊆ {y,Xk} for every k ∈ [n]. By
Lemma 6.10, for every j ∈ [n], Free(ϕj) ⊆ {x, y,X1, . . . ,Xn} and the construction of
ϕj is effective. For every t ∈ TΣ, j ∈ [n], v,w ∈ pos(t), and W1, . . . ,Wn ⊆ pos(t) we
obtain, by using Lemma 6.10, that

t |= ϕj(v,w,W1, . . . ,Wn) iff t |= hyperedgeψ0,j(v,w,W1, . . . ,Wn)

iff ∃ (r, ρ) ∈ ΦM,t,pj(w) : ∀ pk(v
′) ∈ ind(ρ(rb)) : t |= ψk(v

′,Wk)

iff ∃ (r, ρ) ∈ ΦM,t,pj(w) : ∀ pk(v
′) ∈ ind(ρ(rb)) : v′ ∈Wk . (6.4)

We define the family f =
(

ft,v | t ∈ TΣ, v ∈ pos(t)
)

such that for every t ∈ TΣ, v ∈ pos(t),
W1, . . . ,Wn ⊆ pos(t), and j ∈ [n] we have ft,v : P(pos(t))n → P(pos(t))n and

prj
(

ft,v(W1, . . . ,Wn)
)

=
{

w ∈ pos(t) | t |= ϕj(v,w,W1, . . . ,Wn)
}

.

By means of Equivalence (6.4) it is easy to check that for every t ∈ TΣ and v ∈ pos(t)
the mapping ft,v is monotone wrt ≤t. Thus, we can employ Lemma 6.7 to the family
ϕ = (ϕj | j ∈ [n]) as follows. Let k ∈ [n]. We define the formula nonemptyk(y) ∈ MSO(Σ)
by letting nonemptyk = ∀x.closeϕk . Lemma 6.7 implies that Free(nonemptyk) ⊆ {y} and

that the construction of nonemptyk is effective. Let t ∈ TΣ, w ∈ pos(t), and G = Gdep
M,t.

It remains to prove that t |= nonemptyk(w) iff H
pk(w)
G 6= ∅. We obtain

t |= nonemptyk(w)

iff ∀ v ∈ pos(t) : t |= closeϕk (v,w)

iff ∀ v ∈ pos(t) : w ∈
⋃

m∈N
prk

(

(ft,v)
m(∅, . . . , ∅)

)

(by Lemma 6.7)

iff ∀ v ∈ pos(t) : H
pk(w)
G 6= ∅ (⋆)

iff H
pk(w)
G 6= ∅ . (because this statement is independent from v)

It remains to prove Equivalence (⋆). We claim that for every m ∈ N, k′ ∈ [n], and

v, v′ ∈ pos(t) we have v′ ∈ prk′
(

(ft,v)
m(∅, . . . , ∅)

)

iff H
pk′ (v

′),m
G 6= ∅ (recall the definition of

H
pk(w),m
G from Definition 4.47). In particular, for k′ = k and v′ = w, this claim implies

∀ v ∈ pos(t) : w ∈
⋃

m∈N
prk

(

(ft,v)
m(∅, . . . , ∅)

)

iff ∀ v ∈ pos(t) : ∃m ∈ N : w ∈ prk
(

(ft,v)
m(∅, . . . , ∅)

)

iff ∀ v ∈ pos(t) : ∃m ∈ N : H
pk(w),m
G 6= ∅

iff ∀ v ∈ pos(t) :
⋃

m∈N
H
pk(w),m
G 6= ∅

iff ∀ v ∈ pos(t) : H
pk(w)
G 6= ∅ . (because

⋃

m∈N
H
pk(w),m
G = H

pk(w)
G)

This proves Equivalence (⋆). Now we show that the claim holds. We give a proof by
induction on m.

Induction base. v′ ∈ prk′
(

(ft,v)
0(∅, . . . , ∅)

)

iff v′ ∈ ∅ iff ∅ 6= ∅ iff H
pk′(v

′),0
G 6= ∅, for every

k′ ∈ [n] and v, v′ ∈ pos(t).
Induction step. Let m ∈ N. We derive

v′ ∈ prk′
(

(ft,v)
m+1(∅, . . . , ∅)

)

132 6. Deciding circularity

iff v′ ∈ prk′
(

ft,v((ft,v)
m(∅, . . . , ∅))

)

iff t |= ϕk′
(

v, v′,pr1((ft,v)
m(∅, . . . , ∅)), . . . ,prn((ft,v)

m(∅, . . . , ∅))
)

(by the definition of ft,v)

iff ∃ (r, ρ) ∈ ΦM,t,pk′(v
′) : ∀ pk′′(v

′′) ∈ ind(ρ(rb)) : v′′ ∈ prk′′((ft,v)
m(∅, . . . , ∅))

(by Equivalence 6.4)

iff ∃ (r, ρ) ∈ ΦM,t,pk′(v
′) : ∀ pk′′(v

′′) ∈ ind(ρ(rb)) : H
pk′′(v

′′),m
G 6= ∅

(by the induction hypothesis)

iff H
pk′(v

′),m+1
G 6= ∅ . (by Observation 4.48)

�

Now we show that weak non-circularity can be expressed in MSO-logic.

Lemma 6.14. There effectively is a sentence ϕwnc ∈ MSO(Σ) such that L(ϕwnc) is the

set of all trees t ∈ TΣ such that H
q(ε)
G is infinite, where G = Gdep

M,t.

Proof. First let us define some auxiliary formulas. For every i, j, k ∈ [n] we define
ψk(y,Xk), χi,j(x, y), and ϕi,j(x, y) in MSO(Σ) as follows:

ψk = nonemptyk ,

χi,j = ∀X1 · · · ∀Xn.hyperedgeψi,j ,

ϕi,j = transχi,j ,

where ψ = (ψk | k ∈ [n]) and χ = (χi,j | i, j ∈ [n]). It is easy to see that, for ev-
ery i, j, k ∈ [n], we have Free(ψk) ⊆ {y,Xk} (by Lemma 6.13), Free(χi,j) ⊆ {x, y} (by
Lemma 6.10), and Free(ϕi,j) ⊆ {x, y} (by Lemma 6.8); the construction of ϕi,j is effective
due to Lemmas 6.8, 6.10, and 6.13. For every t ∈ TΣ, i, j ∈ [n], and v,w ∈ pos(t) we

obtain for G = Gdep
M,t that

t |= χi,j(v,w)

iff ∀W1, . . . ,Wn ⊆ pos(t) : t |= hyperedgeψi,j(v,w,W1, . . . ,Wn)

iff ∀W1, . . . ,Wn ⊆ pos(t) : ∃ (r, ρ) ∈ ΦM,t,pj(w) :
(

pi(v) ∈ ind(ρ(rb)) and
(

∀ pk(v
′) ∈ ind(ρ(rb)) : t |= ψk(v

′,Wk)
))

(by Lemma 6.10)

iff ∀W1, . . . ,Wn ⊆ pos(t) : ∃ (r, ρ) ∈ ΦM,t,pj(w) :
(

pi(v) ∈ ind(ρ(rb)) and
(

∀ pk(v
′) ∈ ind(ρ(rb)) : H

pk(v′)
G 6= ∅

))

(by Lemma 6.13)

iff ∃ (r, ρ) ∈ ΦM,t,pj(w) : pi(v) ∈ ind(ρ(rb)),∀ pk(v
′) ∈ ind(ρ(rb)) : H

pk(v′)
G 6= ∅

(because this statement is independent from W1, . . . ,Wn)

iff (pi(v), pj(w)) ∈ ≺G . (by Lemma 2.20 and Observation 4.11(1,2))

Thus, by Lemma 6.8:

t |= ϕi,j(v,w) iff t |= transχi,j(v,w)

iff (pi(v), pj(w)) ∈ ≺+
G iff pi(v) ≺

+
G pj(w) .

(6.5)

Now we define the sentence ϕwnc ∈ MSO(Σ) as follows:

ϕwnc =
(

∃x.∃y.(root(x) ∧ root(y) ∧ ϕ1,1)
)

∨

6.2. Defining circularity 133

∨

i∈[n]

(

∃x.∃y.
(

(x ≡ y) ∧ ϕi,i ∧ ∃y.(root(y) ∧ ϕi,1)
))

,

where root(z) is the macro ∀z′.
∧

i∈[maxrk(Σ)] ¬edgei(z
′, z), for every z ∈ {x, y}. Observe

that ϕwnc is a sentence and that its construction is effective. Let t ∈ TΣ and G = Gdep
M,t.

Then

t |= ϕwnc

iff t |= ϕ1,1(ε, ε) or ∃ i ∈ [n] : ∃ v ∈ pos(t) : t |= ϕi,i(v, v), t |= ϕi,1(v, ε)

iff p1(ε) ≺
+
G p1(ε) or ∃ pi(v) ∈ P (pos(t)) :

pi(v) ≺
+
G pi(v), pi(v) ≺

+
G p1(ε) (by Equivalence (6.5))

iff ∃ c ∈ P (pos(t)) : c ≺+
G c, c ≺

∗
G q(ε) (q = p1 by definition)

iff H
q(ε),∅
G is infinite. (by Lemma 2.25)

�

The following corollary is an immediate consequence of Theorem 6.4(1) and Lemma 6.14.

Corollary 6.15. There effectively is an ftaMwnc such that L(Mwnc) = ∅ iff M is weakly
non-circular.

134 6. Deciding circularity

CHAPTER 7

Weighted monadic datalog

In this chapter we study the semantics of mwmd for a certain class of m-monoids, viz. the
class of m-monoids that behave like strong bimonoids [44] or semirings [67, 72]. Roughly
speaking, we investigate semantics of mwmd that are evaluated in strong bimonoids or
semirings instead of m-monoids. In this context we will refer to m-weighted monadic
datalog programs simply as weighted monadic datalog programs. This chapter is a revised
and extended version of [122]; note that the scope of investigation in [122] is weighted
monadic datalog over semirings and unranked trees [127], whereas we study weighted
monadic datalog over strong bimonoids and ranked trees in this thesis.

Weighted monadic datalog (for short: wmd) is an extension of the concept of monadic
datalog [68, 69]. In fact, monadic datalog is obtained from wmd when employing the
Boolean semiring. The method of extending monadic datalog to wmd by introducing
weights of some strong bimonoid is similar to the extension of horn calculus to semiring-
based constraint logic programming [17, 18, 19].

This chapter is organized as follows. In Section 7.1 we will recall basic concepts con-
cerning strong bimonoids and semirings. In Section 7.2 we study properties of the syntax
and semantics of mwmd over strong bimonoids. Section 7.3 deals with the expressive
power of weighted monadic datalog and compares it with the class of recognizable tree
series. In Section 7.4 we will investigate the evaluation complexity of weighted monadic
datalog and provide sufficient conditions that allow for an efficient computation of the
semantics of wmd.

7.1 Strong bimonoids and semirings

First let us recall the notions of strong bimonoids and semirings. Moreover, let us intro-
duce the class of m-monoids that behave like strong bimonoids or semirings. A strong
bimonoid is an algebra that consists of two monoids, called the additive and multiplicative
monoid, where the additive monoid is commutative and its neutral element is absorbing
wrt the multiplicative operation. A semiring is a strong bimonoid such that multplication
distributes over addition.

Definition 7.1. A strong bimonoid [44] is a tuple S = (S,+, ·,0,1) where

• S is a set,

• (S,+,0) is a commutative monoid,

• (S, ·,1) is a monoid,

• 0 is absorbing wrt ·.

135

136 7. Weighted monadic datalog

The strong bimonoid S is called a semiring [67, 72] if the operation · distributes over +,
i.e., for every a, b, c ∈ S we have

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c) .

We call S commutative if · is commutative and idempotent if + is idempotent. More-
over, S is locally finite if for every finite subset S′ ⊆ S also 〈S′〉+,· is finite (where 〈S′〉+,·
is the smallest set S′′ ⊆ S containing S′ ∪ {0,1} that is closed under + and ·) and S is
additively locally finite if for every finite subset S′ ⊆ S also 〈S′〉+ is finite (where 〈S′〉+
is defined accordingly). 2

Example 7.2 (cf. [44, Example 1]). Now we present some example strong bimonoids
and semirings.

1. The tropical bimonoid is the strong bimonoid (N∪{∞},+,min, 0,∞) with N∞ =
N∪{∞} and the usual extensions of + and min from N to N∞. We note that it is not
a semiring, because there are a, b, c ∈ N∞ with min{a, b+c} 6= min{a, b}+min{a, c}
(e.g., take a = b = c 6= 0).

2. The tropical semiring is the semiring (N ∪ {∞},min,+,∞, 0).

3. The algebra ([0, 1],⊕, · , 0, 1) with the usual multiplication · of real numbers is
a strong bimonoid for, e.g., each of the following two definitions of ⊕ for every
a, b ∈ [0, 1]:

• a⊕ b = a+ b− a · b (called algebraic sum in [85]) and

• a⊕ b = min{a+ b, 1} (called bounded sum in [85]).

In neither of the two cases ([0, 1],⊕, · , 0, 1) is a semiring.

4. Let (C,+, 0) be a commutative monoid and let A be the set of all mappings from C
into itself with pointwise addition, composition of mappings, constant mapping zero,
and the identity mapping. Then A constitutes a strong bimonoid satisfying only one
distributivity law (which depends on the order used for defining the composition).
Such structures are also called near semirings [133, 92].

5. Let Σ be an alphabet. Consider the strong bimonoid (Σ∗ ∪ {∞},∧, ·,∞, ε) where ∧
is the longest common prefix operation, · is the usual concatenation of words, and
∞ is a new element such that w ∧ ∞ = ∞ ∧ w = w and w · ∞ = ∞ · w = ∞ for
every w ∈ Σ∗ ∪ {∞}. This bimonoid occurs in investigations for natural language
processing, see [108]. It is clear that (Σ∗ ∪ {∞},∧, ·,∞, ε) is left distributive but
not right distributive.

6. The Boolean semiring is the semiring (B,∨,∧, 0, 1) with B consisting of the truth
values 0 and 1, and ∨ and ∧ are disjunction and conjunction, respectively.

7. Bounded lattices (lattices containing a greatest element 1 and a smallest element 0)
are strong bimonoids. As is well known, there are large classes of lattices that are
not distributive [71].

8. Moreover, bounded distributive lattices, semiring-reducts of semi-lattice ordered
monoids and of complete residuated lattices, and Brouwerian lattices are semirings.2

7.1. Strong bimonoids and semirings 137

Every strong bimonoid induces a signature, its associated signature, and an m-monoid,
its associated m-monoid, over its associated signature. The construction of the associated
m-monoid is taken from [58, Definition 8.5] and [59]. Now let us define these concepts
formally.

Definition 7.3. Let S = (S,+, ·,0,1) be a strong bimonoid. The associated signature

∆S of S is the signature ∆S = {mulka | a ∈ S, k ∈ N}, where for every a ∈ S and
k ∈ N, mulka has the rank k. The associated m-monoid of S is the m-monoid AS =
(S,+,0, θS) over ∆S such that for every a ∈ S, k ∈ N, and a1, . . . , ak ∈ S we have
θS(mulka)(a1, . . . , ak) = a1 · . . . · ak · a.

Let ≤ be a partial order on S. We call (S,≤) an ω-continuous strong bimonoid if
(AS ,≤) is an ω-continuous m-monoid. We define ω-continuous semirings likewise. 2

Note that in [122] ω-continuous semirings are called ω-cpo semirings. In this thesis we use
the name ω-continuous semiring because it is more consistent with the previous definitions
(e.g., ω-continuous m-monoids).

Observation 7.4. Let S = (S,+, ·,0,1) be a strong bimonoid.

1. The associated m-monoid AS of S is absorptive. Moreover, if S is a semiring, then
SS is a dm-monoid.

2. Let ≤ be a partial over on S. Then (S,≤) is an ω-continuous strong bimonoid iff
(S,≤) is an ω-cpo, and

• 0 is the least element of A wrt ≤,

• + and · are monotone wrt ≤, i.e., a ≤ b implies s+ a ≤ s+ b, s · a ≤ s · b, and
a · s ≤ b · s for every a, b, s ∈ S,

• + and · are continuous wrt ≤, i.e., for every s ∈ S and ω-chain c we have

– ∨{c(i) | i ∈ N}+ s = ∨{c(i) + s | i ∈ N},
– ∨{c(i) | i ∈ N} · s = ∨{c(i) · s | i ∈ N},
– s · ∨{c(i) | i ∈ N} = ∨{s · c(i) | i ∈ N}.

Example 7.5 ([122]). Now we give some examples of ω-continuous semirings.

1. The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with the natural order 0 ≤ 1 is an
ω-continuous semiring.

2. The tropical semiring (N∪{∞},min,+,∞, 0) together with the reverse natural order
of natural numbers is an ω-continuous semiring.

Note that the arctic semiring (N ∪ {−∞},max,+,−∞, 0) together with the natu-
ral order on natural numbers is not an ω-continuous semiring because it lacks the
element ∞ and is, thus, not an ω-cpo.

3. Every complete semiring (S,
∑

) (cf. [67, Chapter 22]) that is ω-idempotent, i.e.,
that satisfies

∑

i∈I s = s for every non-empty family (s | i ∈ I) over the carrier set
S of S, together with the partial order ≤, that is defined for every a, b ∈ S as a ≤ b
iff a+ b = b, is an ω-continuous semiring.

4. The semiring of nonnegative real numbers with infinity (R≥0 ∪ {∞},+, ·, 0, 1) to-
gether with the natural order on nonnegative real numbers with infinity is an ω-
continuous semiring.

138 7. Weighted monadic datalog

5. A c-semiring [17] is a complete1 semiring
(

S,
∑

)

with S = (S,+, ·,0,1) such that
∑

is ω-idempotent, · is commutative, and 1 is absorbing wrt +. It is easy to see that
the semiring S together with the binary relation ≤ on S defined for every s1, s2 ∈ S
by s1 ≤ s2 iff s1 + s2 = s2, is an ω-continuous semiring; in fact, (S,≤) forms a
complete lattice (see [17, Theorem 9]). On the other hand, there are ω-continuous
semirings that cannot be represented as c-semirings in this manner (e.g., the ω-
continuous semiring from Item 4 of this example is such an ω-continuous semiring
because 1 is not absorbing wrt +). 2

7.2 Weighted monadic datalog programs

In this section we will study mwmd over a given ranked alphabet Σ and the associated
signature of a given strong bimonoid S. Moreover, we will investigate properties of their
intended semantics, viz. semantics that are evaluated in the associated m-monoid of S.

Throughout this chapter let Σ be a ranked alphabet and S = (S,+, ·,0,1) be a
strong bimonoid.

Definition 7.6. Let M be an mwmd over Σ and ∆S . Then we also call M a weighted

monadic datalog program (for short: wmd) over Σ and S.

If M is weakly non-circular, then we will simply write [[M]] instead of [[M]]fix
AS

. Moreover,
for every partial order ≤ on S such that (S,≤) is an ω-continuous strong bimonoid, we
write [[M]]≤ instead of [[M]]fix

(AS ,≤). We call [[M]] and [[M]]≤ the tree series defined by

M and S and the tree series defined by M and (S,≤), respectively.

Likewise, we will abbreviate the class WMDfix(Σ,∆S ,AS) by WMD(Σ,S) and the class
WMDfix

(

Σ,∆S , (AS ,≤)
)

by WMD
(

Σ, (S,≤)
)

. For convenience we abbreviate AS〈〈TΣ〉〉
by S〈〈TΣ〉〉. Hence, WMD(Σ,S) ⊆ S〈〈TΣ〉〉 and WMD

(

Σ, (S,≤)
)

⊆ S〈〈TΣ〉〉.
Let M ′ be a wmd over Σ and S. We say that M and M ′ are semantically equivalent

if

• M is weakly non-circular iff M ′ is weakly non-circular,

• if M is weakly non-circular, then [[M]] = [[M ′]], and

• for every partial order ≤ on S such that (S,≤) is an ω-continuous strong bimonoid,
we have [[M]]≤ = [[M ′]]≤. 2

Note that the notions in the previous definition are well-defined because AS is absorptive
for every strong bimonoid S (see Observation 7.4(1)). Furthermore, note that in [122] the
query predicate of a weighted monadic datalog program has been defined to be a nullary
predicate. For reasons of consistency with the definitions in the previous chapters we
require the query predicates of wmd to be unary in this thesis.

As the previous definition suggests, we restrict ourselves to the fixpoint semantics when
studying wmd. The following observation (that follows from Theorem 4.53 and Observa-
tion 7.4(1)) states that when employing semirings, then this is no real restriction.

1i.e., sums are defined for arbitrary families of semiring elements; note that in [18] c-semirings have been
defined without the requirement that the sum of an infinite number of elements exists

7.2. Weighted monadic datalog programs 139

Observation 7.7. Let S be a semiring and M be an wmd over Σ and S. Then [[M]] =

[[M]]fix
AS

= [[M]]hyp
AS

.

Let ≤ be a partial order on S such that (S,≤) is an ω-continuous strong bimonoid.

Then [[M]]≤ = [[M]]fix
(AS ,≤) = [[M]]hyp

(AS ,
P

), where (AS ,
∑

) is the ω-complete m-monoid that

is related with (AS ,≤) (see Lemma 3.40).

The following example is inspired by [122, Example 3.7]; it is adapted from the setting
of unranked trees to ranked trees.

Example 7.8. Let Σ = {α(0), γ(1), σ(2)} be a ranked alphabet and consider the arctic
semiring S = (N ∪ {−∞},max,+,−∞, 0). Consider the wmd M = (P,R, q) over Σ and
S such that P = {q(1), p(1)} and R = {r1, r2, r3, r4, r5} with

r1 = q(x)← p(y) ; {labelσ(x), child1(x, y)} ,

r2 = q(x)← q(z) ; {labelσ(x), child2(x, z)} ,

r3 = q(x)← mul00 ; {labelα(x)} ,

r4 = p(x)← mul01 ; {labelα(x)} ,

r5 = p(x)← mul11(p(y)) ; {labelγ(x), child1(x, y)} .

Clearly, the wmd M is weakly non-circular. Now let us compute the semantics [[M]]
of M . First consider the tree t1 = α. Then P (pos(t1)) = {q(ε), p(ε)}. The sequence
of interpretations T i(I−∞) is shown in the following table. Let us compute the value
of T 1(I−∞)(q(ε)) explicitely. It is easy to see that ΦM,t1,q(ε) = {(r3, [x 7→ ε])}. Then

T 1(I−∞)(q(ε)) = hI−∞

(

[x 7→ ε]((r3)b)
)

= hI−∞(mul00) = θS(mul00)() = 0.

T 0(I−∞) T 1(I−∞) T 2(I−∞)

q(ε) −∞ 0 0
p(ε) −∞ 1 1

Thus, [[M]](t1) = 0. Now consider the input tree t2 = σ(α, σ(γ(α), α)). In the fol-
lowing table we have compiled the sequence of interpretations T i(I−∞) for all the rele-
vant atom instances. Let us compute the values of T 2(I−∞)(p(21)) and T 3(I−∞)(q(2))
explicitely. It is easy to check that we have ΦM,t2,p(21) = {(r5, [x 7→ 21, y 7→ 211])}
and ΦM,t2,q(2) = {(r1, [x 7→ 2, y 7→ 21]), (r2, [x 7→ 2, z 7→ 22])}. Therefore, we have

T 2(I−∞)(p(21)) = θS(mul11)
(

T 1(I−∞)(p(211))
)

= 1 + 1 = 2 and T 3(I−∞)(q(2)) =
max

{

T 2(I−∞)(p(21)),T 2(I−∞)(q(22))
}

= max{2, 0} = 2.

T 0(I−∞) T 1(I−∞) T 2(I−∞) T 3(I−∞) T 4(I−∞) T 5(I−∞)

q(ε) −∞ −∞ 1 1 2 2
q(2) −∞ −∞ 0 2 2 2
q(22) −∞ 0 0 0 0 0
p(1) −∞ 1 1 1 1 1
p(21) −∞ −∞ 2 2 2 2
p(211) −∞ 1 1 1 1 1

We obtain [[M]](t2) = 2. For every n ∈ N and m1, . . . ,mn ∈ N we have [[M]](t) =
1 + max{mi | i ∈ [n]}, where t = σ(γm1(α), σ(γm2 (α), · · · σ(γmn(α), α) · · ·)), i.e., t is the
right-descending comb where the i-the prong is of the form γmi(α), for every i ∈ [n]. 2

140 7. Weighted monadic datalog

For the remainder of this chapter let M = (P,R, q) be a wmd over Σ and S.

The notation we have developed so far is fairly cumbersome. Consider the rules r3
and r4 in the previous example. Essentially, their bodies mul00 and mul01 represent the
constant semiring elements 0 and 1, respectively. Therefore, we will follow the convention
to denote these bodies by 0 and 1 instead, if no confusion arises. We can extend this idea
to operations of arity greater than 0 as follows: for every body of the form mulka(b1, . . . , bk)
(for a ∈ S, k ∈ N, and atoms b1, . . . , bk), we will write b1, . . . , bk, a instead. This notation is
quite intuitive because when evaluating this body in the m-monoid AS , then one computes
the product of the values of the instances of the atoms b1 to bk and the strong bimonoid
element a in this order.

In this manner we can extend this scheme of notation to arbitrary bodies consisting of
multiple occurrences of operations of the form mulka, and, hence, denote every body in a
flattened form consisting of a finite sequence of atoms and strong bimonoid elements, e.g.,
we will denote the body mul2a(mul1b(q()),mul2c(p(), r())) by q(), b, p(), r(), c, a; this process
is reminiscent of transforming a mathematical term into reverse Polish notation [29] or
of performing the post-order walk of a tree. We will now formally define this alternative
notation and will exhibit its practical use for the computation of the semantics of wmd
in the following lemma.

Definition 7.9. We define the mapping ξM : T∆S
(P (V))→ (P (V)∪S)∗, called flatten-

ing of M , by structural recursion as follows for every s ∈ T∆S
(P (V)):

• if s ∈ P (V), then ξM (s) = s, and

• if s = mulka(s1, . . . , sk) for some k ∈ N, a ∈ S, and s1, . . . , sk ∈ T∆S
(P (V)), then

ξM (s) = ξM(s1) · · · ξM (sk) a.

For better readability, we will separate the symbols in the string ξM (s) by commas, e.g.,
we write p(), a, q(x), b instead of p() a q(x) b.

Let r ∈ R, k ∈ N, and b1, . . . , bk ∈ P (V) ∪ S such that ξ(rb) = b1, . . . , bk. We put
size(r) = k + |rG| and size(M) =

∑

r∈R size(r). 2

Lemma 7.10. For every r ∈ R let kr ∈ N and br1, . . . , b
r
kr
∈ P (V)∪S such that ξM (rb) =

br1, . . . , b
r
kr

. Moreover, let t ∈ TΣ and I ∈ I. Then for every c ∈ P (pos(t)) we have

T (I)(c) =
∑

(r,ρ)∈ΦM,t,c

I(ρ(br1)) · . . . · I(ρ(b
r
kr

)) ,

where we put ρ(a) = a and I(a) = a for every a ∈ S.

Proof. Since T (I)(c) =
∑

(r,ρ)∈ΦM,t,c
hI(ρ(rb)) for every c ∈ P (pos(t)), it suffices to

show for every s ∈ T∆S
(P (V)), ρ : var(s)→ pos(t), l ∈ N, and b1, . . . , bl ∈ P (V) ∪ S with

ξM (s) = b1, . . . , bl that hI(ρ(s)) = I(ρ(b1)) · . . . · I(ρ(bl)). We give a proof by structural
induction.

Induction base. If s ∈ P (V), then l = 1 and b1 = s; thus, hI(ρ(s)) = I(ρ(s)) = I(ρ(b1)).
Induction step. Suppose that s = mulka(s1, . . . , sk) for some k ∈ N, a ∈ S, and

s1, . . . , sk ∈ T∆S
(P (V)). For every i ∈ [k] let li ∈ N and bi1, . . . , b

i
li
∈ P (V) ∪ S such

that ξM (si) = bi1, . . . , b
i
li
. Then b11, . . . , b

1
l1
, . . . , bk1 , . . . , b

k
lk
, a = b1, . . . , bl and we obtain

hI(ρ(s)) = θS(mulka)
(

hI(ρ(s1)), . . . ,hI(ρ(sk))
)

= hI(ρ(s1)) · . . . · hI(ρ(sk)) · a

7.3. Expressiveness of wmd 141

= I(ρ(b11)) · . . . · I(ρ(b
1
l1

)) · . . . · I(ρ(bk1)) · . . . · I(ρ(b
k
lk

)) · a (by ind. hyp.)

= I(ρ(b11)) · . . . · I(ρ(b
1
l1

)) · . . . · I(ρ(bk1)) · . . . · I(ρ(b
k
lk

)) · I(ρ(a))

= I(ρ(b1)) · . . . · I(ρ(bl)) . �

Remark 7.11. In the sequel we will denote every rule r of a weighted monadic datalog
program M by rh ← ξM (rb) ; rG.

Observe that this notation is ambiguous. For example, when denoting the body of a
rule by the sequence p(), q(), b, a, then it is not clear whether the body is actually the
tree b = mul2a

(

p(),mul1b(q())
)

or the tree b′ = mul1a
(

mul2b(p(), q())
)

. However, this is
no problem because b and b′ are, roughly speaking, semantically equivalent (clearly, the
semantics of wmd does not depend on the actual tree representation rb of the sequence
ξM (rb) due to Lemma 7.10).

Moreover, observe that there are sequences b̄ of atoms and strong bimonoid elements
that do not correspond to trees over ∆S indexed by P (V), i.e., there is no s ∈ T∆S

(P (V))
with ξM (s) = b̄. An example of such a sequence is a, p(), q(). In this case we will silently
assume that the sequence is succeeded by the strong bimonoid element 1; e.g., a, p(), q()
is the result of flattening the tree mul3

1
(a, p(), q()).

Note that in [122] the syntax of wmd rules has been defined in such a way that the
body and the guard of a rule are denoted together by one sequence of user-defined atoms,
semiring elements, and structural atoms. However, in this thesis we denote the body
and the guard of a wmd rule separately; this is due to reasons of consistency with the
definition of the syntax of mwmd. 2

Let us conclude this section with one observation and one lemma, which is an adaptation
of Lemma 4.33 to the setting of wmd.

Observation 7.12 (cf. [122, Obs. 3.28]). Let M be weakly non-circular. Then for ev-
ery t ∈ TΣ we have [[M]](t) ∈ 〈S′〉+,· , where S′ is the set of strong bimonoid elements
occurring in the rules of M .

Lemma 7.13. Suppose that S is a locally finite strong bimonoid and that (S,≤) is an
ω-complete strong bimonoid. Then there is an n ∈ N with T ω = T n(I0). If S is finite,
then there is such an n with n ≤ (|S| − 1) · |P | · |pos(t)|.

Proof. In view of Lemma 4.33 it suffices to show that AS is olf. Let ∆′ ⊆ ∆S be finite.
Then there is a finite set S′ ⊆ S such that for every δ ∈ ∆′ there is an a ∈ S′ and k ∈ N

with δ = mulka. Clearly, then also S′′ = 〈S′〉+,· is finite. It is easy to see that S′′ contains
0 and is closed under + and under θS(mulka), for every a ∈ S′ and k ∈ N and, thus, under
θS(δ) for every δ ∈ ∆′. Hence, AS is olf. �

7.3 Expressiveness of wmd

In this section we study the expressive power of wmd, i.e., we compare the classes
WMD(Σ,S) and WMD

(

Σ, (S,≤)
)

with classes of tree series over strong bimonoids. We
will investigate the relationships between (i) the class of tree series that are defined by
weakly non-circular wmd and the class of tree series defined by arbitrary wmd, (ii) wmd
over the Boolean semiring and monadic datalog, and (iii) the class of tree series that are
defined by non-circular wmd and the class of recognizable tree series.

142 7. Weighted monadic datalog

7.3.1 Comparison of finitary with infinitary semantics

First let us study how the two classes WMD(Σ,S) and WMD
(

Σ, (S,≤)
)

for a given ranked
alphabet Σ and an ω-continuous strong bimonoid (S,≤) relate. Due to Corollary 4.35 we
immediately obtain that the class WMD(Σ,S) is contained in WMD

(

Σ, (S,≤)
)

.

Corollary 7.14 (cf. [122, Corollary 3.30]). Let (S,≤) be an ω-continuous strong bi-
monoid. Then WMD(Σ,S) ⊆WMD

(

Σ, (S,≤)
)

.

The following lemma shows that arbitrary wmd have stronger expressiveness than
weakly non-circular wmd.

Lemma 7.15 (cf. [122, Lemma 3.31]). There is a ranked alphabet Σ and a commuta-
tive ω-complete semiring (S,≤) with WMD

(

Σ, (S,≤)
)

\WMD(Σ,S) 6= ∅.

Proof. Let S = (P(N),∪, ◦, ∅, {0}) where N1 ◦ N2 = {n1 + n2 | n1 ∈ N1, n2 ∈ N2}
for every N1, N2 ⊆ N. Observe that (S,⊆) is a commutative ω-complete semiring. Let
Σ = {α(0), γ(1)} and consider the wmd M = (P,R, q) such that P = {c(1), q(1)} and R
contains the following rules:

c(x)← {0} ; {leaf(x)} , c(x)← c(y), {1} ; {child1(x, y)} ,

q(x)← {0} ; ∅ , q(x)← q(x), c(x), {0} ; {root(x)} .

Observe that, due to the last rule, M is not weakly non-circular. Let k ∈ N and t = γk(α).
It is easy to verify that the following equivalences hold for every i ∈ {0, . . . , k} and n ∈ N:

T n(I∅)(c(1
i)) =

{

∅ , if n < k − i+ 1,

{k − i}, otherwise,

T n(I∅)(q(ε)) =











∅ , if n = 0,

{0}, if 0 < n ≤ k + 1,

{k · j | 0 ≤ j < n− k}, if k + 1 < n.

Then {k · i | i ∈ N} = T ω(q(ε)) = [[M]]⊆(t).
Now we assume that there is a weakly non-circular wmd M ′ = (P ′, R′, q′) over Σ and

S such that [[M ′]] = [[M]]⊆. Let S′ be the finite set of semiring elements of S that occur in
the rules of M ′. Then [[M ′]](t) ∈ 〈S′〉∪,◦, for every t ∈ TΣ, by Observation 7.12. It suffices
to show that there is a k ∈ N such that {k · i | i ∈ N} 6∈ 〈S′〉∪,◦.

Let N ⊆ N be infinite. We define the least element distance of N , denoted by l(N), as
l(N) = min{i ∈ N | there is a j ∈ N with j + i ∈ N}. Now let m be the maximal of such
distances in S′, i.e.,

m = max{i ∈ N | there is an infinite N ∈ S′ with i = l(N)} .

The numberm is well-defined because S′ is finite. Now observe that 〈S′〉∪,◦ cannot contain
an infinite set N with l(N) > m because:

• For every N1, N2 ⊆ N we have that if N1 ∪N2 is infinite or N1 ◦N2 is infinite, then
N1 or N2 must be infinite.

• If N1, N2 ⊆ N such that N1 is infinite, then we have l(N1 ∪ N2) ≤ l(N1) and
l(N1 ◦N2) ≤ l(N1) (if N1 ◦N2 is infinite).

Thus, there is a k ∈ N (viz. k = m + 1) such that {k · i | i ∈ N} 6∈ 〈S′〉∪,◦, because
l({k · i | i ∈ N}) = m+ 1. �

7.3. Expressiveness of wmd 143

7.3.2 Comparison with monadic datalog

The class of tree language that can be defined in monadic datalog is the class of MSO-
definable tree languages (see [69, Corollary 4.7]) and, thus, the class of recognizable tree
languages (see Theorem 6.4)(2). Here we show that the class of languages that are the
support of wmd-definable tree series over the Boolean semiring is also the class of recog-
nizable tree languages.

In analogy to the definition of the set WMD(Σ,S) we define MD(Σ) to comprise of all
tree languages definable by nullary monadic datalog queries over Σ (cf. [69]). The following
lemma states the correspondence between monadic datalog and weighted monadic datalog
over the Boolean semiring B (where for every class of tree series Ψ we define supp(Ψ) =
{supp(λ) | λ ∈ Ψ}).

Lemma 7.16 (cf. [122, Lemma 3.22]). Let B be the Boolean semiring and ≤ be the
natural order on B. Then supp(WMD(Σ, (B,≤))

)

= MD(Σ).

Proof. Here we only give a proof idea. The inclusion supp(WMD(Σ, (B,≤))
)

⊇MD(Σ)
is easy to see because every monadic datalog query (R, q) over Σ can be considered as
a wmd M over Σ and B, and the support of the tree series defined by M and (B,≤)
coincides with the semantics of (R, q) intended in [68, 69].

For the inclusion supp(WMD(Σ, (B,≤))
)

⊆ MD(Σ) let M be a wmd over Σ to B. It is
easy to see that M can easily be transformed into an equivalent monadic datalog program
as follows: (i) remove every occurrence of the semiring element 1 in any of the rules in
M , and (ii) drop every rule that contains the semiring element 0. �

7.3.3 Comparison with recognizable tree series

Suppose that S is a semiring. In this section we compare the class WMD(Σ,S) with the
class Rec(Σ, S) of recognizable tree series over Σ and S. This is a robust and important
subclass of S〈〈TΣ〉〉 and is characterized by, e.g., weighted tree automata [15, 63], semiring
weighted MSO-logic [41, 45], rational tree series expressions [22, 43, 113], and weighted
regular grammars [4]. For a thorough introduction into the theory of recognizable tree
series we refer to [63]. We will show that the class of tree series that are defined by
non-circular wmd contains the class of recognizable tree series and that this inclusion is,
in general, proper (see Theorem 7.18).

Here we will define the class of recognizable tree series in terms of weighted bottom-up
tree automata. First we recall this concept.

Definition 7.17. Suppose that S is a semiring. A weighted tree automaton (for
short: wta) over Σ and S is a triple M = (Q,µ, F), where Q is a finite, non-empty set,
µ = (µk | k ∈ N) is a family of mappings µk : Qk × Σ(k) ×Q→ S, and F ⊆ Q.

Let t ∈ TΣ. The set RM(t) of successful runs over M and t is defined to be the set
{κ | κ : pos(t)→ Q,κ(ε) ∈ F}. Every κ ∈ RM(t) induces a mapping wtM,t(κ) : pos(t)→
S which is defined as follows for every w ∈ pos(t):

wtM,t(κ)(w) = wtM,t(κ)(w1) · . . . · wtM,t(κ)(wk) · µk
(

κ(w1) · · · κ(wk), t(w), κ(w)
)

,

where k = rk(t(w)). If M and t are clear from the context, then we also write wt(κ)
instead of wtM,t(κ).

144 7. Weighted monadic datalog

The tree series recognized by M, denoted by [[M]] ∈ S〈〈TΣ〉〉, is defined for every
t ∈ TΣ by [[M]](t) =

∑

κ∈RM(t) wt(κ)(ε). A tree series λ ∈ S〈〈TΣ〉〉 is called recognizable

over Σ and S if there is a wta M over Σ and S such that [[M]] = λ. The set of all
recognizable tree series over Σ and S is denoted by Rec(Σ,S). 2

We point out that sometimes in the literature the mapping µk has the type Σ(k) → SQ
k×Q;

clearly this is equivalent to the type we introduce here. Note that in [114] the definition
of wta has been extended to arbitrary strong bimonoids; here we restrict ourselves to wta
over semirings.

Now we present the result comparing the expressiveness of wta and wmd. The following
theorem is an adaptation of [122, Theorem 4.4] from unranked to ranked trees.

Theorem 7.18. Rec(Σ,S) ⊆ WMD(Σ,S) for every commutative semiring S. There is
a ranked alphabet Σ and a commutative semiring S such that Rec(Σ,S) is a proper subset
of WMD(Σ,S).

Proof. First we show that Rec(Σ,S) ⊆WMD(Σ,S) for every commutative semiring S.
To this end let M = (Q,µ, F) be a wta over Σ and S. We construct a non-circular wmd
M over Σ and S such that [[M]] = [[M]] as follows: M = (P,R, q) with P (0) = ∅ and
P (1) = Q ∪ {q}, where q 6∈ Q, and

R = {rk,σ,p,p1,...,pk
| k ∈ N, σ ∈ Σ(k), p, p1, . . . , pk ∈ Q} ∪ {rp | p ∈ F} ,

such that for every k ∈ N, σ ∈ Σ(k), p, p1, . . . , pk ∈ Q we have

rk,σ,p,p1,...,pk
= p(xε)← mulkµk(p1···pk,σ,p)

(

p1(x1), . . . , pk(xk)
)

;

{labelσ(xε), child1(xε, x1), . . . , childk(xε, xk)} ,

and for every p ∈ F we have

rp = q(xε)← p(xε) ; {root(xε)} .

Note that we have denoted the bodies of the rules ofM in tree form instead of the flattened
sequence form for simplifying the following proof. It is easy to see that M is non-circular.

Now we prove that [[M]] = [[M]]. Let t ∈ TΣ and define the mapping π : RM(t)→ H
q(ε)
G

as follows (where G = Gdep
M,t). Let κ ∈ RM(t). Then π(κ) is defined as the derivation

η ∈ H
q(ε)
G such that pos(η) = {ε} ∪ {1 · w | w ∈ pos(t)}, η(ε) = (rκ(ε), [xε 7→ ε]) and for

every w ∈ pos(t) we have

η(1 · w) = (rk,t(w),κ(w),κ(w1),...,κ(wk), [xε 7→ w, x1 7→ w1, . . . , xk 7→ wk]) ,

where k = rk(t(w)). Let us prove that this definition is correct, i.e., that η = π(κ) ∈ H
q(ε)
G .

• First we show η ∈ TΦM,t
, i.e., that for every w ∈ pos(η), w · (rk(η(w))+ 1) 6∈ pos(η)

and, if rk(η(w)) 6= 0, then w · rk(η(w)) ∈ pos(η). This follows immediately from the
the definition of pos(η) and the facts that rk(η(ε)) = rk

(

(rκ(ε), [xε 7→ ε])
)

= 1 and
that, for every w ∈ pos(t), rk(η(1 · w)) = rk(t(w)).

• Now we show that out(η(ε)) = q(ε). Clearly, out(η(ε)) = [xε 7→ ε]((rκ(ε))h) = q(ε).

7.3. Expressiveness of wmd 145

• Finally, we show that for every w ∈ pos(η) and i ∈ [rk(η(w))] we have that
out(η(wi)) = ini(η(w)). If w = ε, then i = 1 and out(η(wi)) = out(η(1 · ε)) =
(

κ(ε)
)

(ε) = in1(η(ε)) = ini(η(w)). If w = 1·v for some v ∈ pos(t), then out(η(wi)) =
out(η(1vi)) =

(

κ(vi)
)

(vi) = ini(η(1v)) = ini(η(w)).

Hence, π : RM(t) → H
q(ε)
G . We show that π is a bijection. First we prove that π is

injective. Let κ, κ′ ∈ RM(t) be distinct. Then there is a w ∈ pos(t) with κ(w) 6= κ′(w).
It is easy to see that this implies π(κ)(1 ·w) 6= π(κ′)(1 ·w); hence, π(κ) 6= π(κ′). Now we

show that π is surjective onto H
q(ε)
G . Let η ∈ H

q(ε)
G .

• We prove that pos(η) = {ε}∪{1 ·w | w ∈ pos(t)}. To this end we show by induction
on the length of w that for every w ∈ pos(t) we have that 1 · w ∈ pos(η) and that
there is a pw ∈ Q such that out(η(1 · w)) = pw(w). First let us consider the base
case, i.e., w = ε. Since out(η(ε)) = q(ε), we obtain that rk(η(ε)) = 1 and that there
is a pε ∈ Q such that out(η(1)) = in1(η(ε)) = pε(ε); note that pε is even in F . Now
let us assume that there is a v ∈ pos(t) and i ∈ [rk(t(v))] such that w = vi. The
induction hypothesis yields that 1 · v ∈ pos(η) and that there is a pv ∈ Q such that
out(η(1 · v)) = pv(v). We obtain that rk(η(1 · v)) = rk(t(v)) due to the definition of
R. Hence, i ∈ [rk(η(1 · v))], i.e., 1 · w = 1 · v · i ∈ pos(η). Moreover, the definition
of R implies that there is a pw ∈ Q such that out(η(1 · w)) = out(η(1 · v · i)) =
ini(η(1 · v)) = pw(vi) = pw(w). This finishes the inductive proof.

We have shown that rk(η(ε)) = 1 and that for every w ∈ pos(t), rk(η(1 · w)) =
rk(t(w)). This implies that pos(η) = {ε} ∪ {1 · w | w ∈ pos(t)}.

• Let κ ∈ RM(t) be defined by κ(w) = pw for every w ∈ pos(t). Clearly, κ ∈ RM(t)
because pε ∈ F , as we have shown in the previous item. It is easy to check that
π(κ) = η.

Now we show that, for every κ ∈ RM(t), we have wt(κ)(ε) = h
(

hM,t(π(κ))
)

, where h
is the unique ∆-homomorphism from T∆ to (S, θS). To this end we show by (reverse)
induction that for every w ∈ pos(t) we have wt(κ)(w) = h

(

hM,t(π(κ)|1·w)
)

. This implies
wt(κ)(ε) = h

(

hM,t(π(κ))
)

because hM,t(π(κ)) = hM,t(π(κ)|1) by the definition of π and
R.

Let w ∈ pos(t) and k = rk(t(w)) and assume that for every i ∈ [k] we have wt(κ)(w ·i) =
h
(

hM,t(π(κ)|1·w·i)
)

. Then

wt(κ)(w) = wt(κ)(w1) · . . . · wt(κ)(wk) · µk(κ(w1) · · · κ(wk), t(w), κ(w))

= h(hM,t(π(κ)|1·w·1)) · . . . · h(hM,t(π(κ)|1·w·k)) · µk(κ(w1) · · · κ(wk), t(w), κ(w))
(by the induction hypothesis)

= h
(

mulkµk(κ(w1)···κ(wk),t(w),κ(w))

(

hM,t(π(κ)|1·w·1), . . . ,hM,t(π(κ)|1·w·k)
))

(by the definition of h and θS)

= h
(

hM,t(π(κ)|1·w)
)

. (by the definition of η(1 · w) and hM,t)

Finally, we conclude that

[[M]](t) = [[M]]hyp
AS

(t) (by Observation 7.7)

=
∑

η∈H
q(ε)
G

h(hM,t(η))

146 7. Weighted monadic datalog

=
∑

κ∈RM(t)
h(hM,t(π(κ))) (because π is a bijection)

=
∑

κ∈RM(t)
wt(κ)(ε) (shown above)

= [[M]](t) .

This finishes the proof of the first part of this theorem.
Next we show that Rec(Σ,S) = WMD(Σ,S) does not hold in general. Let Σ =

{γ(1), α(0)} and S = (N,+, ·, 0, 1) be the semiring of natural numbers. Consider the
non-circular wmd M = (P,R, q) over Σ and S where P = {q(1)} and R contains the rules

q(x)← 2 ; {leaf(x)} , q(x)← q(y), q(y) ; {child1(x, y)} .

Then M defines the tree series λ ∈ S〈〈TΣ〉〉 with (λ, γn(α)) = 22n
for every n ∈ N. Assume

that λ is recognized by a wta M = (Q,µ, F) over Σ and S. But then it is easy to check
that [[M]](γn(α)) ≤ |Q|n+1 · cn+1 where c = max(

⋃

k∈N
ran(µk)). So there is an n ∈ N

with [[M]](γn(α)) < λ(γn(α)), which contradicts the assumption that λ is recognized by
M. Thus, λ cannot be recognized by any wta. �

7.4 Combined Complexity

In this section we prove that the semantics of a weakly non-circular wmd over a commu-
tative semiring can be computed efficiently. As an auxiliary tool, we first show that for
every wmd over a commutative semiring there is a connected wmd which is semantically
equivalent to the original one. Both results are based on investigations in [69], which
have been extended to the setting of wmd in [122]; the results that we present in this
section are stronger versions of the propositions in [122] in the following sense: (i) we
relax the requirement that the considered mwmd is non-circular to the requirement that
it is weakly non-circular and (ii) we generalize some of these propositions from semirings
to strong bimonoids.

First let us motivate this construction. In Section 5.4 we have shown that for an
arbitrary mwmd M and an arbitrary m-monoid A there is in general no connected mwmd
that behaves equivalently to M when evaluated in A. However, we have proved that
if the mwmd M is restricted and the m-monoid A is idempotent and distributive, then
such a construction can be carried out. We will show that in the setting of wmd we can
drop the conditions that M is restricted and that the m-monoid AS is idempotent (note
that AS is distributive because S is a semiring). Unlike the construction we presented in
Section 5.4, which consists of two phases (where in the first phase a semiconnected mwmd
is constructed from a given restricted mwmd and in the second phase a connected mwmd
is constructed from the semiconstructed mwmd that results from the first phase), we will
instead provide a direct construction of connected wmd from arbitrary wmd.

Let us consider an example. Let r be the following rule:

rh = q(x1) ,

rb = p(y1), r(x2), p(x3), q(y2) ,

rG = {child1(x1, y1), child3(x2, y2), child2(x3, y3), leaf(y3)} .

Clearly, r is not connected, because {x1, y1}, {x2, y2}, and {x3, y3} are the equivalence
classes of ∼r. We construct three new rules rβ, r

1
α, and r2α as follows:

rβ = q(x1)← p(y1), p1(), p2() ; {child2(x1, y1)} ,

7.4. Combined Complexity 147

r1α = p1()← r(x2), q(y2) ; {child3(x2, y2)} ,

r2α = p2()← p(x3) ; {child2(x3, y3), leaf(y3)} ,

where p1() and p2() are new nullary predicates. Observe that rβ , r
1
α, and r2α are connected

and that they, roughly speaking, behave similarly to r for commutative semirings. By
replacing r by these three rules in a wmd M over a commutative semiring we obtain a
semantically equivalent wmd that has less non-connected rules than M . Now let us prove
the correctness of this construction formally.

Definition 7.19. We define the mapping weightM : T∆S
(P (V)) → S by structural re-

cursion as follows: (i) for every c ∈ P (V) let weightM (c) = 1 and (ii) for every k ∈ N,
a ∈ S, and s1, . . . , sk ∈ T∆S

(P (V)) let weightM
(

mulka(s1, . . . , sk)
)

= weightM (s1) · . . . ·
weightM (sk) · a. 2

Lemma 7.20. Suppose that S is a commutative semiring. Moreover, let h be the unique
∆S-homomorphism from T∆S

to (S, θS).

1. Let s ∈ T∆S
(P (V)) and k = |indyield(s)|. Moreover, let s1, . . . , sk ∈ T∆S

. Then
h(s← s1 · · · sk) = h(s1) · . . . · h(sk) · weightM (s).

2. For every t ∈ TΣ and η ∈ H
q(ε)
G (where G = Gdep

M,t) we have

h(hM,t(η)) =
∏

w∈pos(η)
weightM

(

(pr1(η(w)))b
)

.

3. Let r ∈ R and ξM(rb) = b1, . . . , bk for some k ∈ N and b1, . . . , bk ∈ P (V) ∪ S. Then
weightM (rb) =

∏

i∈I bi, where I = {i ∈ [k] | bi ∈ S}.

4. We can construct a semantically equivalent connected wmd M ′ over Σ and S in time
O(size(M)) such that size(M ′) = O(size(M)) (see [122, Lemma 5.6]).

Proof. 1. We give a proof by structural induction.

Induction base. If s ∈ P (V), then k = 1 and h(s← s1) = h(s1) ·1 = h(s1) ·weightM (s).

Induction step. Suppose that s = mulla(s
′
1, . . . , s

′
l) for some l ∈ N, a ∈ S, and s′1, . . . , s

′
l ∈

T∆S
(P (V)). For every i ∈ [l] let ki = |indyield(s′i)|. Then for every i ∈ [l] there are

si1, . . . , s
i
ki
∈ T∆S

such that s11, . . . , s
1
k1
, . . . , sl1, . . . , s

l
kl

= s1, . . . , sk. Using the fact that S
is commutative we derive

h(s← s1 · · · sk) = h
(

mulla(s
′
1 ← s11 · · · s

1
k1
, . . . , s′l ← sl1 · · · s

l
kl

)
)

= h(s′1 ← s11 · · · s
1
k1

) · . . . · h(s′l ← sl1 · · · s
l
kl

) · a

= h(s11) · . . . · h(s
1
k1

) · weightM (s′1) · . . . · h(s
l
1) · . . . · h(s

l
kl

) · weightM (s′l) · a

(by the induction hypothesis)

= h(s11) · . . . · h(s
1
k1

) · . . . · h(sl1) · . . . · h(s
l
kl

) · weightM (s′1) · . . . · weightM (s′l) · a

= h(s1) · . . . · h(sk) · weightM (s) .

2. Let t ∈ TΣ. We show by structural induction that for every η ∈ TΦM,t
we have

h(hM,t(η)) =
∏

w∈pos(η) weightM
(

(pr1(η(w)))b
)

. This proves the assertion because H
q(ε)
G ⊆

148 7. Weighted monadic datalog

TΦM,t
. Let k ∈ N, e = (r, ρ) ∈ (ΦM,t)

(k), and η1, . . . , ηk ∈ TΦM,t
such that e(η1, . . . , ηk) =

η. Then (pr1(η(ε)))b = (pr1(r, ρ))b = rb and

h(hM,t(η)) = h
(

ρ(rb)← hM,t(η1) · · · hM,t(ηk)
)

= h
(

rb ← hM,t(η1) · · · hM,t(ηk)
)

(⋆)

= h(hM,t(η1)) · . . . · h(hM,t(ηk)) · weightM (rb) (by Statement 1)

=
∏

i∈[k]

∏

w∈pos(ηi)
weightM

(

(pr1(ηi(w)))b
)

· weightM (rb) (by ind. hyp.)

=
∏

i∈[k]

∏

w∈pos(ηi)
weightM

(

(pr1(η(i · w)))b
)

· weightM
(

(pr1(η(ε)))b
)

=
∏

w∈pos(η)
weightM

(

(pr1(η(w)))b
)

.

Equation (⋆) follows from ρ(rb) ← hM,t(η1) · · · hM,t(ηk) = rb ← hM,t(η1) · · · hM,t(ηk),
which is easy to prove by structural induction.

3. This statement is obvious.
4. Assume that M is not yet connected. Then there is an r ∈ R that is not connected.

Moreover, there is an n ∈ N+ and there are pairwise disjoint sets C0, . . . , Cn ⊆ var(r)
such that {C0, . . . , Cn} = var(r)/∼r and var(rh) ⊆ C0.

Let k ∈ N and b1, . . . , bk ∈ P (V) ∪ S such that rb = b1, . . . , bk. Let B = {b1, . . . , bk}
and for every i ∈ [n] let Bi = P (1)(Ci) ∩ B. Moreover, let B0 = P (C0) ∩ B; clearly,
(Bi | i ∈ {0, . . . , n}) is a generalized partition of P (V) ∩ B. For every i ∈ {0, . . . , n} let
ki ∈ N and bi1, . . . , b

i
ki
∈ P (V) ∪ S be pairwise distinct such that Bi = {bi1, . . . , b

i
ki
}.

Now we define the wmd M ′ = (P ′, R′, q) over Σ and S with P ′ = P ∪ {p
(0)
1 , . . . , p

(0)
n }

(where p1, . . . , pn are new predicates not occurring in P) and R′ = R\{r}∪{rβ , r
1
α, . . . , r

n
α}

such that, for every i ∈ [n],

rβ = rh ← b01, . . . , b
0
k0
,weightM (rb), p1(), . . . , pn() ; {g ∈ rG | var(g) ⊆ C0} ,

riα = rh ← bi1, . . . , b
i
ki

; {g ∈ rG | var(g) ⊆ Ci} .

Observe that rβ , r
1
α, . . . , r

n
α can be constructed in time O(size(r)), that size(rβ)+size(r1α)+

· · ·+size(rnα) are of order O(size(r)), and that the rules rβ , r
1
α, . . . , r

n
α are connected. Thus,

if M and M ′ are semantically equivalent, then by repeatedly applying this construction
to every non-connected rule in R we obtain a connected wmd M ′′ in time O(size(M))
such that M and M ′′ are semantically equivalent and size(M ′′) = O(size(M)).

It remains to show that M and M ′ are semantically equivalent; we only sketch this
proof because it uses proof techniques that are similar to those that we developed in
Chapter 5.

Due to the definition of weak non-circularity, hypergraph semantics, and Observa-
tion 7.7 we obtain that it suffices to show that for every t ∈ TΣ, there is a mapping

f : H
q(ε)
G → H

q(ε)
G′ (where G = Gdep

M,t, and G′ = Gdep
M ′,t) such that

(E1) f : H
q(ε)
G → H

q(ε)
G′ is a bijection and

(E2) for every η ∈ H
q(ε)
G we have h(hM,t(η)) = h

(

hM ′,t(f(η))
)

, where h is the unique
homomorphism from T∆S

to (S, θS).

Let t ∈ TΣ and c ∈ P (pos(t)). We define the mapping πc : ΦM,t,c → H
c,P (pos(t))
G′ as

follows for every e = (r′, ρ) ∈ ΦM,t,c:

7.4. Combined Complexity 149

• if r′ 6= r, then πc(e) = e(in1(e), . . . , inl(e)), where l = rk(e), and

• if r′ = r, then πc(e) = (rβ , ρ|C0)
(

ρ(c01), . . . , ρ(c
0
l0

), η1, . . . , ηn
)

, where, for every i ∈

[n], ηi = (riα, ρ|Ci
)
(

ρ(ci1), . . . , ρ(c
i
li
)
)

.

It is easy to check that πc : ΦM,t,c → H
c,P (pos(t))
G′ is a bijection. Before we proceed, we

show that for every e = (r′, ρ) ∈ ΦM,t,c we have

weightM (r′b) =
∏

w∈pos(πc(e))
πc(e)|w 6∈P (pos(t))

weightM ′

(

(pr1(πc(e)(w)))b
)

. (7.1)

Proof of Equation (7.1): Let e = (r′, ρ) ∈ ΦM,t,c. Let us consider the case that r′ 6= r;
then we have {w ∈ pos(πc(e)) | πc(e)|w 6∈ P (pos(t))} = {ε} and, hence, the right-hand
side of Equation (7.1) is equal to weightM ′

(

(pr1(πc(e)(ε)))b
)

= weightM ′

(

(pr1(e))b
)

=
weightM ′(r′b). If r′ = r, then it is easy to see that the right-hand side of Equation (7.1) is
equal to weightM ′

(

(rβ)b
)

·weightM ′

(

(r1α)b
)

· . . . ·weightM ′

(

(rnα)b
)

= weightM ′

(

rb
)

·1 · . . . ·1
due to Statement 3.

Now we lift the family (πc | c ∈ P (pos(t))) of mappings to the mapping f : H
q(ε)
G →

H
q(ε)
G′ . We leave out the details of this definition; it is similar to the lifting of the mapping

of the form πt,c to the mapping hπt in Definition 5.15. Then it is easy to show that the

fact that, for every c ∈ P (pos(t)), πc is a bijection, implies that f : H
q(ε)
G → H

q(ε)
G′ is a

bijection; thus Condition (E1) is satisfied. Moreover Equation (7.1) implies that for every

for every η ∈ H
q(ε)
G we have

∏

w∈pos(η)
weightM

(

(pr1(η(w)))b
)

=
∏

w∈pos(f(η))
weightM ′

(

(pr1(f(η)(w)))b
)

.

Then Statement 2 implies Condition (E2). �

A fact that makes (unweighted) monadic datalog remarkably useful is that a monadic
datalog program R′ can be evaluated in time O(size(R′) · |pos(t)|) for every input tree
t (cf. Theorem 4.2 in [69]), i.e., if we consider a fixed input tree, then evaluating a
monadic datalog program can be done in time linear in the size of the query. On the
other hand processing a fixed monadic datalog program on multiple input trees can be
done in time linear in the size of each tree. So monadic datalog is said to have linear
combined complexity. This nice complexity result generalizes to the weighted case as
follows.

Theorem 7.21 (cf. [122, Theorem 5.7]). Let M be a wmd and t ∈ TΣ. The following
three statements hold, provided that the strong bimonoid operations (i.e., + and ·) can be
evaluated in one computation step.

1. If M is weakly non-circular and connected, then we can compute [[M]](t) in time
O(size(M) · |pos(t)|) (i.e., linear on the size of M).

2. If S is a commutative semiring and M is weakly non-circular, then [[M]](t) can be
computed in time O(size(M) · |pos(t)|) (i.e., linear on the size of M).

3. If S is a finite commutative semiring and (S,≤) is an ω-continuous semiring, then
[[M]]≤(t) can be computed in time O(|S| · (size(M) · |pos(t)|)2) (i.e., quadratic in the
size of M).

150 7. Weighted monadic datalog

Proof. First we prove Statement 1. As the first computation step we construct the
dependency hypergraph G = Gdep

M,t of M and t. This can be done as follows: as the set
V of vertices we take the set P (pos(t)); thus we have |V | = |P (pos(t))| ≤ |P | · |pos(t)| ≤
size(M) · |pos(t)| different vertices (assuming that every predicate of P is used in M); for
every r ∈ R and valid r, t-variable assignment ρ we add the edge (r, ρ) to the set ΦM,t

of hyperedges. Clearly, |ΦM,t| ≤ |R| · |pos(t)| by Lemma 5.29(2) and the fact that M is
connected. Hence, G can be constructed in time O(size(M) · |pos(t)|) and |V |+ |ΦM,t| =
O(size(M) · |pos(t)|).

Second, we compute the set C∅ = {c ∈ P (pos(t)) | Hc
G = ∅}. This can be done as

follows: we compute the sequence C0, C1, C2, C3, . . . by recursion, where, for every n ∈ N,
Cn = {c ∈ P (pos(t)) | ∃ η ∈ Hc

G : height(c) ≤ n}; then there is an m ∈ N with
m ≤ |P (pos(t))| such that Cm =

⋃

n∈N
Cn. Finally, let C∅ = P (pos(t)) \ Cm.

Third, we compute the direct dependence relation ≺G of G by means of the set C∅ and
Lemma 2.20(1⇔ 3).

Fourth, we compute the set C = {c ∈ P (pos(t)) | c ≺∗
G q(ε)} and compute the relation

< = ≺ ∩ (C × C) on C. Then <
+ is irreflexive due to Lemma 2.26 and because M is

weakly non-circular (i.e., H
q(ε)
G is finite). Hence, the directed graph (C,<) is acyclic.

Fifth, we sort the directed graph (C,<) topologically, i.e., we compute some sequence
c1, . . . , ck such that k = |C|, c1, . . . , ck ∈ C are pairwise distinct, and for every i, j ∈ [k]
with i < j we have ci <

+ cj . This step is possible because (C,<) is acyclic.
Each of these five steps can be computed in time O(size(M) · |pos(t)|). Finally, we com-

pute the sequence I0, I1, . . . , I|C| ∈ I as follows: I0 = I0 and for every i ∈ [|C|] the inter-
pretation Ii originates from Ii−1 by replacing Ii−1(ci) with T (Ii−1)(ci). Clearly, for every
i ∈ [|C|] the computation of Ii from Ii−1 can be done in time O(

∑

(r,ρ)∈ΦM,t,ci
size(r)),

because for every (r, ρ) ∈ ΦM,t,ci at most size(r) multiplications have to be carried
out. Hence, we conclude that the computation of the entire sequence I0, I1, . . . , I|C|

can be accomplished in time O
(
∑

i∈[|C|]

∑

(r,ρ)∈ΦM,t,ci
size(r)

)

= O
(
∑

(r,ρ)∈ΦM,t
size(r)

)

=

O
(
∑

r∈R

∑

e∈{e′∈ΦM,t|pr1(e
′)=r} size(r)

)

; Lemma 5.29(2) implies that the last term is equal

to O
(
∑

r∈R |pos(t)| · size(r)
)

= O
(

|pos(t)| · size(M)
)

.

For every i, j ∈ [|C|] with i ≤ j we have that Ij(ci) = T |P (pos(t))|(I0)(ci). This can be
shown by induction on i. We omit this proof here because it is similar to the proof of
Lemma 4.19. Hence, we obtain that [[M]](t) = I|C|(q(ε)).

Statement 2 is a consequence of Statement 1 and Lemma 7.20(4).
Next we prove Statement 3. Using Lemma 7.20(4) we transform M into a semantically

equivalent, connected wmd M ′ in time O(size(M)). Observe that for every input tree
t ∈ TΣ a single application of the immediate consequence operator T for a connected
wmd M ′ takes time O(size(M) · |pos(t)|) (this can be shown by means of Lemma 5.29(2)).
By Lemma 7.13 this has to be done at most (|S|−1) · |P | · |pos(t)| times. Thus, T ω can be
computed in time O(size(M)·|pos(t)|·(|S|−1)·|P |·|pos(t)|) = O(|S|·(size(M)·|pos(t)|)2).�

7.5 Open problems

In Section 7.3.3 we explained that in general wmd are strictly more expressive than wta,
even when restricting to non-circular wmd. It is well-known that semiring weighted MSO-
logic over trees is also strictly more expressive than wta (see [63]). This suggests that
non-circular wmd and semiring weighted MSO-logic might be equally expressive.

CHAPTER 8

Monadic datalog tree transducers

A tree transducer [65, 66, 48] is a formal model that defines a tree transformation, which
is a mapping from input trees to sets of output trees. In the introduction of [60] the notion
of tree transducers has been described to emerge from formal models that compute tree
series by abstracting from the semantic domain and using the term algebra instead.

In this chapter we will study monadic datalog tree transducers (for short: mdtt), which
are, roughly speaking, obtained from mwmd by abstracting from the semantic domain.
Hence, we will not evaluate the semantics of such mwmd in an arbitrary given m-monoid
but will use an m-monoid instead, that behaves like the term algebra. This chapter is a
revised and extended version of [28], where monadic datalog tree transducers have first
been investigated.

Mdtt and (nondeterministic) attributed tree transducers [56, 11, 12] (for short:att) share
conceptual ideas. We will prove that the class of tree transformations that are definable
by attributed tree transducers coincides with the class of tree transformations that are
computed by restricted mdtt (see Theorem 8.21).

This chapter is organized as follows. In Section 8.1 we will study classes of m-monoids
that, roughly speaking, abstract from particular semantic domains. In Section 8.2 we will
study mwmd that employ the m-monoids that we introduced in Section 8.1; we will refer
to such mwmd as mdtt. In Section 8.3 we study normal forms of mdtt and compare the
concepts of att and mdtt.

8.1 Free m-monoids

Every mwmd M is defined on a signature ∆, the elements of which may be used in the
body of the rules of M . When evaluating the hypergraph semantics of M for a given input
tree t and a given m-monoid (A,+,0, θ), then (i) one computes a set of derivations, which
are trees labeled with rule instances; (ii) afterwards, these derivations are transformed
into trees over ∆ by means of the homomorphism hM,t; (iii) finally, for every resulting
tree over ∆ one computes an element in A by means of the evaluation homomorphism
of the ∆-algebra (A, θ) and adds the resulting valued for every tree. Only the last step
depends on the given m-monoid. Thus, the set of trees over ∆ that one computes in the
second step is, roughly speaking, an abstract respresentation of the semantics of M and
t. This abstract representation turns out to be very useful; unfortunately, it is ‘destroyed’
in the last step of the computation of the semantics.

In this section we will investigate m-monoids that do behave, roughly speaking, like
the identity in the last of the above three steps; hence, they do not destroy the abstract
representation. The carrier set of these m-monoids is the set of tree languages over ∆ and
they interpret every symbol δ ∈ ∆ by the δ-language top concatenation. When evaluating
the semantics of M in such an m-monoid, one obtains the abstract representation of the
semantics of M .

151

152 8. Monadic datalog tree transducers

It turns out that such m-monoids are free in a particular subclass of all m-monoids.
First let us recall algebra theoretic concepts like free algebras and homomorphisms and
explain how these concepts carry over to m-monoids.

Throughout this chapter we fix a ranked alphabet Σ and a signature ∆.

Let ∆mon = ∆ ·∪Σmon (recall the definition of Σmon from Example 2.1). Every m-monoid
(A,+,0, θ) over ∆ can be considered as a ∆mon-algebra (A, θ′) as follows:

• θ′(e) = 0,

• θ′(◦) = + and

• θ′(δ) = θ(δ) for every δ ∈ ∆.

Therefore, the class of m-monoids over ∆ can be considered as a particular class of ∆mon-
algebras. We carry over notions for ∆mon-algebras to m-monoids over ∆ in an obvious
manner. In particular, we will refer to ∆mon-homomorphisms as m-monoid homomor-

phisms. Now we extend these concepts to ω-complete m-monoids.

Definition 8.1. Let A = (A,+,0, θ) be an m-monoid over ∆ and let (A,
∑A) be an

ω-complete m-monoid. Moreover, let A′ ⊆ A. We say that (A,
∑A) is generated by A′

if for every set A′′ satisfying the following properties:

• A′ ⊆ A′′ ⊆ A,

• A′′ is closed under + and under θ(δ) for every δ ∈ ∆, and

• A′′ is closed under
∑A, i.e., for every countable set I and family (ai | i ∈ I) over

A′′ we have that
∑A

i∈I ai ∈ A
′′,

we have that A′′ = A.

Let (B,
∑B) be an ω-complete m-monoid an let h be an m-monoid homomorphism

from A to B. Then we say that h is a complete m-monoid homomorphism from
(A,

∑A) to (B,
∑B) if for every countable set I and family (ai | i ∈ I) over A we have

that h(
∑A

i∈I ai) =
∑B

i∈I h(ai).
We extend notions like free m-monoids to ω-complete m-monoids in an obvious fashion.2

Now we are prepared to study free m-monoids and free ω-complete m-monoids. We will
first give some auxiliary definitions and then prove the existence of particular free m-
monoids and free ω-complete m-monoids.

Let D be a set. Recall that by Pfin(T∆(D)) we denote the set of finite subsets of T∆(D).
Moreover, in this chapter we will denote by Pℵ0(T∆(D)) the set of countable subsets of
T∆(D). Then both

(

Pfin(T∆(D)),∪, ∅
)

and
(

Pℵ0(T∆(D)),∪, ∅
)

are commutative monoids,
where in the former monoid the operation ∪ is the union of finite subsets of T∆(D) and
in the latter monoid the operation ∪ is the union of countable subsets of T∆(D).

We lift these two commutative monoids to the idempotent and distributive m-monoids
P∆,D

fin =
(

Pfin(T∆(D)),∪, ∅, θP
)

and P∆,D
ℵ0

=
(

Pℵ0(T∆(D)),∪, ∅, θP
)

, where for every δ ∈
∆ the operation θP(δ) is the δ-language top concatenation (restricted to finite languages
in the dm-monoid P∆,D

fin and to countable languages in the dm-monoid P∆,D
ℵ0

; we will not
distinguish between these two versions of the operation θP(δ)).

8.1. Free m-monoids 153

Note that (P∆,D
ℵ0

,
⋃

) is an ω-complete m-monoid; this follows from the fact that a
countable union of countable sets is a countable set (see Footnote 5 on page 45; this
result requires the Axiom of Choice). Moreover, it is easy to check that (P∆,D

ℵ0
,
⋃

) is
ω-idempotent and ω-distributive.

Lemma 8.2. Let D be a set.

1. The dm-monoid P∆,D
fin is freely generated by the set {{d} | d ∈ D} for the class of

all idempotent dm-monoids over ∆.

2. The ω-complete dm-monoid (P∆,D
ℵ0

,
⋃

) is freely generated by {{d} | d ∈ D} for the
class of all ω-idempotent, ω-distributive, ω-complete m-monoids over ∆.

Proof. The proof of Statement 1 is similar to the slightly more involved proof of State-
ment 2. For this reason we restrict ourselves to the proof of Statement 2.

We start this proof with showing that (P∆,D
ℵ0

,
⋃

) is generated by {{d} | d ∈ D}. Clearly,
for every subset S of Pℵ0(T∆(D)) containing {{d} | d ∈ D} which is closed under θP(δ)
for every δ ∈ ∆, we obtain that S contains {t} for every t ∈ T∆(D); hence, if S is also
closed under

⋃

, then S = Pℵ0(T∆(D)).
Let A = (A,+,0, τ) be a dm-monoid and (A,

∑

) be an ω-idempotent, ω-distributive,
ω-complete m-monoid. Moreover, let f : {{d} | d ∈ D} → A. We show that f can
be extended to a complete m-monoid homomorphism f ′ from (P∆,D

ℵ0
,
⋃

) to (A,
∑

). Let
g : D → A be defined by letting g(d) = f({d}) for every d ∈ D, and let g′ : T∆(D)→ A be
the unique ∆-homomorphism from T∆(D) to (A, τ) extending g. We define f ′ as follows
for every countable S ⊆ T∆(D):

f ′(S) =
∑

s∈S
g′(s) ,

note that this is well-defined because S is a countable set. Clearly, f ′({d}) = g′(d) =
f({d}) for every d ∈ D; hence, f ′ extends f . We show that f ′ is a complete m-monoid
homomorphism from (P∆,D

ℵ0
,
⋃

) to (A,
∑

). It is easy to see that f ′(∅) = 0. Let I be
a countable index set and let (Si | i ∈ I) be a family over Pℵ0(T∆(D)). We show that
f ′(

⋃

i∈I Si) =
∑

i∈I f
′(Si). To this end we define, for every i ∈ I, the set S̄i = {i} × Si

and the set S̄ =
⋃

i∈I S̄i. Clearly, (S̄i | i ∈ I) is a generalized partition of S̄ because S̄i
and S̄j are disjoint for every i, j ∈ I with i 6= j. Then

f ′(
⋃

i∈I
Si) =

∑

s∈
S

i∈I Si

g′(s)

=
∑

s∈{s′|∃ i∈I:s′∈Si}
g′(s) =

∑

s∈{s′|∃ i∈I:(i,s′)∈S̄}
g′(s)

=
∑

p∈S̄
g′(pr2(p)) (by Observation 3.21 and since (A,

∑

) is ω-idempotent)

=
∑

i∈I

∑

p∈S̄i

g′(pr2(p)) (by Equation (2.5))

=
∑

i∈I

∑

s∈Si

g′(s) =
∑

i∈I
f ′(Si) .

In particular, we obtain that f ′(S1 ∪ S2) = f ′(S1) + f ′(S2) for every countable S1, S2 ⊆
T∆(D). Now let k ∈ N, δ ∈ ∆(k), and S1, . . . , Sk ⊆ T∆(D) be countable. Then

f ′
(

θP(δ)(S1, . . . , Sk)
)

=
∑

s∈θP (δ)(S1 ,...,Sk)
g′(s)

154 8. Monadic datalog tree transducers

=
∑

s1∈S1,...,sk∈Sk

g′(δ(s1, . . . , sk))

=
∑

s1∈S1,...,sk∈Sk

τ(δ)(g′(s1), . . . , g
′(sk))

= τ(δ)
(

∑

s1∈S1

g′(s1), . . . ,
∑

sk∈Sk

g′(sk)
)

(ω-distributivity of A)

= τ(δ)(f ′(S1), . . . , f
′(Sk)) . �

Remark 8.3. In Lemma 8.2(2) we considered an m-monoid whose carrier set is the set
of countable tree languages instead of all tree languages for the following reason. We
may occasionally want to use signatures ∆ that are not countable (e.g., in the previous
section we considered signatures that are associated with a given semiring; many familiar
semirings are uncountable, for instance the semiring of real numbers, and, thus, their
associated signature is, too). Clearly, the set of trees over an uncountable signature is
uncountable, too. However, in this case an ω-complete m-monoid that is defined similarly
to (P∆,D

ℵ0
,
⋃

), but whose carrier set is the set of all tree languages, is not freely generated
in the sense of Lemma 8.2(2), because the operations of the ω-complete m-monoid, in
particular the ω-infinitary sum operation

⋃

, are not capable of generating uncountable
languages. 2

We will denote P∆,∅
fin and P∆,∅

ℵ0
by P∆

fin and P∆
ℵ0

, respectively. According to Lemma 8.2,

the m-monoid P∆
fin is initial for the class of all idempotent dm-monoids over ∆, and

(P∆
ℵ0
,
⋃

) is initial for the class of all ω-idempotent, ω-distributive, ω-complete m-monoids
over ∆.

The following lemma shows that the semantics of a given mwmd M for idempotent and
distributive m-monoids (or ω-idempotent, ω-distributive, ω-complete m-monoids) can be
expressed by the semantics of M for the ω-complete m-monoid (P∆

ℵ0
,
⋃

) followed by a
homomorphism.

Lemma 8.4. Let M be an mwmd over Σ and ∆.

1. Suppose that M is weakly non-circular. Let A be an idempotent dm-monoid and let
h be the unique m-monoid homomorphism from P∆

fin to A. Then for every t ∈ TΣ

we have

[[M]]hyp
A (t) = h

(

[[M]]hyp

P∆
fin

(t)
)

= h
(

[[M]]hyp

(P∆
ℵ0
,
S

)
(t)

)

.

2. Let (A,
∑

) be an ω-idempotent, ω-distributive, ω-complete m-monoid over ∆, and
let h be the unique complete m-monoid homomorphism from (P∆

ℵ0
,
⋃

) to (A,
∑

).
Then for every t ∈ TΣ we have

[[M]]hyp
(A,

P

)(t) = h
(

[[M]]hyp

(P∆
ℵ0
,
S

)
(t)

)

.

Proof. First we prove Statement 1. Let A = (A,+,0, θ), t ∈ TΣ, and G = Gdep
M,t.

Let f be the unique ∆-homomorphism from T∆ to (A, θ) and let g be the unique ∆-
homomorphism from T∆ to (Pfin(T∆), θP). It is easy to show by structural induction that
for every s ∈ T∆ we have g(s) = {s} and h({s}) = f(s). Therefore,

[[M]]hyp
A (t) =

∑

η∈H
q(ε)
G

f(hM,t(η)) =
∑

η∈H
q(ε)
G

h
(

g(hM,t(η))
)

8.2. Mwmd over free m-monoids 155

= h
(

⋃

η∈H
q(ε)
G

g(hM,t(η))
)

= h
(

[[M]]hyp

P∆
fin

(t)
)

= h
(

[[M]]hyp

(P∆
ℵ0
,
S

)
(t)

)

.

The last equation holds because [[M]]hyp

P∆
fin

(t) = [[M]]hyp

(P∆
ℵ0
,
S

)
(t); this equality is easy to prove

by using the fact that M is weakly non-circular and, thus, H
q(ε)
G is finite.

We omit the proof of Statement 2 because it is almost identical to the proof of State-
ment 1. �

Lemma 8.4 demonstrates that the study of the semantics of mwmd for idempotent and
distributive m-monoids can be reduced to the study of the semantics of mwmd for the
ω-complete m-monoid (P∆

ℵ0
,
⋃

).

8.2 Mwmd over free m-monoids

In the remainder of this chapter we will deal with m-weighted monadic datalog pro-
grams over the ω-idempotent and ω-distributive ω-complete m-monoid (P∆

ℵ0
,
⋃

). Note

that (P∆
ℵ0
,⊆) is an ω-continuous m-monoid that is related to (P∆

ℵ0
,
⋃

). Hence, the hyper-

graph semantics for (P∆
ℵ0
,
⋃

) and the fixpoint semantics for (P∆
ℵ0
,⊆) coincide for every

mwmd over Σ and ∆ due to Lemma 4.51. Thus, there is no need to distinguish between
these semantics when using the m-monoid P∆

ℵ0
in conjunction with the ω-infinitary sum

operation
⋃

and the partial order ⊆; more precisely, [[M]]fix
(P∆

ℵ0
,
S

)
= [[M]]hyp

(P∆
ℵ0
,⊆)

for every

mwmd M over Σ and ∆. Therefore, in this chapter we will simply write [[M]] instead of

[[M]]hyp

(P∆
ℵ0
,
S

)
and instead of [[M]]fix

(P∆
ℵ0
,⊆)

.

Definition 8.5. A mapping τ : TΣ → P(T∆) is called a tree transformation from Σ
to ∆; the tree transformation τ is called finite if ran(τ) ⊆ Pfin(T∆).

In this chapter we will refer to mwmd over Σ and ∆ as monadic datalog tree trans-

ducers (for short: mdtt). For every mdtt M over Σ and ∆ we call [[M]] the tree trans-

formation computed by M . For every mdtt M ′ over Σ and ∆ we say that M and M ′

are equivalent if [[M]] = [[M ′]]. The set of tree transformations computed by restricted
mdtt over Σ and ∆ is denoted by r–MDTT(Σ,∆). 2

For the remainder of this section we fix an mdtt M = (P,R, q) over Σ and ∆.

The following lemma relates the definition of the fixpoint semantics with the definition
of the hypergraph semantics of mdtt.

Lemma 8.6. Let t ∈ TΣ, G = Gdep
M,t, c ∈ P (pos(t)), and n ∈ N. Then we have

T n(I∅)(c) =
⋃

η∈Hc,n
G

{hM,t(η)} and

⋃

m∈N
T m(I∅)(q(ε)) =

⋃

η∈H
q(ε)
G

{hM,t(η)} = [[M]](t) ,

where Hc,n
G is the set of n-bounded derivations of M and t starting in c (see Defini-

tion 4.47).

156 8. Monadic datalog tree transducers

Proof. The first line follows from Lemma 4.49 and the fact that for the unique ∆-
homomorphism h from T∆ to (Pℵ0(T∆), θP) we have h(s) = {s} for every s ∈ T∆. The

second line follows from the first line, the fact that
⋃

m∈N
H
q(ε),m
G = H

q(ε)
G , and the defini-

tion of the hypergraph-defined tree series [[M]]hyp

(P∆
ℵ0
,
S

)
. �

The following example is taken from the proof of Lemma 5.35.

Example 8.7. Now we consider a simple example mdtt Mex = (P,R, q) over Σ =
{α(0), γ(1)} and ∆ = Σ ∪ {δ(4)}, where P = {q(1), r(1)} and R contains the rules

q(x)← δ(r(y), r(z), r(y), r(z)) ; ∅ ,

r(x)← α ; {labelα(x)} ,

r(x)← γ(x1) ; {labelγ(x), child1(x, x1)} .

Then [[Mex]](t) = {δ(t|w, t|v , t|w, t|v) | w, v ∈ pos(t)} for every t ∈ TΣ. 2

If there is an n ∈ N with T n(I∅)(q(ε)) = [[M]](t), then [[M]](t) is obviously finite. It is
easy to see that the converse holds as well because T is monotone. We show that in order
to determine whether [[M]](t) is finite, it suffices to consider the interpretation T n(I∅),
where n = |P (pos(t))|. Before we state and prove this fact formally, we first need to
introduce an auxiliary notion.

Definition 8.8. Let t ∈ TΣ and G = Gdep
M,t. We define the relation ≺p

G on P (pos(t)),
called pumping dependence relation of G, as follows for every c1, c2 ∈ P (pos(t)):
c1 ≺

p
G c2 iff there are e = (r, ρ) ∈ ΦM,t and i ∈ [rk(e)] such that ρ(rb) 6∈ P (pos(t)),

out(e) = c2, ini(e) = c1, and H
inl(e)
G 6= ∅ for every l ∈ [rk(e)]. 2

Note that due to Lemma 2.20(3 ⇒ 1), c1 ≺
p
G c2 implies c1 ≺G c2 for every c1, c2 ∈

P (pos(t)).

Theorem 8.9. Let t ∈ TΣ, G = Gdep
M,t, and n = |P (pos(t))|. Then the following state-

ments are equivalent.

1. [[M]](t) = T n(I∅)(q(ε)).

2. [[M]](t) is finite.

3. There are no c, c1, c2 ∈ P (pos(t)) such that c ≺∗
G c1 ≺

p
G c2 ≺

∗
G c ≺

∗
G q(ε).

Proof. “1 ⇒ 2”: Clearly, for every I ∈ I such that ran(I) ⊆ Pfin(T∆) we have that
ran(T (I)) ⊆ Pfin(T∆). Then it is easy to show by induction that T n(I∅)(q(ε)) is finite.

“2 ⇒ 3”: Suppose that [[M]](t) is finite. Assume, contrary to our claim, that there
are c, c1, c2 ∈ P (pos(t)) such that c ≺∗

G c1 ≺
p
G c2 ≺

∗
G c ≺∗

G q(ε). We will derive a
contradiction. Clearly, there are n, j, l ∈ N+ and c′0, . . . , c

′
n ∈ P (pos(t)) such that j ∈ [n],

l ∈ [j], c′0 = c′j = c, c′l−1 = c1, c
′
l = c2, c

′
n = q(ε), c′k−1 ≺G c′k for every k ∈ [n],

and c′l−1 ≺
p
G c′l. Then Lemma 2.20(1 ⇒ 3) yields that for every k ∈ [n] there are

ek = (rk, ρk) ∈ ΦM,t and ik ∈ [rk(ek)] such that out(ek) = c′k, inik(ek) = c′k−1, and

H
inm(ek)
G 6= ∅ for every m ∈ [rk(ek)]; the definition of ≺p

G implies that there is such an
el = (rl, ρl) such that ρl((rl)b) 6∈ P (pos(t)).

8.2. Mwmd over free m-monoids 157

Let m = max{height(s) | s ∈ [[M]](t)}+ 2. By Lemma 2.21(2) and the fact that c′0 = c′j

we obtain that there are η ∈ H
c′n
G = H

q(ε)
G and w ∈ pos(η) such that |w| = j(m−1)+n and

η(w′) = ef(|w|−|w′|) for every proper prefix w′ of w, where the mapping f : [j(m−1)+n]→
[n] is defined as in Lemma 2.21(2).

Let n′ = j(m− 1) + n. For every i ∈ [m] let wi ∈ pos(η) be the unique proper prefix of
w of length n′− l−j(i−1); observe that this is well-defined, i.e., that 0 ≤ n′− l−j(i−1) <
n′ = |w| because l ∈ [j] and j ∈ [n]. It is easy to check that for every i ∈ [m] we have that
f(j(i− 1)+ l) = l and, hence, η(wi) = ef(|w|−|wi|) = ef(n′−(n′−l−j(i−1))) = ef(j(i−1)+l) = el.
Moreover, observe that the positions w1, . . . , wm are pairwise distinct. Since w1, . . . , wm
are prefixes of w and since ρl((rl)b) 6∈ P (pos(t)) and η(w1) = · · · = η(wm) = el it is easy to
show by induction that for every i ∈ [m] we have height(hM,t(η|wi

)) ≥ i− 1; in particular

we have height(hM,t(η)) ≥ height(hM,t(η|wm)) ≥ m−1. Since η ∈ H
q(ε)
G , Lemma 8.6 yields

that max{height(s) | s ∈ [[M]](t)} ≥ height(hM,t(η)) ≥ m− 1; a contradiction to the fact
that m = max{height(s) | s ∈ [[M]](t)} + 2.

“3 ⇒ 1”: We give an indirect proof. Assume that [[M]](t) 6= T n(I∅)(q(ε)). We show
that there are c, c1, c2 ∈ P (pos(t)) such that c ≺∗

G c1 ≺
p
G c2 ≺

∗
G c ≺

∗
G q(ε). By Lemma 8.6

we have [[M]](t) =
⋃

n∈N
T n(I∅)(q(ε)); thus, there is a j ≥ n with T j(I∅)(q(ε)) ⊂

T j+1(I∅)(q(ε)). This implies that there is an s ∈ T j+1(I∅)(q(ε)) \ T
j(I∅)(q(ε)). By

Lemma 8.6, there is an η ∈ H
q(ε),j+1
G with s = hM,t(η) and for every η′ ∈ H

q(ε),j
G we have

s 6= hM,t(η
′).

We define the family w = (wk | k ∈ {0, . . . , j}) over pos(η) such that for every k ∈
{0, . . . , j} the following three properties are satisfied: (i) |wk| = k, (ii) there is no η′ ∈

H
out(η(wk)),j−k
G such that hM,t(η|wk

) = hM,t(η
′), and (iii) if k ≥ 1, then wk−1 is a prefix of

wk. We define the family w by recursion.

Recursion base. Let w0 = ε. Clearly, |w0| = 0 and there is no η′ ∈ H
out(η(ε)),j
G = H

q(ε),j
G

such that hM,t(η) = hM,t(η
′), because hM,t(η) = s.

Recursion step. Let k ∈ [j] and assume that wk−1 has already been defined such that
Conditions (i), (ii), and (iii) are satisfied. Let e = (r, ρ) = η(wk−1), l = rk(e), and for
every i ∈ [l] let ci = out(η(wk−1 · i)) = ini(η(wk−1)) = ini(e). Assume that for every

i ∈ [l] there is an ηi ∈ Hci,j−k
G such that hM,t(η|wk−1·i) = hM,t(ηi). Let η′ = e(η1, . . . , ηl).

By Observation 4.48 we obtain that η′ ∈ H
c,j−(k−1)
G , where c = out(e). Moreover,

hM,t(η|wk−1
) = ρ(rb) ← hM,t(η|wk−1·1) · · · hM,t(η|wk−1·l) = ρ(rb) ← hM,t(η1) · · · hM,t(ηl) =

hM,t(η
′). Hence, η′ ∈ H

c,j−(k−1)
G and hM,t(η|wk−1

) = hM,t(η
′), a contradiction to the fact

that wk−1 satisfies Condition (ii). Thus, our assumption that for every i ∈ [l] there is an

ηi ∈ Hci,j−k
G with hM,t(η|wk−1·i) = hM,t(ηi) was false. We conclude that there is an i ∈ [l]

such that for every ηi ∈ Hci,j−k
G we have hM,t(η|wk−1·i) 6= hM,t(ηi). We put wk = wk−1 · i.

Obviously wk satisfies Conditions (i), (ii), and (iii).

For every k ∈ {0, . . . , j} let ek = (rk, ρk) = η(wk) and bk = ρk((rk)b). There are
k, k′ ∈ {0, . . . , j} with k < k′ and out(ek) = out(ek′) because j ≥ n = |P (pos(t))|.

Assume that bl ∈ P (pos(t)) for every l ∈ {k, . . . , k′ − 1}. We show by (reverse) induc-
tion that for every l ∈ {k, . . . , k′} we have that hM,t(η|wl

) = hM,t(η|wk′
). This is trivial

for the base case that l = k′. Now let l ∈ {k, . . . , k′ − 1} and assume that hM,t(η|wl+1
) =

hM,t(η|wk′
). Since bl ∈ P (pos(t)) implies that rk(el) = 1 and, thus, wl+1 = wl · 1, we

obtain that hM,t(η|wl
) = bl ← hM,t(η|wl·1) = hM,t(η|wl·1) = hM,t(η|wl+1

) = hM,t(η|wk′
).

This finishes the inductive proof. In particular, we obtain that hM,t(η|wk
) = hM,t(η|wk′

).

Lemma 2.15 together with the fact that η ∈ H
q(ε)
G yields that η|wk′

∈ H
out(η(wk′))
G =

158 8. Monadic datalog tree transducers

H
out(ek′)
G = H

out(ek)
G . The fact η ∈ H

q(ε),j+1
G implies that height(η) < j + 1; thus,

height(η|wk′
) < j + 1 − |wk′ | = j + 1 − k′ ≤ j + 1 − k − 1 = j − k because k < k′. We

obtain that η|wk′
∈ H

out(ek),j−k
G . This together with the fact that hM,t(η|wk

) = hM,t(η|wk′
)

contradicts Condition (ii) for wk. Hence, our assumption that bl ∈ P (pos(t)) holds for
every l ∈ {k, . . . , k′ − 1} was wrong.

We conclude that there is an l ∈ {k, . . . , k′ − 1} such that bl 6∈ P (pos(t)). Since
out(ek) = out(ek′) and out(e0) = out(η(w0)) = out(η(ε)) = q(ε) it suffices to show that
out(ei) ≺G out(ei−1) holds for every i ∈ [j] and that out(el+1) ≺

p
G out(el), in order to

finish our indirect proof.
For every i ∈ [j], out(ei) ≺G out(ei−1) follows from Lemma 2.20(2 ⇒ 1) and the facts

that wi−1 is a prefix of wi, |wi| − |wi−1| = 1, out(η(wi)) = out(ei), and out(η(wi−1)) =
out(ei−1).

Since |wl| = l, |wl+1| = l + 1, and wl is a prefix of wl+1, we have that there is
an i ∈ [rk(η(wl))] = [rk(el)] such that wli = wl+1. Hence, ini(el) = ini(η(wl)) =
out(η(wli)) = out(η(wl+1)) = out(el+1). Observe Lemma 2.15 implies that for every

m ∈ [rk(el)], η|wlm ∈ H
out(η(wlm))
G = H

inm(η(wl))
G = H

inm(el)
G , i.e., H

inm(el)
G 6= ∅. We conclude

that out(el+1) ≺
p
G out(el) because bl 6∈ P (pos(t)). �

Corollary 8.10. Let hm = max{height(rb) | r ∈ R}. Then for every t ∈ TΣ either the
height of trees in [[M]](t) is unbounded or bounded by hm · |P (pos(t))|.

Theorem 8.9 shows that for every mdtt and input tree the result of the semantics can either
be computed in n iterations of the immediate consequence operator, where n is linear in
the size of the input tree, or it yields an infinite set of output trees and, roughly speaking,
cannot be computed in finite time. Clearly, only those mdtt that, for every input tree,
guarantee a semantics that is computable in finite time, are useful for practical purposes.
Let us define this concept formally.

Definition 8.11. We call M executable iff [[M]](t) is finite for every t ∈ TΣ. 2

Observe that the class of executable mdtt contains the class of weakly non-circular mdtt.
We will now show that the class of executable mdtt is decidable.

Lemma 8.12. Let M be an mdtt over Σ and ∆. Then it is effectively decidable whether
M is executable.

Proof. This proof is based on and similar to the proofs in Chapter 6. Therefore we will
only sketch this proof.

Similarly to Chapter 6 assume that M = (P,R, q) is proper and that P = {p1, . . . , pn}
for some n ∈ N and pairwise distinct predicates p1, . . . , pn. Moreover suppose that q = p1.
For every j ∈ [n] let Rp

j be the set of all r ∈ R such that rb 6∈ P (V) and pj is the unique
predicate that occurs in the head of r.

Let ψ =
(

ψk(y,Xk) | k ∈ [n]
)

be a family over MSO(Σ), j ∈ [n], and i ∈ [n]. We de-

fine the formula hyperedgep,ψ
i,j (x, y,X1, . . . ,Xn) in MSO(Σ) to originate from the formula

hyperedgeψi,j(x, y,X1, . . . ,Xn) (see Lemma 6.10) by replacing
∨

r∈Rj
with

∨

r∈Rp
j
. Then

we obtain that for every t ∈ TΣ, v,w ∈ pos(t), and W1, . . . ,Wn ⊆ pos(t) the following
statements are equivalent:

• t |= hyperedgep,ψ
i,j (v,w,W1, . . . ,Wn),

8.3. Normal forms 159

• there is a (r, ρ) ∈ ΦM,t,pj(w) such that

– ρ(rb) 6∈ P (pos(t)),

– pi(v) ∈ ind(ρ(rb)), and

– t |= ψk(v
′,Wk) for every pk(v

′) ∈ ind(ρ(rb)).

Note that we defined hyperedgep,ψ
i,j only for i ∈ [n] (and not for i ∈ {0, . . . , n} as we did

for the formula hyperedgeψi,j).
The following constructions are along the lines of those carried out in the proof of

Lemma 6.14. For every i, j, k ∈ [n] we define ψk(y,Xk), χi,j(x, y), χ
p
i,j(x, y), and ϕi,j(x, y)

in MSO(Σ) as follows:

ψk = nonemptyk ,

χi,j = ∀X1 · · · ∀Xn.hyperedgeψi,j ,

χp
i,j = ∀X1 · · · ∀Xn.hyperedgep,ψ

i,j ,

ϕi,j =

{

transχi,j ∨ x ≡ y , if i = j,

transχi,j , otherwise.

For every t ∈ TΣ, i, j ∈ [n], and v,w ∈ pos(t) we obtain for G = Gdep
M,t that

t |= χp
i,j(v,w) iff pi(v) ≺

p
G pj(w) ,

t |= ϕi,j(v,w) iff pi(v) ≺
∗
G pj(w) .

Now we define the sentence ϕexe ∈ MSO(Σ) as follows

ϕexe =
∨

i∈[n]

∨

i1∈[n]

∨

i2∈[n]
∃z.∃z1.∃z2.

(

∃x.∃y.(x ≡ z ∧ y ≡ z1 ∧ ϕi,i1) ∧ ∃x.∃y.(x ≡ z1 ∧ y ≡ z2 ∧ χ
p
i1,i2

)

∧ ∃x.∃y.(x ≡ z2 ∧ y ≡ z ∧ ϕi2,i) ∧ ∃x.∃y.(x ≡ z ∧ root(y) ∧ ϕi,1)
)

.

Clearly, we have for every t ∈ TΣ that (i) t |= ϕexe iff (ii) there are c, c1, c2 ∈ P (pos(t))
with c ≺∗

G c1 ≺
p
G c2 ≺

∗
G c ≺∗

G q(ε) iff (iii) [[M]](t) is infinite due to Theorem 8.9. Thus,
M is executable iff L(ϕexe) is empty. Then by Theorems 6.4(1) and 6.2 it is decidable
whether M is executable. �

8.3 Normal forms

In this section we study normal forms of mdtt. In Chapter 5 we have already defined five
syntactic classes of mwmd: the classes of restricted, semiconnected, connected, proper,
and local mwmd. These classes and the results from Chapter 5 carry over straightfor-
wardly to the setting of mdtt.

This section is divided into two parts. In Section 8.3.1 we will deal with the class of
semiconnected mdtt (recall the definition of semiconnectedness from Definition 5.32). We
will prove that for every mdtt there is an equivalent semiconnected mdtt; we provide
a construction that preserves restrictedness and weak non-circularity (see Lemma 8.17).
We will use this result in order to show Corollary 8.18; we already used this corollary in
Section 5.4 but postponed its proof to the present section.

160 8. Monadic datalog tree transducers

In Section 8.3.2 we will introduce another syntactic subclass, which is a subclass of local
mdtt. We will refer to the mdtt in this class as attributed tree transducer mdtt (for short:
att mdtt), because they are a syntactic redefinition of attributed tree transducers [56, 60]
in terms of mdtt; moreover, they behave exactly like attributed tree transducers. We will
show that for every local mdtt there is an equivalent att mdtt (see Lemma 8.20).

8.3.1 Semiconnected

In this section we prove that for every mdtt there is an equivalent semiconnected mdtt.
The detailed proof that we present in this section has been sketched in [28]. First let
us give an informal description of this construction. Assume that in the given mdtt M
there is the following rule: r = p(x) ← q(x) ; {labelγ(z)}. This rule is apparently not
semiconnected because the variable z is not connected to the variable x. Thus, for every
t ∈ TΣ we have that if t contains a node labeled γ, we can omit the guard, and otherwise,
we can omit the whole rule, each time preserving semantics for t.

Our construction is based on the idea that we have just laid out. We will construct two
copies of M , where in the first copy we will omit the rule r and in the second copy we will
keep r but replace its guard by the empty set; moreover, we ensure, by adding additional
rules, that the second copy of M will only be “active” for input trees that contain a node
labeled γ. Then for every input tree that has no γ-labeled node only the first copy will
be active; this copy will then behave precisely like M . On the other hand, for every input
tree that has a γ-labeled node, both copies will be active; the second copy will behave
like M and the first copy will behave like M without the rule r; we will show that, since
P∆
ℵ0

is an idempotent m-monoid, the first copy will not interfere with the second one, i.e.,
these two copies together behave like M .

We have broken down our construction into four lemmas in order to make it more
accessible. The first lemma states that for two mdtt M and M ′ and an input tree t such
that for every rule instance in M there is a rule instance M ′ that encodes the same tree
of operations, the semantics of M for t is a subset of the semantics of M ′ for t.

Lemma 8.13. Let M = (P,R, q) and M ′ = (P ′, R′, q′) be mdtt over Σ and ∆ such that
P = P ′ and q = q′. Let t ∈ TΣ. Assume that for every c ∈ P (pos(t)) and (r, ρ) ∈ ΦM,t,c

there is a (r′, ρ′) ∈ ΦM ′,t,c such that ρ(rb) = ρ′(r′b). Then [[M]](t) ⊆ [[M ′]](t) and for every

c, c′ ∈ P (pos(t)) with c ≺G c
′ we have that also c ≺G′ c′, where G = Gdep

M,t and G′ = Gdep
M ′,t.

Proof. For every c ∈ P (pos(t)) and (r, ρ) ∈ ΦM,t,c choose a (r′, ρ′) ∈ ΦM ′,t,c such that
ρ(rb) = ρ′(r′b) and denote this (r′, ρ′) by λ(r, ρ). Clearly, for every (r, ρ) ∈ ΦM,t,c we have
that out((r, ρ)) = out(λ(r, ρ)), rk((r, ρ)) = rk(λ(r, ρ)), and ini((r, ρ)) = ini(λ(r, ρ)) for
every i ∈ [rk((r, ρ))].

We define the mapping hλ : TΦM,t
→ TΦM′,t

by recursion as follows for every k ∈ N,

(r, ρ) ∈ (ΦM,t)
(k), η1, . . . , ηk ∈ TΦM,t

:

hλ((r, ρ)(η1, . . . , ηk)) = λ(r, ρ)(hλ(η1), . . . ,hλ(ηk)) .

Let c ∈ P (pos(t)) and η ∈ Hc
G. It is easy to prove by structural induction that hλ(η) ∈ Hc

G′

and that hM,t(η) = hM ′,t(hλ(η)). The fact that, for every c, c′ ∈ P (pos(t)), c ≺G c
′ implies

c ≺G′ c′, follows trivially. Moreover,

[[M]](t) =
⋃

η∈H
q(ε)
G

{hM,t(η)} (by Lemma 8.6)

8.3. Normal forms 161

=
⋃

η∈H
q(ε)
G

{hM ′,t(hλ(η))} ⊆
⋃

η∈H
q(ε)

G′

{hM ′,t(η)}

= [[M ′]](t) . �

Before we proceed, let us introduce an auxiliary notion.

Definition 8.14. For every G ⊆ spΣ(V) we define the language accepted by G as
follows: L(G) = {t ∈ TΣ | ∃ ρ : var(G)→ pos(t) : ρ(G) ⊆ Bt}. 2

Observe that var(G1) ∩ var(G2) = ∅ implies L(G1 ∪ G2) = L(G1) ∩ L(G2) for every
G1, G2 ⊆ spΣ(V).

Lemma 8.15. Let M = (P,R, q) be an mdtt over Σ and ∆, and let R′ ⊆ R. Then there
is an mdtt τR

′

1 (M) = (P,R1, q) over Σ and ∆ such that the following conditions hold.

1. τR
′

1 (M) is semiconnected and if M is restricted, then τR
′

1 (M) is restricted.

2. Let t ∈ TΣ, τ(G) = Gdep

τR′
1 (M),t

, and G = Gdep
M,t.

a) If t ∈ L(I(R′)), then [[τR
′

1 (M)]](t) ⊆ [[M]](t) and for every c, c′ ∈ P (pos(t)) we
have that c ≺τ(G) c

′ implies c ≺G c
′.

b) If R′ = {r ∈ R | t ∈ L(I(r))}, then [[τR
′

1 (M)]](t) = [[M]](t) and for every
c, c′ ∈ P (pos(t)) we have that c ≺τ(G) c

′ iff c ≺G c
′.

Proof. Without loss of generality, we assume that var(r1) ∩ var(r2) 6= ∅ implies r1 = r2
for every r1, r2 ∈ R.

We construct the mdtt τR
′

1 (M) = (P,R1, q) such that R1 = {r̄ | r ∈ R′}, where, for
every r ∈ R′, r̄ = rh ← rb ; rG \ I(r). It is easy to check that τR

′

1 (M) is semiconnected
and that the construction preserves restrictedness. It remains to prove Statement 2.

First we prove Statement (a). Let t ∈ L(I(R′)). Then for every r ∈ R′ there is a
ρr : var(I(r)) → pos(t) such that ρr(I(r)) ⊆ Bt. Observe that for every c ∈ P (pos(t)),
r ∈ R′, and (r̄, ρ) ∈ Φ

τR′
1 (M),t,c

we have (r, ρ ∪ ρr) ∈ ΦM,t,c; clearly, ρ(r̄b) = (ρ ∪ ρr)(rb).

Hence, Lemma 8.13 yields that [[τR
′

1 (M)]](t) ⊆ [[M]](t) and that for every c, c′ ∈ P (pos(t)),
c ≺τ(G) c

′ implies c ≺G c
′.

Next we prove Statement (b). Suppose that R′ = {r ∈ R | t ∈ L(I(r))}. Then for
every r ∈ R′, t ∈ L(I(r)), i.e., t ∈ L(I(R′)). Therefore the first part of Fact (a) yields
[[τR

′

1 (M)]](t) ⊆ [[M]](t) and, for every c, c′ ∈ P (pos(t)), c ≺τ(G) c
′ implies c ≺G c′. It

remains to show that [[τR
′

1 (M)]](t) ⊇ [[M]](t) and, for every c, c′ ∈ P (pos(t)), c ≺G c′

implies c ≺τ(G) c
′. Let c ∈ P (pos(t)) and (r, ρ) ∈ ΦM,t,c. Then ρ|var(I(r)) : var(I(r)) →

pos(t) with ρ|var(I(r))(I(r)) ⊆ Bt; hence, t ∈ L(I(r)) and we conclude that r ∈ R′.
Let (r′, ρ′) = (r̄, ρ|var(r̄)) Thus, (r′, ρ′) ∈ Φ

τR′
1 (M),t,c. Clearly, ρ(rb) = ρ′(r′b). Hence,

Lemma 8.13 yields that [[τR
′

1 (M)]](t) ⊇ [[M]](t) and that for every c, c′ ∈ P (pos(t)), c ≺G c
′

implies c ≺τ(G) c
′. �

Lemma 8.16. Let M = (P,R, q) be a semiconnected mdtt over Σ and ∆, and let G ⊆
spΣ(V) be finite. Then there is an mdtt τG2 (M) = (P0, R0, q0) over Σ and ∆ such that the
following conditions hold.

1. P ⊆ P0.

162 8. Monadic datalog tree transducers

2. τR
′

2 (M) is semiconnected and if M is restricted, then τR
′

2 (M) is restricted.

3. Let t ∈ TΣ, τ(G) = Gdep

τG
2 (M),t

, and G = Gdep
M,t.

a) For every c, c′ ∈ P (pos(t)) we have c ≺τ(G) c
′ iff c ≺G c

′.

b) If t ∈ L(G), then [[τG2 (M)]](t) = [[M]](t) and the following statements are equiv-
alent: (i) there is a c0 ∈ P0(pos(t)) such that c0 ≺

+
τ(G) c0 and c0 ≺

∗
τ(G) q0(ε)

and (ii) there is a c ∈ P (pos(t)) such that c ≺+
G c and c ≺∗

G q(ε).

c) If t 6∈ L(G), then [[τG2 (M)]](t) = ∅ and there is no c0 ∈ P0(pos(t)) such that
c0 ≺

+
τ(G) c0 and c0 ≺

∗
τ(G) q0(ε).

Proof. Without loss of generality, we assume that var(r1) ∩ var(r2) 6= ∅ implies r1 = r2
for every r1, r2 ∈ R. We define ∼G as the transitive reflexive closure of the relation
{(a1, a2) ∈ G × G | var(a1) ∩ var(a2) 6= ∅}. Clearly, ∼G is an equivalence relation on G.
Let k ∈ N and G1, . . . , Gk ⊆ G be pairwise disjoint such that {G1, . . . , Gk} = G/∼G.

We construct τG2 (M) = (P0, R0, q0) where P0 = P ∪ P ′, R0 = R ∪R′ and

P ′ = {q
(1)
0 } ∪ {q

(0)
1 , . . . , q

(0)
k+1} is disjoint from P ,

R′ = {q0(x)← q1() ; ∅} ∪ {qi()← qi+1() ;Gi | i ∈ [k]}

∪
{

qk+1()← q(x) ; {root(x)}
}

.

Note that this construction preserves semiconnectedness and restrictedness. It remains
to prove Statement 3. Let t ∈ TΣ. It is easy to check that for every c ∈ P (pos(t)) we
have Hc

G = Hc
τ(G); hence Statement (a) holds. Observe that the following two statements

are equivalent: (i) t ∈ L(G) and (ii) for every i ∈ [k] the set ΦτG
2 (M),t,qi()

is nonempty.

Moreover, for every i ∈ [k] and (r, ρ) ∈ ΦτG
2 (M),t,qi()

we have ρ(rb) = qi+1(). Using these

facts it is easy to check that Statements (b) and (c) hold. �

Now we state the main lemma of Section 8.3.1. In the proof of this lemma we present
the main construction of a semiconnected mdtt from a given arbitrary mdtt.

Lemma 8.17. Let M be an mdtt over Σ and ∆. Then there is a semiconnected mdtt M ′

over Σ and ∆ such that

• M is weakly non-circular iff M ′ is weakly non-circular,

• [[M]] = [[M ′]], and

• if M is restricted, then M ′ is restricted.

Proof. Let M = (P,R, q). First let us introduce a family (MR′ | R′ ⊆ R) of auxiliary

mdtt over Σ and ∆. Let R′ ⊆ R. We define MR′ = (PR′ , RR′ , qR′) = τ
I(R′)
2 (τR

′

1 (M)). Let

t ∈ TΣ and GR′ = Gdep
MR′ ,t

. We distinguish two cases.

Case 1. t 6∈ L(I(R′)). By Lemma 8.16, [[MR′]](t) = ∅ and there is no c ∈ PR′(pos(t))
such that c ≺+

GR′
c and c ≺∗

GR′
qR′(ε).

Case 2. t ∈ L(I(R′)). By Lemmas 8.15 and 8.16, [[MR′]](t) ⊆ [[M]](t) and whenever
there is a c ∈ PR′(pos(t)) with c ≺+

GR′
c and c ≺∗

GR′
qR′(ε), then there is a c ∈ P (pos(t))

with c ≺+
G c and c ≺∗

G q(ε), where G = Gdep
M,t. Moreover, if we even have the equality

R′ = {r ∈ R | t ∈ L(I(r))}, then [[MR′]](t) = [[M]](t) and the following statements are

8.3. Normal forms 163

equivalent: (i) there is a c ∈ PR′(pos(t)) with c ≺+
GR′

c and c ≺∗
GR′

qR′(ε) and (ii) there is

a c ∈ P (pos(t)) with c ≺+
G c and c ≺∗

G q(ε), where G = Gdep
M,t.

Now we need to aggregate the family (MR′ | R′ ⊆ R) of mdtt into one mdtt M ′.
To this end we define M ′ = (P0, R0, q0) where P0 = {q0} ∪

⋃

R′⊆R(PR′ × {R′}) and

R0 = {q0(x) ← (qR′ , R′)(x) ; ∅ | R′ ⊆ R} ∪
⋃

R′⊆R R̃R′ where the set R̃R′ is obtained
from RR′ by replacing every occurrence of every p ∈ PR′ by (p,R′).

Let t ∈ TΣ. Clearly, [[M ′]](t) =
⋃

R′⊆R[[MR′]](t) = [[M]](t), which is an immediate
consequence of Cases 1 and 2 and the fact that there is a subset R′ ⊆ R such that
R′ = {r ∈ R | t ∈ L(I(r))}.

Moreover, it is easy to see that the following statements are equivalent: (i) there is
an R′ ⊆ R and c ∈ PR′(pos(t)) with c ≺+

GR′
c and c ≺∗

GR′
qR′(ε) and (ii) there is a

c ∈ P0(pos(t)) with c ≺+
G′ c and c ≺∗

G′ q0(ε), where G′ = Gdep
M ′,t. Then Cases 1 and 2 yield

that the following two statements are equivalent: (i) there is a c ∈ P (pos(t)) with c ≺+
G c

and c ≺∗
G q(ε) and (ii) there is a c ∈ P0(pos(t)) with c ≺+

G′ c and c ≺∗
G′ q0(ε).

Thus [[M]] = [[M ′]] and M is weakly non-circular iff M ′ is weakly-noncircular. �

The following corollary is an immediate consequence of Lemmas 4.50, 4.51, 8.4, and 8.17.
It is used in Section 5.4.

Corollary 8.18. Let M be an mdtt over Σ and ∆. Then there is a semiconnected mdtt
M ′ over Σ and ∆ such that

• M is weakly non-circular iff M ′ is weakly non-circular,

• if M is weakly non-circular, then for every idempotent dm-monoid A over ∆ we
have [[M]]fix

A = [[M]]hyp
A = [[M ′]]hyp

A = [[M ′]]fix
A ,

• for every ω-idempotent, ω-distributive, and ω-complete m-monoid (A,
∑

) over ∆

and every related ω-continuous m-monoid (A,≤) we have [[M]]fix
(A,≤) = [[M]]hyp

(A,
P

) =

[[M ′]]hyp
(A,

P

) = [[M ′]]fix
(A,≤), and

• if M is restricted, then M ′ is restricted.

8.3.2 Attributed Tree Transducers

In this section we introduce the syntactic class of attributed tree transducer mdtt (for
short: att mdtt) and show that for every local mdtt there is an equivalent att mdtt.

(Nondeterministic) attributed tree transducers [56, 11, 12] (for short: att), an abstract
form of attribute grammars [90, 35], are introduced as a formal model of syntax-directed
semantics [60], that is, a model for specifying tree transformations. The semantics of att
are defined to be tree transformations. We will now give a definition of att in terms of
mdtt. In the literature there are varying definitions of att. We will adopt the definition
from [20, Sect. 2.3], this choice seems to be best adapted to our theory.

For the remainder of this chapter, let M = (P,R, q) be an mdtt over Σ and ∆.

As a prerequisite, we fix pairwise distinct variables xε, x1, x2, x3, . . . ∈ V. Moreover we
denote {x1, . . . xk} by Xk, for every k ∈ N.

164 8. Monadic datalog tree transducers

Definition 8.19. The mdtt M is an attributed tree transducer mdtt (for short: att

mdtt) over Σ and ∆ if there are disjoint sets Asyn and Ainh such that P = P (1) =
Asyn ∪Ainh, q ∈ Asyn, and the following holds for every r ∈ R:

• either there are k ∈ N, σ ∈ Σ(k), a ∈ Asyn({xε}) ∪Ainh(Xk) and b ∈ T∆(Asyn(Xk) ∪
Ainh({xε})) such that

r = a← b ; {labelσ(xε), child1(xε, x1), . . . , childk(xε, xk)}

• or there are a ∈ Ainh({xε}) and b ∈ T∆(Asyn({xε})) such that

r = a← b ; {root(xε)} .

The class of all tree transformations computed by att mdtt over Σ and ∆ is denoted
by ATT(Σ,∆). 2

The class ATT(Σ,∆) defined here can be best compared with the class T A from [56],
which differs from ATT(Σ,∆) in that it only takes non-circular atts into account, a
decidable syntactic subclass which guarantees that the semantics can be evaluated in
finite time in their framework.

Now we show that we can transform every local mdtt M into an equivalent attributed
tree transducer.

Lemma 8.20 (cf. [28, Lemma 7]). Let M be local. Then there is an att mdtt M ′ equiv-
alent to M .

Proof (Sketch). First let us list the syntactic differences between local mdtt and att
mdtt:

1. the variables in rules do not need to be of the form xε or xi for some i ∈ N+,

2. for att mdtt certain atoms are mandatory in guards, e.g., the atom labelσ(xε) or
root(xε), and certain atoms are not allowed to occur, e.g., leaf(xε),

3. the set of user-defined predicates is partitioned into inherited and synthesized at-
tributes,

4. rules whose guard contains root(xε) have to be of a very restricted form.

Our construction of M ′ is divided into four phases, each of which dealing with one of the
syntactic differences in the order listed above.

Phase 1. Since M is local, we have that for every r ∈ R with var(r) 6= ∅ there is an
x ∈ var(r) such that for every b ∈ rG and y ∈ var(b) \ {x} we have that b = childi(x, y)
for some i ∈ [maxrk(Σ)]. We rename every occurrence of x in r to xε and for every
y ∈ var(r) \ {x} we rename every occurrence of y as follows: since r is connected, there
is a b ∈ rG with y ∈ var(b); then b = childi(x, y) for some i ∈ [maxrk(Σ)]; we rename y
to xi. If this renaming cannot be done consistently, i.e., there is an i′ ∈ [maxrk(Σ)] with
i 6= i′ such that childi′(x, y) ∈ rG, then the rule is inconsistent and can be dropped.

8.3. Normal forms 165

Phase 2. Suppose that M has already passed Phase 1. This construction is split into
five steps. In the first step we drop all rules r such that there are distinct σ, σ′ ∈ Σ
with {labelσ(xε), labelσ′(xε)} ⊆ rG, since these rules are obviously inconsistent. In the
second step we take care of all rules whose guard does not yet contain labelσ(xε) for any σ ∈
Σ. For such a rule r we add for every σ ∈ Σ a copy of r that additionally contains labelσ(xε)
in the guard. Afterwards we remove r. In the resulting mdtt we have that for every
rule r′ there is a unique σ ∈ Σ with labelσ(xε) ∈ r′G; we denote this σ by σr′ . In the
third step we add to the guard of every rule r the atoms child1(xε, x1), . . . , childk(xε, xk)
where k = rk(σr).

In the fourth step we remove all rules that are obviously inconsistent; these are all rules r
such that (i) rk(σr) > 0 and leaf(xε) ∈ rG or (ii) childi(xε, xi) ∈ rG for some i > rk(σr).
In the fifth step we consider all rules r whose guard contains leaf(xε): by the construction
in the fourth step it is obvious that rk(σr) = 0. Therefore leaf(xε) is redundant in rG and
we can simply drop it. The constructions that are carried out in each step yield an mdtt
equivalent to the original one. Note that we deal with all rules that contain root(xε) in
Phase 4.

We illustrate this construction with an example. Assume that R contains the rules
q(xε) ← α ; {child1(xε, x1)} and p(xε) ← α ; {leaf(xε)} and that Σ = {α(0), σ(2)}. Then
after the third step of our construction we obtain four rules, while two of these rules are
removed in the fourth step. The fifth step yields

q(xε)← α ; {labelσ(xε), child1(xε, x1), child2(xε, x2)} ,

p(xε)← α ; {labelα(xε)} .

Phase 3. Suppose that M has already passed Phases 1 and 2. We give an intu-
itive description of our construction. Assume that P = {p, q} and consider the in-
put tree γ(γ(α)). Furthermore assume that R determines data transport from p(ε)
to p(1), p(11) to p(1), p(1) to q(ε), and p(1) to q(11). This situation is depicted on
the left-hand side of Fig. 8.1, where the data transport is represented by dashed arrows.
Obviously, p behaves both like a synthesized and an inherited attribute. Thus, we have to
replace p by a predicate (p, syn) (simulating its synthesizing behavior, i.e., transporting
data bottom-up) and a predicate (p, inh) (simulating its inheriting behavior, i.e., trans-
porting data top-down). Since (p, syn) should also receive all the data that p receives from
the top part of the tree, we need to introduce a rule which transports data from (p, inh)
to (p, syn). The same holds for (p, inh): here we need to add a rule for transporting data
from (p, syn) to (p, inh) (note that we need to take special care for the root of the tree).
This is illustrated on the right-hand side of Fig. 8.1.

Phase 4. Suppose that M has already passed Phases 1, 2 and 3. If M is not already an
att mdtt, then there is a rule r containing root(xε). We remove this rule from M , add
two new user-defined predicates (r, syn) and (r, inh), and add the rules

rh ← (r, inh)(xε) ; rG \ {root(xε)} ,

(r, inh)(xε)← (r, syn)(xε) ; {root(xε)} ,

(r, syn)(xε)← rb ; rG \ {root(xε)} .

Obviously, these three new rules comply with the definition of att mdtt. Thus, by doing
this construction for every non-compliant rule we will eventually obtain an att mdtt
equivalent to M .

166 8. Monadic datalog tree transducers

γ p q

γ p q

α p q

(p, inh) γ (p, syn) q

(p, inh) γ (p, syn) q

(p, inh) α (p, syn) q

Figure 8.1: Illustration of the construction of Phase 3.

Theorem 8.21 (cf. [28, Theorem 3]). r–MDTT(Σ,∆) = ATT(Σ,∆).

Proof. This theorem follows immediately from Theorem 5.8 and Lemma 8.20. �

8.4 Open problems

One major open problem is the question whether executable mdtt and (weakly) non-
circular mdtt have the same expressive power, i.e., whether it is always possible to elimi-
nate cycles in an mdtt that do not generate new output trees (i.e., cycles such that every
involved hyperedge is an ε-rule instance; these are rule instances (r, ρ) with rb ∈ P (V)).

Another open problem is to find a characterization of tree transformations that are
computed by mdtt but not by restricted mdtt. Is it decidable whether a given tree
transformation is not computable by restricted mdtt?

CHAPTER 9

Weighted multioperator tree automata

Every mwmd can be evaluated in a variety of appropriate m-monoids; every such pair of
mwmd and m-monoid determines one fixpoint- and one hypergraph-defined tree series.
Thus, every syntactic class of mwmd and every class of m-monoids determines a class of
(fixpoint- or hypergraph-defined) tree series; let us call such a class a semantic class. In
the previous two chapters we considered semantic classes that we obtained by restricting
our attention to particular classes of m-monoids.

In this chapter we will study a semantic class that results from restricting the class of
mwmd (whereas allowing the full diversity of possible m-monoids). Since the informa-
tion transport of mwmd in this class resembles the bottom-up information transport of
weighted bottom-up tree automata [15, 63], we will refer to the mwmd in this class as
weighted multioperator tree automata mwmd (for short: wmta mwmd).

We will show that wmta mwmd are essentially equivalent to the concept of weighted
multioperator tree automata [96, 103, 58, 123] (for short: wmta). Roughly speaking, a
wmta is a finite state tree automaton [66] in which every transition is equipped with an
operation from the considered m-monoid (where the rank of the operation has to agree
with the rank of the transition).

This chapter is a revised version of the most important results of [123, 59]. We will
restrict ourselves to proving the following two main results.

1. We will show that, for a given absorptive m-monoid satisfying some additional
condition, the class of tree series recognized by wmta over A can be decomposed into
the class of relabeling tree transformations, followed by the class of characteristic
tree transformations of recognizable tree languages, and followed by the class of tree
series recognized by homomorphism wmta over A, where a homomorphism wmta is
a wmta having precisely one state (see Theorem 9.17).

2. We will give an alternative characterization of the class of tree series recognized by
wmta. This characterization is based on m-expressions, which form a new kind of
weighted MSO-logic. This characterization is a Büchi-like theorem [26, 46] for the
class of tree series recognized by wmta (see Theorem 9.26).

This chapter is organized as follows. In Section 9.1 we will study the syntactic class
of wmta mwmd and investigate their relationship to wmta. In Section 9.2 we will prove
the composition and decomposition results of wmta. In Section 9.3 we will introduce the
concept of m-expressions and in Section 9.4 we will prove that the class of tree series
definable by m-expressions and the class of tree series recognized by wmta coincides.
Finally, we briefly mention further implications of the results that we present in this
chapter in Section 9.5.

167

168 9. Weighted multioperator tree automata

9.1 Syntax and semantics of weighted multioperator tree
automata

Now we will define the syntactic class of wmta mwmd. This class is a syntactic subclass
of local mwmd. It is obtained by introducing the following restrictions.

• There are two types of rules: final rules and computation rules.

• Every final rule is of the form q(xε) ← p(xε) ; {root(xε)}, where q is the query
predicate and q 6= p.

• For every k ∈ N, k-ary input symbol σ, and user-defined predicates p, p1, . . . , pk,
which are no query predicates, there is precisely one computation rule r; this rule has
the form p(xε)← δ(p1(x1), . . . , pk(xk));{labelσ(xε), child1(xε, x1), . . . , childk(xε, xk)}
for some k-ary symbol δ. It is easy to see that in computation rules information
transport takes place only from the bottom of the tree (its leafs) to the top (its
root).

Due to this strictly restricted syntax, wmta mwmd can be represented in a very concise
way. A wmta mwmd is completely specified by the following objects: (i) its set of user-
defined predicates (since every user-defined predicate in a local mwmd needs to be unary,
it is not required to specify the rank of each user-defined predicate), (ii) for every k ∈
N, k-ary input symbol σ, and user-defined predicates p, p1, . . . , pk, which are no query
predicates, the according computation rule is specified by the operation δ that is applied
in its body, and (iii) the set of user-defined predicates that occur in the body of final
rules. Therefore, every wmta mwmd can compactly be specified by a triple; we will call
such a triple a weighted multioperator tree automaton. Now let us define these concepts
formally.

In this chapter we let Σ be a ranked alphabet, ∆ be a signature, and A =
(A,+,0, θ) be an m-monoid over ∆.

Definition 9.1. A weighted multioperator tree automaton (abbreviated by wmta)
over Σ and ∆ is a triple M = (Q,µ, F), where

• Q is a finite, non-empty set,

• µ = (µk | k ∈ N) is a family of mappings µk : Qk × Σ(k) ×Q→ ∆(k), and

• F ⊆ Q.

Let M = (P,R, q) be an mwmd over Σ and ∆. We say that M is a weighted multiop-

erator tree automaton mwmd (for short: wmta mwmd) if there is a wmta (Q,µ, F)
over Σ and ∆ such that

• P (0) = ∅ and P (1) = {q} ∪Q, where q 6∈ Q.

• R = {rk,σ,p,p1,...,pk
| k ∈ N, σ ∈ Σ(k), p, p1, . . . , pk ∈ Q}∪ {rp | p ∈ F} where for every

k ∈ N, σ ∈ Σ(k), p, p1, . . . , pk ∈ Q we have

rk,σ,p,p1,...,pk
= p(xε)← µk(p1 · · · pk, σ, p)(p1(x1), . . . , pk(xk));

{labelσ(xε), child1(xε, x1), . . . , childk(xε, xk)} ,

9.1. Syntax and semantics of weighted multioperator tree au tomata 169

and for every p ∈ F we have

rp = q(xε)← p(xε) ; {root(xε)} .

We say that (Q,µ, F) represents M . 2

Since the wmta representation of a wmta mwmd is more compact and easier to handle, we
prefer to deal with wmta instead of wmta mwmd in the sequel. Clearly, one can carry over
the definition of the semantics of mwmd to wmta naturally; i.e., the semantics of a wmta
is the semantics of the mwmd wmta it represents. In this chapter we will restrict ourselves
to the hypergraph semantics. Since the syntax of wmta mwmd is strictly restricted, it
turns out that the hypergraph semantics of wmta can be expressed in simplified terms.
This is stated formally by the following definition and lemma.

Definition 9.2. Let t ∈ TΣ an M = (Q,µ, F) be a wmta over Σ and ∆. We define the
set RM(t) of successful runs over M and t as the set {κ | κ : pos(t) → Q,κ(ε) ∈ F}.
A successful run κ over M and t is called supportive for A if for every w ∈ pos(t) we
have that θ

(

µk(κ(w · 1) · · · κ(w · k), t(w), κ(w))
)

is supportive, where k = rkt(w); the set

of all runs over M and t that are supportive for A is denoted by Ru,A
M (t).

Every κ ∈ RM(t) induces a mapping wtM,t,A(κ) : pos(t) → A which is defined as
follows for every w ∈ pos(t):

wtM,t,A(κ)(w) = ω
(

wtM,t,A(κ)(w1), . . . ,wtM,t,A(κ)(wk)
)

,

where k = rk(t(w)) and ω = µk
(

κ(w1) · · · κ(wk), t(w), κ(w)
)

. If M, t, and A are clear
from the context, then we also write wt(κ) instead of wtM,t,A(κ). 2

Lemma 9.3. LetM = (Q,µ, F) be a wmta over Σ and ∆ and let M be the wmta mwmd
over Σ and ∆ that is represented by M. Then for every t ∈ TΣ we have

[[M]]hyp
A (t) =

∑

κ∈RM(t)
wt(κ)(ε) .

Proof. We only sketch this proof because it is similar to the proof of Theorem 7.18. Let
M = (P,R, q) and the rules in R be denoted as in Definition 9.1. Moreover, let t ∈ TΣ

and define the mapping π : RM(t)→ H
q(ε)
G as follows (where G = Gdep

M,t). Let κ ∈ RM(t).

Then π(κ) is the derivation η ∈ H
q(ε)
G such that pos(η) = {ε} ∪ {1 · w | w ∈ pos(t)},

η(ε) = (rκ(ε), [xε 7→ ε]) and for every w ∈ pos(t) we have

η(1 · w) = (rk,t(w),κ(w),κ(w1),...,κ(wk), [xε 7→ w, x1 7→ w1, . . . , xk 7→ wk]) ,

where k = rk(t(w)). Then π : RM(t) → H
q(ε)
G is a bijection and for every κ ∈ RM(t)

we have wt(κ)(ε) = h
(

hM,t(π(κ))
)

, where h is the unique ∆-homomorphism from T∆ to
(A, θ). This implies the assertion. �

We use the previous lemma to define the hypergraph semantics for wmta directly (without
referring to the wmta mwmd it represents).

170 9. Weighted multioperator tree automata

Definition 9.4. Let M = (Q,µ, F) be a wmta over Σ and ∆. The tree series recog-

nized by M (and A), denoted by [[M]]A ∈ A〈〈TΣ〉〉, is defined for every t ∈ TΣ by

[[M]]A(t) =
∑

κ∈RM(t)
wt(κ)(ε) .

If A is clear from the context, we simply write [[M]] instead of [[M]]A. We will refer to
[[M]] as the run semantics of M .

A tree series λ ∈ A〈〈TΣ〉〉 is called recognizable over Σ and A if there is a wmta M
over Σ and ∆ with [[M]]A = λ. 2

The following lemma states that if a run of a wmta M over an absorptive m-monoid is
not supportive, then it can be disregarded. This can easily be shown by well-founded
induction on tree positions.

Lemma 9.5. Suppose that A is absorptive. Let M = (Q,µ, F) be a wmta over Σ and ∆.
Then the following two statements hold for every t ∈ TΣ.

1. For every κ ∈ RM(t) \Ru,A
M (t) we have wt(κ)(ε) = 0 .

2. [[M]](t) =
∑

κ∈Ru,A
M (t)

wt(κ)(ε) .

Now let us consider an example wmta.

Example 9.6. We consider trees over the ranked alphabet Σ = {σ(2), α(0)}. Let t ∈ TΣ

and w ∈ pos(t). The unbalancedness ubal(t, w) ∈ N of t at w is defined as

ubal(t, w) =

{

|height(t|w·1)− height(t|w·2)| , if t(w) = σ,

0 , if t(w) = α.

Furthermore, we define the unbalancedness ubal(t) of t as ubal(t) = maxw∈pos(t) ubal(t, w).
For example, the unbalancedness of every balanced binary tree (e.g., σ(σ(α,α), σ(α,α)))
is 0, and every right comb σ(α, σ(α, . . . σ(α,α) . . .)) with n occurrences of σ has unbal-
ancedness n− 1.

Algorithms that operate on binary trees (as, e.g., insertion sort into a search tree)
are often the less efficient the more unbalanced the input tree is. Thus, when using such
algorithms it is worthwhile to provide an automaton that computes the unbalancedness of
an input tree so that the tree can be restructured if it turns out to be highly unbalanced.
We construct a wmta M that accomplishes this task. First we define the signature ∆ =

{nil
(0)
0 ,nil

(2)
2 , zero(0), incmax(2),diff(2),proj

(2)
1 ,proj

(2)
2 }. LetM = (Q,µ, F) be a wmta over

Σ and ∆ with Q = {h, u}, F = {u}, and µ is defined as follows:

µ0(ε, α, h) = µ0(ε, α, u) = zero ,

µ2(hh, σ, h) = incmax , µ2(hh, σ, u) = diff ,

µ2(uh, σ, u) = proj1 , µ2(hu, σ, u) = proj2 ,

µ2(q1q2, σ, p) = nil2 for every other combination of states q1, q2, and p.

Moreover, let A = (N ∪ {−∞},max,−∞, θ) be the m-monoid over ∆, where θ is defined
as follows for every a, b ∈ N:

θ(nil0)() = −∞ , θ(zero)() = 0 ,

9.2. Decomposition and composition 171

θ(incmax)(a, b) = 1 + max(a, b) , θ(diff)(a, b) = |a− b| ,

θ(proj1)(a, b) = a , θ(proj2)(a, b) = b ,

θ(nil2)(a, b) = −∞ .

and for every δ ∈ ∆(2) and a, b ∈ N ∪ {−∞} with −∞ ∈ {a, b} we let θ(δ)(a, b) = −∞.

Now we give an intuition of howM processes a tree t ∈ TΣ. First observe that A is ab-
sorptive and, thus, we have that [[M]](t) = max

{

wt(κ)(ε) | κ ∈ Ru,A
M (t)

}

by Lemma 9.5(2).

Consider a supportive run κ ∈ Ru,A
M (t). By the definition of µ there is a unique position

w ∈ pos(t) such that for every w′ ∈ pos(t) we have that κ(w′) = u if w′ is a prefix of w
and κ(w′) = h otherwise, i.e., every position on the unique path from the root of t to w is
mapped to u under κ and every other position is mapped to h. In particular, we have for
every w′′ ∈ pos(t) such that w is a proper prefix of w′′ that κ(w′′) = h and, thus, by the
definition of θ(µ0(ε, α, h)) and θ(µ2(hh, σ, h)) we obtain wt(κ)(w′′) = height(t|w′′). But
then wt(κ)(w) = ubal(t, w) due to the definition of θ(µ0(ε, α, u)) and θ(µ2(hh, σ, u)). This
value is propagated to the root of t, i.e., wt(κ)(ε) = ubal(t, w) because of the definition
of θ(µ2(uh, σ, u)) and θ(µ2(hu, σ, u)).

So every supportive run κ determines a w ∈ pos(t) with wt(κ)(ε) = ubal(t, w). Con-
versely, let w ∈ pos(t) and consider the run κ ∈ RM(t) such that for every w′ ∈ pos(t)
we have κ(w′) = u if w′ is a prefix of w and κ(w′) = h otherwise. Then κ is sup-
portive and wt(κ)(ε) = ubal(t, w). Hence, we have [[M]](t) = max

κ∈Ru,A
M (t)

wt(κ)(ε) =

maxw∈pos(t) ubal(t, w) = ubal(t). 2

Let us conclude this section with a definition of syntactic subclasses of wmta.

Definition 9.7. Let M = (Q,µ, F) be a wmta over Σ and ∆. The wmta M is called a
homomorphism wmta (for short: hom wmta) if |Q| = |F | = 1. It is called total for
A if for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q there is at least one p ∈ Q such that
the operation θ(µk(q1 · · · qk, σ, p)) is supportive.

We define the classes Rec(Σ,A), h–Rec(Σ,A), and th–Rec(Σ,A) as follows:

• Rec(Σ,A) = {λ ∈ A〈〈TΣ〉〉 | λ is recognizable over Σ and A.},

• h–Rec(Σ,A) = {λ ∈ A〈〈TΣ〉〉 | λ is recognizable over Σ and A by a hom wmta},

• th–Rec(Σ,A) = {λ ∈ A〈〈TΣ〉〉 | λ is recognizable over Σ and A
by a hom wmta that is total for A}.

By Π we denote the class of all ranked alphabets. Then we let Rec(A) =
⋃

Σ′∈Π Rec(Σ′,A)
and we define the classes h–Rec(A) and th–Rec(A) likewise. 2

We note that for every hom wmta M = ({∗}, µ, {∗}) over Σ and ∆ there is a Σ-algebra
(A, θ′) such that [[M]] is the unique Σ-homomomorphism from TΣ to (A, θ′). In fact, we
have θ′(σ) = θ(µk(∗ · · · ∗, σ, ∗)) for every k ∈ N and σ ∈ Σ(k).

9.2 Decomposition and composition

In this section we prove a decomposition and composition result of wmta. The idea of
the decomposition is taken from the following classical result of formal language theory:
for every generalized sequential machine mapping (for short: gsm mapping) τ : Σ∗ → ∆∗

172 9. Weighted multioperator tree automata

there are an alphabet Γ, homomorphisms h1 : Γ∗ → Σ∗ and h2 : Γ∗ → ∆∗, and a
recognizable language R ⊆ Γ∗ such that τ(L) = h2(h

−1
1 (L) ∩R) for every input language

L ⊆ Σ∗ [111], also see [14, Theorem 4.1].
This decomposition of gsm has been generalized in [48] to bottom-up tree transducers

[116, 129]: for every bottom-up tree transducer M there is a relabeling tree transforma-
tion R, an fta tree transformation L, and a homomorphism tree transformation H such
that [[M]] = R;L;H where [[M]] is the tree transformation computed by M . In fact, R
generalizes the inverse of h1, and L simulates the intersection with a recognizable tree
language.

In [48] even the converse result and the following characterization on the level of classes
of tree transformations have been proved (cf. Theorem 3.5, Lemmas 4.1 and 4.2 of [48]):
BOT = REL;FTA;HOM where BOT and HOM are the classes of bottom-up tree trans-
formations and homomorphism tree transformations, respectively.

Before we carry over these results to the setting of wmta, we need to recall and introduce
notions that are related to tree transformations.

9.2.1 Tree transformations

Recall the notion of finite tree transformation from Definition 8.5. The set of all finite
tree transformations from Σ to ∆ is denoted by FIN(Σ,∆). We call λ ∈ FIN(Σ,∆) non-

overlapping if λ(t) ∩ λ(t′) = ∅ for every t, t′ ∈ TΣ with t 6= t′. Moreover, λ is called
shape preserving if for every t ∈ TΣ and s ∈ λ(t) we have pos(s) = pos(t). Let L ⊆ TΣ.
The characteristic tree transformation induced by L, denoted by χtt

L ∈ FIN(Σ,Σ),
is defined by χtt

L (t) = L ∩ {t} for every t ∈ TΣ. Note that every characteristic tree
transformation is shape preserving and non-overlapping.

The set fork(Σ) = {(σ, σ1, . . . , σk) | k ∈ N+, σ ∈ Σ(k), σ1, . . . , σk ∈ Σ} is the set of Σ-
forks. Let G ⊆ fork(Σ) and H ⊆ Σ. The tree language defined by G and H, denoted
by [[G,H]] ⊆ TΣ, is the set of all trees t ∈ TΣ such that t(ε) ∈ H and, for every w ∈ pos(t)
with rk(t(w)) > 0,

(

t(w), t(w ·1), . . . , t(w ·rk(t(w)))
)

∈ G. Observe that [[fork(Σ),Σ]] = TΣ.
A tree language L over Σ is called local [66, Section 8], if there is a G ⊆ fork(Σ) and
H ⊆ Σ with L = [[G,H]]. By LLOC(Σ) we denote the set of all local tree languages
over Σ and by LOC(Σ) the set of all characteristic tree transformations induced by local
languages over Σ. It is obvious that LLOC(Σ) is closed under intersection.

Recall the definition of recognizable tree languages from Section 6.1. By FTA(Σ) we
denote the set of all characteristic tree transformations induced by recognizable tree lan-
guages L ⊆ TΣ. It is obvious that LOC(Σ) ⊆ FTA(Σ) ([66]).

A relabeling from Σ to ∆ is a mapping ρ : Σ → P(∆) with ρ(σ) ⊆ ∆(rk(σ)) for every
σ ∈ Σ. The tree transformation defined by ρ, denoted by [[ρ]] ∈ FIN(Σ,∆), is for
every t ∈ TΣ given by

[[ρ]](t) = {s ∈ T∆ | pos(s) = pos(t) and s(w) ∈ ρ(t(w)) for every w ∈ pos(s)} .

We define

• REL(Σ,∆) = {[[ρ]] | ρ is a relabeling from Σ to ∆} and

• i–REL(Σ,∆) = {λ ∈ REL(Σ,∆) | λ is non-overlapping} .

Every tree transformation in REL(Σ,∆) is finite and shape preserving. Now we define the
classes LLOC, LOC, FTA, REL, and i–REL as follows: for every C ∈ {LLOC,LOC,FTA}

9.2. Decomposition and composition 173

let C be defined as
⋃

Σ′∈Π C(Σ
′), and for every D ∈ {REL, i–REL} let D be defined as

⋃

Σ′,∆′∈ΠD(Σ′,∆′).
Let λ ∈ FIN(Σ,∆) be a finite tree transformation and ψ ∈ A〈〈T∆〉〉 a tree series. The

composition λ;ψ ∈ A〈〈TΣ〉〉 of λ and ψ is defined as follows for every t ∈ TΣ:

(λ;ψ)(t) =
∑

s∈λ(t)
ψ(s) .

Observe that this sum is finite. We lift this operation to classes as follows: let Φ be a
class of finite tree transformations and let Ψ be a class of tree series. Then

Φ;Ψ ={λ;ψ | there are ranked alphabets Σ,∆ and an m-monoid

A such that λ ∈ Φ ∩ FIN(Σ,∆) and ψ ∈ Ψ ∩A〈〈T∆〉〉}.

The following observation shows a weak kind of associativity law of the composition.

Observation 9.8. 1. Let λ ∈ FIN(Σ,∆), L ⊆ T∆, and ψ ∈ A〈〈T∆〉〉. Then we have
(λ;χtt

L);ψ = λ; (χtt
L ;ψ).

2. Let Φ be a class of finite tree transformations, L be a class of tree languages, and Ψ
be a class of tree series. Then (Φ;χtt

L);Ψ = Φ; (χtt
L ; Ψ), where χtt

L = {χtt
L | L ∈ L}.

In view of Observation 9.8 we will drop parentheses in expressions of the form (λ;χtt
L);ψ

or (Φ;χtt
L);Ψ.

Overview

Here we will present the first main result of this chapter: for every absorptive m-monoid
A, we have that Rec(A) = REL; FTA; h–Rec(A) (cf. Theorem 9.17). Actually, we will
prove a whole variety of characterizations Rec(A) = R;L;H where R ∈ {i–REL,REL},
L ∈ {LOC,FTA}, H ∈ {th–Rec(A), h–Rec(A)}.

It has turned out to be useful for both, the underlying decomposition and composition
results, to have the following technical tool available. Let M be a wmta over Σ and ∆,
λ ∈ FIN(Σ,Γ) be a shape preserving finite tree transformation from Σ to Γ, andMhom a
hom wmta over Γ and ∆. Roughly speaking, we callM and (λ,Mhom) related if for every
input tree t ∈ TΣ, the finite set λ(t) of images of t under λ is bijective (via some mapping
bt) to the set RM(t) of all successful runs overM and t, and for every run κ ∈ RM(t), the
wmta M produces on t the same operations as Mhom produces on bt(κ), more formally,
wt(κ)(ε) = [[Mhom]](bt(κ)). In fact, this idea is taken from the way in which gsm and
bottom-up tree transducers have been decomposed, cf. [111] and [48], respectively.

For later purposes, it is convenient not to relate just the set RM(t) with λ(t), but an
arbitrary subset Rt ⊆ RM(t). Then, we will instantiate Rt either to RM(t) or to Ru,A

M (t).

Definition 9.9. (cf. Figure 9.1) Let M be a wmta over Σ and ∆. Moreover, let λ ∈
FIN(Σ,Γ) be a shape preserving finite tree transformation from Σ to Γ and letMhom be
a hom wmta over Γ and ∆.

We callM related with (λ,Mhom) if for every t ∈ TΣ there is a set Rt ⊆ RM(t) and a
bijection bt : Rt → λ(t) such that

(i) wt(κ)(ε) = [[Mhom]](bt(κ)) for every κ ∈ Rt, and

(ii) for every κ ∈ RM(t) \Rt we have wt(κ)(ε) = 0. 2

174 9. Weighted multioperator tree automata

Lemma 9.10 (cf. [123, Lemma 2]). Let M, λ ∈ FIN(Σ,Γ), Mhom be as in Defini-
tion 9.9 and suppose that M is related with (λ,Mhom). Then [[M]] = λ; [[Mhom]].

Proof. For every t ∈ TΣ,

[[M]](t) =
∑

κ∈Rt

wt(κ)(ε) +
∑

κ∈RM(t)\Rt

wt(κ)(ε)

=
∑

κ∈Rt

wt(κ)(ε) ((ii) of Definition 9.9)

=
∑

κ∈Rt

[[Mhom]]
(

bt(κ)
)

((i) of Definition 9.9)

=
∑

s∈λ(t)
[[Mhom]]

(

s
)

(because bt is a bijection)

= (λ; [[Mhom]])(t) . �

t RM (t)

Rt

0

A

bt wt(.)(ε)λ

[[Mhom]]

Figure 9.1: Illustration of the Definition 9.9 for a tree t with |λ(t)| = 2.

The following lemma states a syntactic criterion which guarantees Condition (i) of
Definition 9.9. It can easily be shown by well-founded induction on tree positions.

Lemma 9.11 (cf. [123, Lemma 3]). Let M = (Q,µ, F) be a wmta over Σ and ∆ and
Mhom = ({∗}, µhom, {∗}) be a hom wmta over Γ and ∆. Moreover, let t ∈ TΣ, κ ∈
RM(t), and s ∈ TΓ be such that pos(t) = pos(s). If for every w ∈ pos(t) we have
µk(κ(w · 1) · · · κ(w · k), t(w), κ(w)) = (µhom)k(∗ · · · ∗, s(w), ∗), where k = rk(t(w)), then
wt(κ)(ε) = [[Mhom]](s).

9.2.2 Decomposition

Now we can prove the decomposition of wmta.

Lemma 9.12 (cf. [123, Lemma 4]). 1. Rec(A) ⊆ i–REL;LOC;h–Rec(A).
2. Rec(A) ⊆ i–REL;LOC; th–Rec(A), if A is absorptive.

Proof. First we prove Statement 1. Let λ ∈ Rec(A). Hence, there is a ranked alphabet
Σ and a wmta M = (Q,µ, F) over Σ and ∆ such that λ = [[M]]. We define the ranked
alphabet

Γ = {(q1, . . . , qk, σ, p)
(k) | k ∈ N, σ ∈ Σ(k), q1, . . . , qk, p ∈ Q} .

9.2. Decomposition and composition 175

In the sequel we will, for every γ = (q1, . . . , qk, σ, p) ∈ Γ access the components of γ by
means of projections functions pri (e.g., prk+1(γ) = σ); we will denote the projection to
the last of component of γ by prlast, (e.g., prlast(γ) = p).

Moreover, we define a relabeling ρ from Σ to Γ, a set G ⊆ fork(Γ) of Γ-forks, a set
H ⊆ Γ, and a hom wmta Mhom over Γ and ∆ as follows:

• ρ(σ) = {γ ∈ Γ(k) | prk+1(γ) = σ} for every k ∈ N, σ ∈ Σ(k),

• G = {(γ, γ1, . . . , γk) ∈ fork(Γ) | pri(γ) = prlast(γi) for every i ∈ [k]},

• H = {γ ∈ Γ | prlast(γ) ∈ F},

• Mhom = ({∗}, µhom, {∗}), where for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk, p ∈ Q
with (q1, . . . , qk, σ, p) ∈ Γ we have

(µhom)k
(

∗ · · · ∗, (q1, . . . , qk, σ, p), ∗
)

= µk(q1 · · · qk, σ, p) .

Observe that [[ρ]] is non-overlapping and, hence, [[ρ]] ∈ i–REL. Furthermore, observe that
[[ρ]];χtt

[[G,H]] is shape preserving because every finite tree transformation in i–REL and LOC
is shape preserving. In view of Lemma 9.10 it suffices to prove that the wmtaM is related
with (λ,Mhom) where λ = [[ρ]];χtt

[[G,H]].

Let t ∈ TΣ. We define the set Rt = RM(t) and the mapping bt : Rt → λ(t) for every
κ ∈ Rt as the tree bt(κ) ∈ TΓ with pos(bt(κ)) = pos(t) and

bt(κ)(w) =
(

κ(w · 1), . . . , κ(w · rk(t(w))), t(w), κ(w)
)

for every w ∈ pos(t). We need to show that this construction is well-defined. It is obvious
that bt(κ) ∈ TΓ due to the definition of Rt. It is also easy to see that bt(κ) ∈ [[ρ]](t),
because pos(bt(κ)) = pos(t) and because for every w ∈ pos(t) and k = rk(t(w)) we
have prk+1(bt(κ)(w)) = t(w), which implies bt(κ)(w) ∈ ρ(t(w)). In order to prove that
bt(κ) ∈ [[G,H]] we show that (i)

(

bt(κ)(w), bt(κ)(w·1), . . . , bt(κ)(w·rk(t(w)))
)

∈ G for every
w ∈ pos(t) and that (ii) bt(κ)(ε) ∈ H. For every w ∈ pos(t) and j ∈ [rk(t(w))] we have
prj(bt(κ)(w)) = κ(w · j) = prlast(bt(κ)(w · j)) which establishes (i). Since κ ∈ Rt ⊆ RM(t)
we have prlast(bt(κ)(ε)) = κ(ε) ∈ F which implies (ii).

We show that bt is a bijection. In fact, bt is injective, because for every w ∈ pos(t)
the last component of the tuple bt(κ)(w) is κ(w) and, thus, bt maps different runs κ to
different trees bt(κ). In order to show that bt is surjective let s ∈ λ(t). This implies
that s ∈ [[ρ]](t) and s ∈ [[G,H]]. By s ∈ [[ρ]](t) we get pos(s) = pos(t) and, thus, we can
construct a run κ over M and t with κ(w) = prlast(s(w)) for every w ∈ pos(t). Since
s ∈ [[G,H]] we have s(ε) ∈ H and, thus, κ(ε) = prlast(s(ε)) ∈ F . Therefore, κ ∈ RM(t).
Let w ∈ pos(t) and k = rk(t(w)). Then s ∈ [[G,H]] yields (s(w), s(w · 1), . . . , s(w · k)) ∈
G which gives s(w) ∈ Γ and pri(s(w)) = prlast(s(w · i)) = κ(w · i) for every i ∈ [k].
Together with the fact that prk+1(s(w)) = t(w), which is implied by s ∈ [[ρ]](t), we obtain
(

κ(w · 1), . . . , κ(w · k), t(w), κ(w)
)

= s(w) ∈ Γ and, thus, κ ∈ Rt and bt(κ) = s. Hence, bt
is a bijection.

Now we prove that Conditions (i) and (ii) of Definition 9.9 are satisfied. Let κ ∈
Rt, w ∈ pos(t), and k = rk(t(w)). Then we obtain that (µhom)k(∗ · · · ∗, bt(κ)(w), ∗) =
(µhom)k

(

∗ · · · ∗, (κ(w · 1), . . . , κ(w · k), t(w), κ(w)), ∗
)

= µk(κ(w · 1) · · · κ(w · k), t(w), κ(w)).
Then Lemma 9.11 yields Condition (i) of Definition 9.9.
Finally, the fact that RM(t) \Rt = ∅ implies Condition (ii) of Definition 9.9.

176 9. Weighted multioperator tree automata

Now we show the second statement of the lemma and assume that A is absorptive. The
proof is the same as the proof of the first statement with the following two exceptions.
Exception 1: we define

Γ = {(q1, . . . , qk, σ, p)
(k) | k ∈ N, σ ∈ Σ(k), q1, . . . , qk, p ∈ Q

such that θ(µk(q1 · · · qk, σ, p)) is supportive for A} .

Note that it is possible that Γ = ∅. Also note that the definitions of ρ, G, H, and Mhom

depend on the choice of Γ, thus, ρ, G, H, and Mhom are different from the ρ, G, H, and
Mhom in the proof of the first statement of the lemma. Then Mhom is total for A be-
cause for every (q1, . . . , qk, σ, p) ∈ Γ the operation θ

(

(µhom)k
(

∗ · · · ∗, (q1, . . . , qk, σ, p), ∗
))

=
θ
(

µk(q1 · · · qk, σ, p)
)

is supportive. Thus, [[Mhom]] ∈ th–Rec(A).

Exception 2: for every t ∈ TΣ we define Rt to be the set Ru,A
M (t). Then Condition (ii)

of Definition 9.9 is implied by Lemma 9.5(1). �

Example 9.13 (Continuation of Example 9.6). Now we will decompose the wmta
M of Example 9.6 that computes the unbalancedness of trees over the alphabet Σ =
{σ(2), α(0)} and show that [[M]] ∈ i–REL;LOC; th–Rec(A).

By using the constructions that occur in the proof of Lemma 9.12(2) we obtain a ranked
alphabet Γ, a relabeling ρ from Σ to Γ, a set G ⊆ fork(Γ), a set H ⊆ Γ, and a total hom
wmta Mhom over Γ and ∆ with [[M]] = [[ρ]];χtt

[[G,H]]; [[Mhom]] as follows:

Γ = {(h, h, σ, h)(2) , (h, h, σ, u)(2) , (u, h, σ, u)(2) , (h, u, σ, u)(2) ,

(α, h)(0), (α, u)(0)} ,

ρ(σ) = {(h, h, σ, h), (h, h, σ, u), (u, h, σ, u), (h, u, σ, u)} ,

ρ(α) = {(α, h), (α, u)} ,

G = {(γ, γ1, . . . , γk) ∈ fork(Γ) | pri(γ) = prlast(γi) for every i ∈ [k]} ,

H = {(h, h, σ, u), (u, h, σ, u), (h, u, σ, u), (α, u)} ,

and Mhom = ({∗}, µhom, {∗}) such that for every a, b ∈ N,

(µhom)0(ε, (α, h), ∗) = (µhom)0(ε, (α, u), ∗) = zero ,

(µhom)2
(

∗∗, (h, h, σ, h), ∗
)

= incmax ,

(µhom)2
(

∗∗, (h, h, σ, u), ∗
)

= diff ,

(µhom)2
(

∗∗, (u, h, σ, u), ∗
)

= proj1 ,

(µhom)2
(

∗∗, (h, u, σ, u), ∗
)

= proj2 .

Consider the tree t = σ(α, σ(α,α)) ∈ TΣ. Then [[M]](t) = ubal(t) = 1. Now we show that
also ([[ρ]];χtt

[[G,H]]; [[Mhom]])(t) = 1. Let λ = [[ρ]];χtt
[[G,H]] ∈ FIN(Σ,Γ). We have

(λ; [[Mhom]])(t) = max{[[Mhom]](s) | s ∈ λ(t)}

= max{[[Mhom]](s) | s ∈ [[ρ]](t) and s ∈ [[G,H]]} .

The definitions of ρ, G, and H yield that there are exactly five trees s1 to s5 with
si ∈ [[ρ]](t) and si ∈ [[G,H]] for every 1 ≤ i ≤ 5. (see Figure 9.2). These trees correspond
to the five runs over M and t that are supportive for A. Clearly, [[Mhom]](s1) = 1 and
[[Mhom]](si) = 0 for every 2 ≤ i ≤ 5, hence, (λ; [[Mhom]])(t) = max{1, 0} = 1. 2

9.2. Decomposition and composition 177

(h, h, σ, u)

(α, h) (h, h, σ, h)

(α, h) (α, h)

(u, h, σ, u)

(α, u) (h, h, σ, h)

(α, h) (α, h)

(h, u, σ, u)

(α, h) (h, h, σ, u)

(α, h) (α, h)

s1 s2 s3

(h, u, σ, u)

(α, h) (u, h, σ, u)

(α, u) (α, h)

(h, u, σ, u)

(α, h) (h, u, σ, u)

(α, h) (α, u)

s4 s5

Figure 9.2: The five trees s1 to s5 of Example 9.13.

9.2.3 Composition

Now we prove that also the converse inclusion holds; in fact, we will even prove that
REL;FTA;h–Rec(A) ⊆ Rec(A). For this we will first show that FTA;h–Rec(A) ⊆
Rec(A), and second that REL;Rec(A) ⊆ Rec(A).

For the first inclusion, let us consider a deterministic ftaMfta over Γ and a hom wmta
Mhom over Γ and ∆. Then we construct a wmtaM over Γ and ∆ by simply combining the
state behavior ofMfta with the operation produced byMhom. IfMfta does not contain a
transition on a k-ary input symbol for a particular state behavior, then M produces the
operation 0(k), where 0(k) is the k-ary operation that is not supportive; thus, we have to
assume that the m-monoid A provides such operations. Let us define this formally.

Definition 9.14. We say that A is strongly absorptive if it is absorptive and, for every
k ∈ N, there is a δ ∈ ∆(k) such that θ(δ) is not supportive, i.e., ran(θ(δ)) = {0}; if A is
clear from the context, we will denote this ranked symbol δ by 0(k). 2

Lemma 9.15 (cf. [123, Lemma 5]). Suppose that A is strongly absorptive. Then we
have that FTA;h–Rec(A) ⊆ Rec(A).

Proof. Let λ ∈ FTA;h–Rec(A). Then there is a ranked alphabet Γ, an fta Mfta =
(Q, δfta, F) over Γ, and a hom wmta Mhom = ({∗}, µhom, {∗}) over Γ and ∆ such that
λ = χtt

L(Mfta)
; [[Mhom]]. We may assume that Mfta is deterministic (cf. [66]).

We construct the wmtaM = (Q,µ, F) over Γ and ∆ such that for every k ∈ N, γ ∈ Γ(k),
q1, . . . , qk, p ∈ Q we have

µk(q1 · · · qk, γ, p) =

{

(µhom)k(∗ · · · ∗, γ, ∗) , if (q1, . . . , qk, γ, p) ∈ (δfta)k ;

0(k) , otherwise .

Note that µ is well-defined because A is strongly absorptive.

The proof is completed by showing that [[M]] = λ. By Lemma 9.10 it suffices to show
thatM is related with

(

χtt
L(Mfta),Mhom

)

. Let t ∈ TΣ. We define the set Rt ⊆ RM(t) and

178 9. Weighted multioperator tree automata

the bijection bt : Rt → χtt
L(Mfta)(t) as

Rt = {κ ∈ RM(t) | κ is a successful run over Mfta and t} ,

bt(κ) = t for every κ ∈ Rt .

Since Mfta is deterministic, either Rt = ∅ or it contains the only successful run over
Mfta and t, depending on whether Mfta accepts t or not. Thus, bt is well-defined and a
bijection.

If κ ∈ Rt, w ∈ pos(t), and k = rk(t(w)), then µk(κ(w · 1) · · · κ(w · k), t(w), κ(w)) =
(µhom)k(∗ · · · ∗, t(w), ∗) = (µhom)k(∗ · · · ∗, bt(κ)(w), ∗) by the definition of Rt. Then we
obtain Condition (i) of Definition 9.9 due to Lemma 9.11.

Let κ ∈ Ru,A
M (t). Then for every w ∈ pos(t) and k = rk(t(w)) the definition of µ

yields (κ(w · 1), . . . , κ(w · k), t(w), κ(w)) ∈ (δfta)k. Thus, κ ∈ Rt. Hence, Ru,A
M (t) ⊆ Rt

and, thus, RM(t) \ Rt ⊆ RM(t) \ Ru,A
M (t). Then Lemma 9.5(1) yields Condition (ii) of

Definition 9.9. �

For the proof of the second inclusion, let us consider a relabeling ρ from Σ to Γ and a
wmtaM over Γ and ∆; let Q be the set of states of M. Roughly speaking, we construct
a wmta M′ with state set Q × Γ; for a given input tree t, M guesses (in the second
component of its states) at every position w of t a relabeling of t(w) and then simulates
the state behavior ofM on this relabeling.

Lemma 9.16 (cf. [123, Lemma 6]). If A is strongly absorptive, then REL;Rec(A) ⊆
Rec(A).

Proof. Let λ ∈ REL;Rec(A). Then there are ranked alphabets Σ, Γ, a relabeling ρ
from Σ to Γ, and a wmta M = (Q,µ, F) over Γ and ∆, such that λ = [[ρ]]; [[M]]. If
Γ = ∅, then [[ρ]](t) = ∅ and λ(t) = 0 for every t ∈ TΣ, i.e., supp(λ) = ∅; thus, λ ∈ Rec(A)
follows immediately. For the remainder of the proof we assume that Γ 6= ∅. We construct
the wmta M′ = (Q × Γ, µ′, F × Γ) over Σ and ∆ such that for every k ∈ N, σ ∈ Σ(k),
q1, . . . , qk, p ∈ Q× Γ we have

µ′k(q1 · · · qk, σ, p) =

{

µk
(

pr1(q1) · · · pr1(qk),pr2(p),pr1(p)
)

, if pr2(p) ∈ ρ(σ) ;

0(k) , otherwise .

Observe that µ′ is well-defined because A is strongly absorptive. The proof is completed
by showing that [[M′]] = λ.

Let t ∈ TΣ. We let Pt = {κ ∈ RM′(t) | pr2(κ(w)) ∈ ρ(t(w)) for every w ∈ pos(t)}. The
definition of µ′ yields Ru,A

M′ (t) ⊆ Pt. Hence, by Lemma 9.5(1) we have wt(κ)M′,t,A(ε) = 0
for every κ ∈ RM′(t) \ Pt. Furthermore, we let D be the set of mappings κ : pos(t)→ Q
with κ(ε) ∈ F ; we define the mapping ct : D× [[ρ]](t)→ Pt as follows: for every κ ∈ D and
s ∈ [[ρ]](t) we let ct(κ, s)(w) = (κ(w), s(w)) for every w ∈ pos(t). Then ct is well-defined
because [[ρ]] is shape preserving; furthermore, ct is a bijection from D × [[ρ]](t) to Pt. For
every κ ∈ D, s ∈ [[ρ]](t), and w ∈ pos(t), the following identity can easily be verified by
well-founded induction over pos(t),

wt(ct(κ, s))M′,t,A(w) = wt(κ)M,s,A(w) . (9.1)

9.3. M-definable tree series 179

Now we derive

[[M′]](t) =
∑

κ′∈RM′ (t)
wt(κ′)M′,t,A(ε)

=
∑

κ′∈Pt

wt(κ′)M′,t,A(ε) (because wt(κ′)M′,t,A(ε) = 0 for every κ′ ∈ RM′(t) \ Pt)

=
∑

s∈[[ρ]](t)

∑

κ∈D
wt(ct(κ, s))M′,t,A(ε) (since ct is a bijection)

=
∑

s∈[[ρ]](t)

∑

κ∈D
wt(κ)M,s,A(ε) (by Equation (9.1))

=
∑

s∈[[ρ]](t)

∑

κ∈RM(s)
wt(κ)M,s,A(ε)

(since D = RM(s) because [[ρ]] is shape preserving)

=
∑

s∈[[ρ]](t)
[[M]](s) = ([[ρ]]; [[M]])(t) . �

Theorem 9.17 (cf. [123, Theorem 1]). If A is a strongly absorptive m-monoid, then
for every R ∈ {i–REL,REL}, L ∈ {LOC,FTA}, and H ∈ {th–Rec(A), h–Rec(A)} we
have Rec(A) = R;L;H.

Proof. The inclusion Rec(A) ⊆ R;L;H follows from Lemma 9.12 and the facts i–REL ⊆
REL, LOC ⊆ FTA (see Sect. 9.2.1), and th–Rec(A) ⊆ h–Rec(A). The inclusionR;L;H ⊆
Rec(A) is due to R;L;H ⊆ REL;FTA;h–Rec(A) and by Lemmas 9.15 and 9.16. �

9.3 M-definable tree series

In this section we introduce multioperator expressions over Σ and ∆, define the concept
of m-definable tree series, and illustrate these new concepts by means of three extended
examples.

Intuitively, when evaluated in trees and an m-monoid A, multioperator expressions
describe calculations in A where parts of these calculations can be guarded by formulas
of Boolean-valued MSO-logics.

Syntax

First let us introduce the syntax of m-expression, which is reminiscent to the syntax of
monadic second order logic. Similarly to MSO-logic (see Section 6.1) the m-expressions
involve first- and second-order variables.

Definition 9.18. A Σ-family of operations in ∆ is a family ω = (ωσ | σ ∈ Σ) such
that ωσ ∈ ∆(k) for every k ∈ N and σ ∈ Σ(k).

For every finite set V of first- and second-order variables we define the ranked alphabet

ΣV by letting Σ
(k)
V = Σ(k)×P(V) for every k ∈ N; as a convention, we identify the sets Σ

and Σ∅.
Now we define the set MExp(Σ,∆) of multioperator expressions (for short: m-

expressions) over Σ and ∆ by the following EBNF with nonterminal e:

e ::= H(ω) | (e+ e) |
∑

x e |
∑

X e | (ϕ� e) ,

where ω is a ΣU -family of operations in ∆ for some finite set U of first-order and second-
order variables, x is a first-order variable, X is a second-order variable, and ϕ ∈MSO(Σ).
We will drop parentheses whenever no confusions arise. 2

180 9. Weighted multioperator tree automata

Since we will define the semantics of m-expressions inductively, we need the concept of
free variables (as in logics).

Definition 9.19. For every e ∈ MExp(Σ,∆) we define the set of free variables of e,
denoted by Free(e), by recursion on the structure of m-expressions as follows:

• if U is a finite set of variables and ω is a ΣU -family of operations in ∆, then
Free(H(ω)) = U ,

• Free(e1 + e2) = Free(e1) ∪ Free(e2) ,

• Free(
∑

x e) = Free(e) \ {x} and Free(
∑

X e) = Free(e) \ {X} ,

• Free(ϕ � e) = Free(ϕ) ∪ Free(e) .

We call e a sentence if Free(e) = ∅. 2

Semantics

Now we define the semantics of m-expressions by induction on their structure. We note
that the semantics of e1 +e2,

∑

x e, and
∑

X e correspond to the semantics of the formulas
ϕ1 ∨ ϕ2, ∃x.ϕ, and ∃X.ϕ, respectively, of weighted MSO-logic. Before we describe the
semantics formally, we need to introduce some more auxiliary notions.

Definition 9.20. Let ω be a Σ-family of operations in ∆ and observe that (A, (ω ; θ))
is a Σ-algebra. We denote the unique Σ-homomorphism from the TΣ to the Σ-algebra
(A, (ω ; θ)) by hω and call it the homomorphism induced by ω.

As a technical tool we have to extend the index set of a family of operations. Let U
and V be finite sets of first- and second-order variables with U ⊆ V. Moreover, let ω be a
ΣU -family of operations in ∆. We define ω[U ; V] to be the ΣV -family of operations in
∆ defined for every σ ∈ Σ and V ⊆ V by ω[U ; V](σ,V) = ω(σ,U∩V).

Let t ∈ TΣ. In the usual way, we can encode a pair (t, ρ), where ρ is a V-assignment
for t, as a tree over the ranked alphabet ΣV (recall the definition of V-assignments from
Section 6.1). A tree s ∈ TΣV

is called valid if for every first-order variable x ∈ V there is
a unique w ∈ pos(s) such that x occurs in the second component of s(w). We denote the
set of all valid trees in TΣV

by T v
ΣV

.

There is a bijection between the two sets {(t, ρ) | t ∈ TΣ, ρ ∈ ΦV ,t} and T v
ΣV

via the
correspondence (t, ρ) 7→ s, where pos(s) = pos(t) and for every w ∈ pos(s),

s(w) =
(

t(w), {x ∈ V(1) | w = ρ(x)} ∪ {X ∈ V(2) | w ∈ ρ(X)}
)

,

where V(1) is the set of first-order variables occurring in V and V(2) the set of second-
order variables in V; therefore we will no further distinguish between the sets T v

ΣV
and

{(t, ρ) | t ∈ TΣ, ρ ∈ ΦV ,t}.

Let (t, ρ) ∈ T v
ΣV

, x be a first-order variable, and w ∈ pos(t). By (t, ρ)[x 7→ w] we denote
the valid tree (t, ρ[x 7→ w]) over ΣV∪{x}. Similarly, if X is a second-order variable and
W ⊆ pos(s), then (t, ρ)[X 7→W] denotes the valid tree (t, ρ[X 7→W]) over ΣV∪{X}. 2

Now we are prepared to define the semantics of m-expressions.

9.3. M-definable tree series 181

Definition 9.21. Let e ∈ MExp(Σ,∆) and V be a finite set of variables containing
Free(e). The semantics of e with respect to V and A is the tree series [[e]]V ,A ∈ A〈〈TΣV

〉〉
such that supp([[e]]V ,A) ⊆ T v

ΣV
and for every s ∈ T v

ΣV
we define [[e]]V ,A(s) inductively as

follows:

• for every U ⊆ V and ΣU -family ω of operations in ∆:
[[H(ω)]]V ,A(s) = hω[U;V](s) ,

• for every e1, e2 ∈ MExp(Σ,∆):
[[e1 + e2]]V ,A(s) = [[e1]]V ,A(s) + [[e2]]V ,A(s) ,

• for every first-order variable x and e ∈ MExp(Σ,∆):
[[
∑

x e]]V ,A(s) =
∑

w∈pos(s)[[e]]V∪{x},A(s[x 7→ w]) ,

• for every second-order variable X and e ∈MExp(Σ,∆):
[[
∑

X e]]V ,A(s) =
∑

W⊆pos(s)[[e]]V∪{X},A(s[X 7→W]) ,

• for every ϕ ∈ MSO(Σ) and e ∈ MExp(Σ,∆):

[[ϕ� e]]V ,A(s) =

{

[[e]]V ,A(s) , if s ∈ LV(ϕ)

0 , otherwise.

If A is clear from the context, then we write [[e]]V instead of [[e]]V ,A. Moreover, we write
[[e]] rather than [[e]]Free(e). We say that a tree series s ∈ A〈〈TΣ〉〉 is definable by m-

expressions over Σ and A (or: m-definable) if there is a sentence e ∈ MExp(Σ,∆)
with [[e]]A = s. By M(Σ,A) we denote the set of tree series that are definable by m-
expressions over Σ and A. 2

Example 9.22 (cf. [58, Example 3.10]). Let Σ be some ranked alphabet, let ∆ = Σ,
and consider the m-expression e = H(σ | σ ∈ Σ) over Σ and ∆.

Let Aheight = (N,+, 0, θheight) be the m-monoid over ∆, where θheight(σ)(n1, . . . , nk) =
max{1 + n1, . . . , 1 + nk} for every k ∈ N, σ ∈ Σ(k), and n1, . . . , nk ∈ N. Then [[e]]Aheight

is the tree series height ∈ Aheight〈〈TΣ〉〉, which associates every tree in TΣ with its height.
Hence, this tree series is m-definable over Σ and Aheight.

Similarly, for the m-monoid Asize = (N,+, 0, θsize) over ∆, where θsize(σ)(n1, . . . , nk) =
1 + n1 + · · ·+ nk for every k ∈ N, σ ∈ Σ(k), and n1, . . . , nk ∈ N, we have that [[e]]Aheight

is
the tree series size ∈ Asize〈〈TΣ〉〉. Hence, size is m-definable over Σ and Asize.

In general, for every Σ-algebra (A, θ), the unique Σ-homomorphism from TΣ to (A, θ)
is the semantics of the m-expression e wrt the m-monoid (A,+,0, θ) over Σ = ∆. 2

Example 9.23 (Continuation of Example 9.6). The tree series ubal of Example 9.6 is m-
definable over Σ and A. In order to prove this, we construct the following m-expression
e over Σ and ∆:

e =
∑

x

∑

Y

∑

Z1

∑

Z2

ϕ(x, Y, Z1, Z2) � H
(

ωδ | δ ∈ ΣU

)

,

where U = {x, Y, Z1, Z2} and

ω(α,{Y }) = ω(α,{x}) = zero , ω(σ,{Y }) = incmax , ω(σ,{x}) = diff ,

ω(σ,{Z1}) = proj1 , ω(σ,{Z2}) = proj2 ,

and ωδ = nilk for every k ∈ {0, 2} and every other δ ∈ Σ
(k)
U . It is straightforward to define

the formula ϕ(x, Y, Z1, Z2) in MSO(Σ) such that it is true for a given tree s = (t, ρ) ∈ T v
ΣU

iff

182 9. Weighted multioperator tree automata

Z1

Z2

Z2

Z1

Z2

Y

x

Figure 9.3: A variable assignment for Example 9.23 satisfying ϕ(x, Y, Z1, Z2).

• ρ(Y) comprises exactly all positions below ρ(x),

• ρ(Z1) comprises exactly all positions w such that ρ(x) occurs in t|w1, and

• ρ(Z2) comprises exactly all positions w such that ρ(x) occurs in t|w2 (see Figure 9.3).

Clearly, for every t ∈ TΣ and position w ∈ pos(t) there is exactly one combination of sets
W , W1, and W2 of positions such that ϕ(w,W,W1,W2) is true. For such sets W , W1, and
W2 it is easy to see that

[[H(ω)]](t[x 7→ w][Y 7→W][Z1 7→W1][Z2 7→W2]) = ubal(t, w) .

Thus, [[e]] = ubal. 2

Example 9.24 (cf. [59, Example 3.7]). Consider the alphabet Σ = {σ(2), γ(1), α(0)}
and the pattern p = σ(·, α). Let τ ∈ FIN(Σ,Σ) be the finite tree transformation defined
as follows for every t ∈ TΣ (see [63, Example 5.4]): if p does not occur in t, then τ(t) = ∅;
if p occurs in t, then τ(t) = {t} ∪ {tw | w ∈ pos(t), p occurs at w}, where tw is the tree
obtained from t by deleting p at occurrence w in t, i.e., tw = t[t|w1]w.

Let ∆ = {top
(k)
δ | k ∈ N, δ ∈ Σ(k)}∪{proj(2)} be a signature and consider the m-monoid

A = (P(TΣ),∪, ∅, θ) over ∆, where for every δ ∈ Σ we let θ(topδ) be the δ-language top
concatenation and θ(proj)(L1, L2) = L1 for every L1, L2 ⊆ TΣ.

Now we show that τ is m-definable over Σ andA. To this end we define the m-expression
eτ over Σ and ∆ as follows:

eτ = ϕ�

(

H(ω) +
∑

x
ψ(x) � H(ω′)

)

,

where

• ϕ ∈ MSO(Σ) is a sentence that is true for a given tree t ∈ TΣ iff p occurs in t, e.g.,
ϕ = ∃x.ψ(x),

• ψ(x) ∈ MSO(Σ) is true for a tree (t, ρ) ∈ T v
Σ{x}

iff p occurs in t at position ρ(x),

e.g., ψ(x) = labelσ(x) ∧
(

∃y.edge2(x, y) ∧ labelα(y)
)

,

• ω = (topδ | δ ∈ Σ),

• ω′ = (ω(δ,V) | (δ, V) ∈ Σ{x}) and ω(δ,V) = topδ if (δ, V) 6= (σ, {x}), and ω(δ,V) = proj
otherwise.

9.3. M-definable tree series 183

Let us compute [[eτ]](t) for the tree t = σ(α, σ(α,α)). Since t ∈ L(ϕ), we have [[eτ]](t) =
[[H(ω)]](t) ∪ [[e]](t), where e =

∑

x ψ(x) � H(ω′). Since Free(ω) = ∅ we have [[H(ω)]](t) =
hω[∅;∅](t) = hω(t) = {t}. Now we can evaluate the second subexpression as follows:

[[e]](t) =
⋃

w∈pos(t)
[[ψ(x) � H(ω′)]]{x}(t[x 7→ w])

= [[H(ω′)]]{x}(t[x 7→ 2])

= [[H(ω′)]]{x}

(

(σ, ∅)
(

(α, ∅),
(

(σ, {x})
(

(α, ∅), (α, ∅)
)))

)

,

because t[x 7→ 2] ∈ L{x}(ψ(x)) and t[x 7→ w] 6∈ L{x}(ψ(x)) for every w ∈ pos(t) \ {2}.
Since Free(ω′) = {x}, we derive as follows: [[H(ω′)]]{x}(t[x 7→ 2]) = hω′(t[x 7→ 2]) =
topσ(topα,proj(topα, topα)) = {σ(α,α)} . Hence ([[eτ]], t) = {t} ∪ {σ(α,α)} = τ(t). 2

Next we prove a consistency lemma for m-expressions (compare Lemma 6.3 for the anal-
ogous lemma on MSO-logic formulas).

Lemma 9.25 (cf. [59, Lemma 3.8]). Let e ∈ MExp(Σ,∆) and let V and W be finite
sets of variables with Free(e) ⊆ W ⊆ V. Then for every (t, ρ) ∈ T v

ΣV
, we have [[e]]V (t, ρ) =

[[e]]W (t, ρ|W).

Proof. Throughout this proof we abbreviate ρ|W by ρ′. We prove this lemma by struc-
tural induction on e ∈ MExp(Σ,∆).

Case e = H(ω). Let U be a finite set of variables and ω be a ΣU -family of operations
in ∆. We need to show that hω[U;V](t, ρ) = hω[U;W](t, ρ

′). Since pos(t, ρ) = pos(t) =
pos(t, ρ′), it suffices to show for every w ∈ pos(t) that

ω[U ; V](t,ρ)(w) = ω[U ;W](t,ρ′)(w) . (9.2)

It is easy to check that Equation (9.2) holds.

Case e = e1 + e2. By the fact that Free(ei) ⊆ Free(e) ⊆ W for every i ∈ {1, 2}, we
obtain:

[[e]]V(t, ρ) = [[e1]]V(t, ρ) + [[e2]]V(t, ρ)

= [[e1]]W(t, ρ′) + [[e2]]W (t, ρ′) (by ind. hyp.)

= [[e]]W (t, ρ′) .

Case e =
∑

x
e′. Since Free(e′) ⊆ Free(e) ∪ {x} ⊆ W ∪ {x}, we obtain

∑

w∈pos(t)
[[e′]]V∪{x}(t, ρ[x 7→ w])

=
∑

w∈pos(t)
[[e′]]W∪{x}(t, (ρ[x 7→ w])|W∪{x}) (by ind. hyp.)

=
∑

w∈pos(t)
[[e′]]W∪{x}(t, (ρ|W)[x 7→ w]) .

Case e =
∑

X
e′: This case can be shown in the same way as e =

∑

x e
′.

184 9. Weighted multioperator tree automata

Case e = ϕ � e′: Let ϕ ∈ MSO(Σ) and e′ ∈ MExp(Σ,∆). By Lemma 6.3 we have
(t, ρ) ∈ LV(ϕ) iff (t, ρ′) ∈ LW(ϕ). Hence, if (t, ρ) 6∈ LV(ϕ), the statement obviously holds.
If (t, ρ) ∈ LV(ϕ), then the induction hypothesis yields

[[e]]V(t, ρ) = [[e′]]V(t, ρ) = [[e′]]W(t, ρ′) = [[e]]W(t, ρ′) . �

9.4 A Büchi-like theorem

Here we prove that a tree series is recognizable by a wmta iff it is definable by an m-
expression whenever the considered m-monoid is strongly absorptive. We recall that every
m-monoid can be extended easily to a strongly absorptive m-monoid (see Remark 3.12).

Theorem 9.26 (cf. [59, Theorem 4.1]). If A is strongly absorptive, then Rec(Σ,A) =
M(Σ,A) .

This theorem follows from Lemmas 9.27 and 9.35, which will be proved in the next two
subsections, respectively.

9.4.1 From automata to m-expressions

For an arbitrary wmta M we will construct an equivalent m-expression e. The idea
of the construction is the same as in the proof of the fact that recognizability implies
MSO-definability, and e has the form:

e =
∑

X1

· · ·
∑

Xn

(ϕ� H(ω)) .

Intuitively, using a sequence X1, . . . ,Xn of second-order variables, an MSO-formula ϕ
checks, for a given input tree t, whether the associated sets ρ(X1), . . . , ρ(Xn) ⊆ pos(t)
represent a successful run κ overM on t. If so, then the homomorphism hω on (t, ρ) maps
every transition (q1 · · · qk, σ, q) ofM to the operation µk(q1 · · · qk, σ, q), thereby computing
the weight of κ.

We note that the form of the m-expression e nicely resembles the fact that each wmta
M can be decomposed into a relabeling (reflected by

∑

X1
· · ·

∑

Xn
), followed by a partial

identity on a recognizable tree language (reflected by ϕ), followed by a homomorphism
(reflected by H(ω)); see Section 9.2.

Lemma 9.27 (cf. [59, Lemma 4.2]). Let A be strongly absorptive and letM be a wmta
over Σ and ∆. Then there effectively exists a sentence e ∈ MExp(Σ,∆) such that [[M]] =
[[e]].

Proof. LetM = (Q,µ, F). We define the set V = (
⋃

σ∈ΣQ
rk(σ))×Q and consider every

element of V to be a second-order variable. For every t ∈ TΣ and successful run κ ∈ RM(t)
we define the V-assignment ρt,κ ∈ ΦV ,t as follows for every (q1 · · · qk, q) ∈ V:

ρt,κ((q1 · · · qk, q)) = {w ∈ pos(t) | κ(w) = q, rk(t(w)) = k,∀ i ∈ [k] : κ(wi) = qi} .

We will now define a formula ϕ ∈ MSO(Σ) such that Free(ϕ) = V and for every
(t, ρ) ∈ T v

ΣV
we have (t, ρ) ∈ L(ϕ) iff there is a successful run κ ∈ RM(t) with ρ = ρt,κ.

We let ϕ = ϕpart ∧ ϕrun ∧ ϕsuc, where

ϕpart = ∀x.
(

∨

X∈V

(

x ∈ X ∧
∧

Y ∈V
Y 6=X

¬(x ∈ Y)
)

)

,

9.4. A Büchi-like theorem 185

ϕrun = ∀x.
∧

(q1···qk,q)∈V

(

x ∈ (q1 · · · qk, q)→
(

∨

σ∈Σ(k)
labelσ(x) ∧

∧

i∈[k]
∀y.edgei(x, y)→ (

∨

(q′1···q
′
k′
,q′)∈V

q′=qi

y ∈ (q′1 · · · q
′
k′ , q

′))
)

)

,

ϕsuc =
∨

(q1···qk,q)∈V
q∈F

∀x.(root(x)→ x ∈ (q1 · · · qk, q)) ,

where root(x) = ¬∃y.(edge(y, x)) and edge(x, y) =
∨

1≤i≤maxrk(Σ) edgei(x, y). It is easy
to check that Free(ϕ) = V and for every (t, ρ) ∈ T v

ΣV
we have (t, ρ) ∈ L(ϕ) iff there is a

successful run κ ∈ RM(t) with ρ = ρt,κ.

Now we choose a ΣV -family ω = (ω(σ,V) | (σ, V) ∈ ΣV) of operations in ∆ by letting for

every k ∈ N, σ ∈ Σ(k), and V ⊆ V:

ω(σ,V) =

{

µk(q1 · · · qk, σ, q) if V = {(q1 · · · qk, q)} ,

0(k) otherwise.

Let t ∈ TΣ and κ ∈ RM(t). We show by induction over w that for every w ∈ pos(t),

hω((t, ρt,κ)|w) = wt(κ)(w) . (9.3)

Let w ∈ pos(t), σ = t(w), and k = rk(σ). Then we obtain the following equalities:
(t, ρt,κ)(w) =

(

σ, {X ∈ V | w ∈ ρt,κ(X)}
)

=
(

σ, {(κ(w1) · · · κ(wk), κ(w))}
)

. Hence, using
the abbreviation t = (κ(w1) · · · κ(wk), σ, κ(w)), we have

hω((t, ρt,κ)|w) = µk(t)
(

hω((t, ρt,κ)|w1), . . . ,hω((t, ρt,κ)|wk)
)

= µk(t)
(

wt(κ)(w1), . . . ,wt(κ)(wk)
)

(by ind. hyp.)

= wt(κ)(w) .

Let V = {X1, . . . ,Xn}. We put e =
∑

X1
· · ·

∑

Xn
(ϕ�H(ω)). Then we obtain Free(e) = ∅

and for every t ∈ TΣ:

[[e]](t) =
∑

W1,...,Wn⊆pos(t)
[[ϕ� H(ω)]]V t[X1 7→W1, . . . ,Xn 7→Wn]

=
∑

ρ∈ΦV,t

[[ϕ� H(ω)]]V(t, ρ) =
∑

ρ∈ΦV,t

(t,ρ)∈LV (ϕ)

[[H(ω)]]V(t, ρ)

=
∑

κ∈RM(t)

∑

ρ∈ΦV,t
ρ=ρt,κ

hω((t, ρ)) =
∑

κ∈RM(t)
hω((t, ρt,κ))

=
∑

κ∈RM(t)
wt(κ)(ε) (by (9.3) for w = ε)

= [[M]](t) .

Hence, [[M]] = [[e]]. �

9.4.2 From m-expressions to automata

In this section we will prove that the semantics of every m-expression is recognizable. As
usual, the proof is by induction on the structure of the m-expression. We start with atomic
m-expressions and first prove that the homomorphism induced by a family of operations
is recognizable.

186 9. Weighted multioperator tree automata

Lemma 9.28 (cf. [59, Lemma 4.3]). Let ω be a Σ-family of operations in ∆. Then
hω ∈ Rec(Σ,A).

Proof. Let ω = (ωσ | σ ∈ Σ). We construct the wmta M = ({∗}, µ, {∗}) over Σ and A
with µk(∗ · · · ∗, σ, ∗) = ωσ for every k ∈ N and σ ∈ Σ(k). It is straightforward to prove
that [[M]] = hω. �

As the first item of Definition 9.21 shows, [[H(ω)]]V coincides with hω[U;V] on valid
trees over ΣV , and on non-valid trees it yields 0. Thus, we can express [[H(ω)]]V as the
composition of (1) filtering out from TΣV

the valid trees, followed by (2) the execution of
hω[U;V]. We model the filtering in the first step as the characteristic tree transformation
χtt
L with L = T v

ΣV
⊆ TΣV

.

In order to show that [[H(ω)]]V is recognizable it remains to prove that the class of
recognizable tree series is closed under pre-composition with FTA(Σ).

Lemma 9.29 (cf. [59, Lemma 4.4]). Suppose that A is strongly absorptive. Then we
have that FTA(Σ);Rec(Σ,A) ⊆ Rec(Σ,A).

Proof. Let λ ∈ FTA(Σ);Rec(Σ,A). Then there is an ftaMfta = (Qfta, δfta, Ffta) over Σ
and a wmta M = (Q,µ, F) over Σ and ∆ such that λ = χtt

L(Mfta)
; [[M]]. We may assume

that Mfta is deterministic (cf. [66]).

We construct the wmta M′ = (Q′, µ′, F ′) over Σ and ∆ by letting Q′ = Qfta × Q,
F ′ = Ffta × F and for every k ∈ N, σ ∈ Σ(k), q1, . . . , qk, p ∈ Qfta, and q′1, . . . , q

′
k, p

′ ∈ Q:

µ′k((q1, q
′
1) · · · (qk, q

′
k), σ, (p, p

′)) =

{

µk(q
′
1 · · · q

′
k, σ, p

′) if (q1 · · · qk, σ, p) ∈ (δfta)k ,

0(k) otherwise.

The proof is completed by showing that [[M′]] = λ, i.e., that for every t ∈ TΣ, [[M′]](t) =
[[M]](t) if t ∈ L(Mfta), and [[M′]](t) = 0 otherwise. Let t ∈ TΣ. We denote the set of
mappings κ : pos(t) → Qfta with κ(ε) ∈ Ffta by KMfta

(t). Note that the set KMfta
(t)

includes the set of successful runs ofMfta on t. Obviously, there is a bijection π between
KMfta

(t)×RM(t) and RM′(t) given by π(κfta, κ)(w) = (κfta(w), κ(w)) for every (κfta, κ) ∈
KMfta

(t) × RM(t) and w ∈ pos(t). Let κ′ ∈ RM′(t) and (κfta, κ) = π−1(κ′). It is
easy to check that wtM′,t(κ

′)(ε) = wtM,t(κ)(ε) if κfta is a successful run of Mfta on t,
and otherwise wtM′,t(κ

′)(ε) = 0 due to Lemma 9.5 (which is applicable because A is
absorptive).

First assume that t 6∈ L(Mfta). Then for every κ′ ∈ RM′(t) the mapping in the
first component of π−1(κ′) is not a successful run and thus, wtM′,t(κ

′)(ε) = 0. Hence,
[[M′]](t) = 0.

Now assume that t ∈ L(Mfta). SinceMfta is deterministic, there is a unique successful
run κsuc of Mfta on t. We obtain

[[M′]](t) =
∑

κ′∈RM′(t)
wtM′,t(κ

′)(ε)

=
∑

κfta∈KMfta
(t)

∑

κ∈RM(t)
wtM′,t

(

π(κfta, κ)
)

(ε)

=
∑

κ∈RM(t)
wtM′,t

(

π(κsuc, κ)
)

(ε) =
∑

κ∈RM(t)
wtM,t(κ)(ε) = [[M]](t) . �

9.4. A Büchi-like theorem 187

Lemma 9.30 (cf. [59, Lemma 4.5]). Let A be absorptive and ω be a ΣU -family of op-
erations in ∆ for some finite set U of variables. Moreover, let V be a finite set of variables
with U ⊆ V. Then we have [[H(ω)]]V ∈ Rec(ΣV ,A).

Proof. Let T = T v
ΣV
⊆ TΣV

. Clearly, T is recognizable. Then [[H(ω)]]V = χtt
T ; hω[U;V]

which is a tree series in Rec(ΣV ,A) by Lemmas 9.28 and 9.29. �

Next we prove that Rec(Σ,A) is closed under summation. It turns out that the m-
monoid A has to be absorptive (see Example 9.32).

Lemma 9.31 (cf. [58, Lemma 7.5] and [59, Lemma 4.6]). If A is strongly absorp-
tive, then for every λ, λ′ ∈ Rec(Σ,A) also λ+ λ′ ∈ Rec(Σ,A).

Proof. Let M = (Q,µ, F) and M′ = (Q′, µ′, F ′) be wmta over Σ and ∆ such that
[[M]] = λ and [[M′]] = λ′. We assume that Q and Q′ are disjoint. We construct the wmta
M+ = (Q+, µ+, F+) over Σ and ∆ by letting Q+ = Q ∪Q′, F+ = F ∪ F ′ and for every
k ∈ N, σ ∈ Σ(k), and q1, . . . , qk, p ∈ Q

+ we define

µ+
k (q1 · · · qk, σ, p) =











µk(q1 · · · qk, σ, p) , if {q1, . . . , qk, p} ⊆ Q ,

µ′k(q1 · · · qk, σ, p) , if {q1, . . . , qk, p} ⊆ Q
′ ,

0(k) , otherwise.

We show that [[M+]] = λ + λ′. Let t ∈ TΣ and κ ∈ RM+(t). If ran(κ) ⊆ Q (i.e., κ ∈
RM(t)), then wtM+,t(κ)(ε) = wtM,t(κ)(ε). Likewise, if κ ∈ RM′(t), then wtM+,t(κ)(ε) =
wtM′,t(κ)(ε). If neither κ ∈ RM(t) nor κ ∈ RM′(t), then wtM+,t(κ)(ε) = 0 by Lemma 9.5.
Thus,

[[M+]](t) =
∑

κ∈RM+ (t)
wtM+,t(κ)(ε)

=
∑

κ∈RM(t)
wtM,t(κ)(ε) +

∑

κ∈RM′ (t)
wtM′,t(κ)(ε)

= [[M]](t) + [[M′]](t) = (λ+ λ′)(t) . �

Note that there is an m-monoid A that is not absorptive such that Rec(Σ,A) is not closed
under summation; this is witnessed by the following example.

Example 9.32 (cf. [59, Example 4.7]). Let Σ = {γ(1), α(0)} and ∆ = {one(1)} ∪

{zero
(k)
k | k ∈ N}. Moreover, let A = (N,+, 0, θ) be the m-monoid over ∆ such that

• θ(one) is the unary mapping with θ(one)(n) = 1 for every n ∈ N,

• for every k ∈ N, θ(zerok) is the k-ary operation with ran(θ(zerok)) = {0}.

Obviously, A is not absorptive. Consider the wmta M = (Q,µ,Q) and M′ = (Q′, µ′, Q′)
over Σ and ∆, where Q has one state, say ∗, Q′ has two states, µ1(∗, γ, ∗) = one, and
µ′1(p

′, γ, q′) = one for every p′, q′ ∈ Q′ (the other values in µ and µ′ are not relevant for
our considerations). It is easy to see that [[M]](γn(α)) = 1 and [[M′]](γn(α)) = 2n+1 for
every n ∈ N+.

Now assume that there is a wmta M+ = (Q+, µ+, F+) over Σ and ∆ with [[M+]] =
[[M]] + [[M′]]. Let a =

∣

∣{(p, q) | p, q ∈ Q+, µ+
1 (p, γ, q) = one, q ∈ F+}

∣

∣. By the definition
of A we obtain for every n ∈ N+:

[[M+]](γn(α)) =
∑

κ∈RM+ (γn(α))
µ+

1 (κ(1), γ, κ(ε))
(

wt(κ)(1)
)

188 9. Weighted multioperator tree automata

=
∑

κ∈RM+ (γn(α))

µ+
1 (κ(1),γ,κ(ε))=1(1)

1 =
∣

∣{κ | κ ∈ RM+(γn(α)), µ+
1 (κ(1), γ, κ(ε)) = 1(1)}

∣

∣

=
∣

∣{κ | κ : pos(γn(α))→ Q+, κ(ε) ∈ F+, µ+
1 (κ(1), γ, κ(ε)) = 1(1)}

∣

∣

= |Q+|n−1 · a .

However, it is easy to see that there are no integers |Q+| and a such that 1 + 2n+1 =
|Q+|n−1 · a for every n ∈ N+. 2

Now we prove that [[
∑

x e]]V and [[
∑

X e]]V are recognizable tree series provided that
[[e]]V∪{x} and [[e]]V∪{X}, respectively, are so. As known from MSO-logic for the existential
quantification, the operators

∑

x and
∑

X induce a relabeling on the given tree.

Lemma 9.33 (cf. [59, Lemma 4.9]). Suppose that A is strongly absorptive and let e ∈
MExp(Σ,∆). Moreover, let V be a finite set of variables.

1. If Free(
∑

x e) ⊆ V and [[e]]V∪{x} ∈ Rec(ΣV∪{x},A), then [[
∑

x e]]V ∈ Rec(ΣV ,A).

2. If Free(
∑

X e) ⊆ V and [[e]]V∪{X} ∈ Rec(ΣV∪{X},A), then [[
∑

X e]]V ∈ Rec(ΣV ,A).

Proof. Let T = T v
ΣV

. Clearly T is recognizable.
First we prove Statement 1. Let e′ =

∑

x e and assume that Free(
∑

x e) ⊆ V and
[[e]]V∪{x} ∈ Rec(ΣV∪{x},A). Let ρ be the relabeling from ΣV to ΣV∪{x} which is defined
by ρ((σ, V)) = {(σ, V \ {x}), (σ, V ∪{x})} for every σ ∈ Σ and V ⊆ V. We define the tree
language T ′ = T v

ΣV∪{x}
. Then

χtt
T ; ([[ρ]]; (χtt

T ′ ; [[e]]V∪{x})) ∈ Rec(ΣV ,A)

by the hypothesis and due to Lemmas 9.29 and 9.16. Therefore it suffices to show that
[[e′]]V(t) =

(

χtt
T ; ([[ρ]]; (χtt

T ′ ; [[e]]V∪{x}))
)

(t) for every t ∈ TΣV
. This equation does obviously

hold if t 6∈ T . Now assume that t ∈ T . Then

(

χtt
T ; ([[ρ]]; (χtt

T ′ ; [[e]]V∪{x}))
)

(t) =
(

[[ρ]]; (χtt
T ′ ; [[e]]V∪{x})

)

(t)

=
∑

s∈[[ρ]](t)

∑

s′∈χtt
T ′ (s)

[[e]]V∪{x}(s
′) =

∑

s∈[[ρ]](t)∩T ′
[[e]]V∪{x}(s)

=
∑

s∈{t[x 7→w]|w∈pos(t)}
([[e]]V∪{x}(s) (⋆)

=
∑

w∈pos(t)
[[e]]V∪{x}(t[x 7→ w]) (since t[x 7→ w] 6= t[x 7→ w′] for w 6= w′)

= [[e′]]V(t) .

At (⋆) we used the fact that [[ρ]](t)∩T ′ = {t[x 7→ w] | w ∈ pos(t)}, which is easy to check.
Statement 2 can be shown by a similar argument. �

Finally we prove that [[ϕ� e]]V is recognizable if [[e]]V is recognizable.

Lemma 9.34 (cf. [59, Lemma 4.10]). Let A be strongly absorptive, ϕ ∈ MSO(Σ), and
e ∈MExp(Σ,∆). Moreover, let V be a finite set of variables containing Free(ϕ�e). Then
[[e]]V ∈ Rec(ΣV ,A) implies [[ϕ� e]]V ∈ Rec(ΣV ,A).

Proof. By Theorem 6.4(2) the language LV(ϕ) is recognizable. Thus, [[ϕ � e]]V =
χtt
LV(ϕ); [[e]]V is a tree series in Rec(ΣV ,A) by Lemma 9.29. �

9.5. Further results 189

Now we can prove the fact that m-definable tree series are recognizable by wmta.

Lemma 9.35 (cf. [59, Lemma 4.11]). Let A be absorptive, e ∈ MExp(Σ,∆), and let
V be a finite set of variables containing Free(e). Then [[e]]V ∈ Rec(ΣV ,A).

Proof. This follows by induction on the structure of e as follows.

Case e = H(ω). Let ω be a ΣU -family of operations in ∆ for some finite set U of
variables. Then U = Free(e) ⊆ V and the statement follows from Lemma 9.30.

Case e = e1 + e2. Since Free(e) = Free(e1) ∪ Free(e2), we have Free(e1) ⊆ V and
Free(e2) ⊆ V. By the induction hypothesis, [[e1]]V , [[e2]]V ∈ Rec(ΣV , A). Then the state-
ment follows from Lemma 9.31.

Case e =
∑

x
e′. Clearly, the fact that Free(e) = Free(e′) \ {x} implies Free(e′) ⊆

V∪{x}. The induction hypothesis yields [[e′]]V∪{x} ∈ Rec(ΣV∪{x}, A). Then the statement
follows from Lemma 9.33.

Case e =
∑

X
e′. This proof of this case is similar to the proof of e =

∑

x e
′.

Case e = ϕ � e′. We have Free(e′) ⊆ V. The induction hypothesis yields [[e′]]V ∈
Rec(ΣV , A). Then the statement follows from Lemma 9.34. �

9.5 Further results

In this chapter we presented only the most essential results from [123, 59]. Let us briefly
mention important consequences of the two theorems that we presented in this chapter.

Implications of Theorem 9.17 are studied in [123].

• One consequence of Theorem 9.17 is the following characterization of the class
p–BOT(S) of tree series transformations computed by polynomial bottom-up tree
series transducers (for short: polynomial bu-tst) over some semiring S: p-BOT(S) =
REL;FTA;HOM(S) (see [123, Theorem 2]), where HOM(S) is the class of tree series
transformations computed by homomorphism bu-tst, and a tree series transforma-
tion over S is a mapping ϕ : TΣ → S〈〈T∆〉〉. Polynomial bu-tst were investigated in,
e.g., [51, 104, 63].

• Another consequence of Theorem 9.17 is a characterization of the class Rec(Σ,S)
of tree series which are recognizable by weighted tree automata over some semiring
S: Rec(Σ,S) = PROJ(Σ,S)(LLOC) (see [123, Theorem 3]), where PROJ(Σ,S) is
the class of tree series transformations which are computed by projection bu-tst.
Recognizable tree series over S were investigated in, e.g., [4, 52, 43].

A corollary of Theorem 9.26 is the Büchi-like result Rec(Σ,S) = srMSO(Σ,S) (see [63,
Theorem 3.49]), where srMSO(Σ,S) denotes the class of tree series definable by syntacti-
cally restricted weighted MSO-formulas over Σ and S (cf. [59, Corollary 5.15]).

190 9. Weighted multioperator tree automata

APPENDIX A

Additional proofs

A.1 Proper classes in formal language theory

The class Lrec of recognizable string languages is a proper class. Let us briefly explain
why Lrec is not a set.

Let S be a set. Then {S} is a set, too. In the setting of formal language theory, {S} is
called an alphabet because it is a finite nonempty set. Then the set {S}∗ of strings over
the alphabet {S} (i.e., {S}∗ = {ε, S, SS, SSS, . . .}) is obviously a recognizable language
over the alphabet {S}; therefore, {S}∗ ∈ Lrec.

If we assume that Lrec is a set, then {Lrec}
∗ ∈ Lrec. This contradicts the Axiom of

Regularity [124, 112] of ZF (also known as the Axiom of Foundation), that asserts that
no set may contain itself directly or indirectly.

However, the assumption that Lrec is a set entails a more profound contradiction even
when using an axiomatization of set theory without the Axiom of Regularity. Let us
explain why such a problem arises. For every set A we define the property ϕ(A) as
follows: ϕ(A) iff {A}∗ 6∈ A. Assume that Lrec is a set. Then the Axiom of Separation
yields that L = {S ∈ Lrec | ∃ A : S = {A}∗ ∧ ϕ(A)} is a set, too. Therefore, {L}∗ ∈ Lrec

as shown above. Let us determine whether the language {L}∗ is contained in the set L.

{L}∗ ∈ L

iff {L}∗ ∈ Lrec ∧ ∃ A :
(

{L}∗ = {A}∗ ∧ ϕ(A)
)

iff ∃ A :
(

{L}∗ = {A}∗ ∧ ϕ(A)
)

(because {L}∗ ∈ Lrec)

iff ϕ(L) (because {L}∗ = {A}∗ implies L = A)

iff {L}∗ 6∈ L . (by the definition of ϕ(L))

Since “{L}∗ ∈ L iff {L}∗ 6∈ L” is a contradiction, the assumption that Lrec is a set was
wrong. Thus, Lrec is a proper class. The class L is similar to the Russel class [124,
Theorem 4.14] (i.e., the class of all sets that do not contain themselves), a class that
demonstrates that the class of all sets is not a set.

A.2 Counterexample for (R1) and (R2)

Example A.1. Consider the semigroups S1 = (S1, ·∪) and S2 = (S2,⊔), where

• S1 =
(

P(N) \ {∅}
)

∪ {⊤}, ⊤ is absorbing wrt ·∪ and for every N,N ′ ∈ P(N) \ {∅},
N ·∪N ′ = N ∪N ′ if N and N ′ are disjoint and N ·∪N ′ = ⊤ otherwise,

• S2 = {1, 1′, 2, 2′,⊤}, ⊔ is commutative and idempotent, the element ⊤ is absorbing
wrt ⊔, 1⊔1′ = 1′, 2⊔2′ = 2′ and a⊔b = ⊤ for every a ∈ {1, 1′} and b ∈ {2, 2′}, i.e., S2

191

192 A. Additional proofs

⊤

1′ 2′

1 2

Figure A.1: The join-semilattice S2.

is the join-semilattice [71] given in Figure A.1 (it is even a complete join-semilattice1

because it is finite).

By Lemma 3.2, S1 × S2 is a semigroup. Let ≡ be the equivalence relation on S1 × S2

such that

(S1 × S2)/≡ =
{

{(N, 1), (N, 2′)}, {(N, 2), (N, 1′)},

{(x, y) ∈ S1 × S2 | x = ⊤ ∨ y = ⊤}
}

∪
{

{(N, y)} | N ⊂ N, N 6= ∅, y ∈ {1, 1′, 2, 2′}
}

,

i.e., ≡ identifies (N, 1) with (N, 2′), (N, 2) with (N, 1′), and all elements in S1×S2 containing
⊤. It is easy to check that ≡ is a semigroup congruence on S1×S2; hence, also (S1×S2)/≡
is a semigroup by Lemma 3.2.

Let ∆ = ∅ and let A = (A,+,0, θ) be the m-monoid over ∆ such that (A,+,0) is the
monoid that is obtained from the semigroup (S1 × S2)/≡ by adding a neutral element 0
(see Remark 3.4; in particular, A =

(

(S1 × S2)/≡
)

∪ {0}).
Now we define an ω-infinitary sum operation

∑

for A as follows. Let I be a countable
set and (ai | i ∈ I) be a family over A. Let I ′ = {i ∈ I | ai 6= 0} and for every i ∈ I ′ let
(bi, ci) ∈ S1 × S2 such that [(bi, ci)]≡ = ai. We let

∑

i∈I

ai =























0 , if I ′ = ∅ ,

[(⊤,⊤)]≡ , if ∃ i ∈ I ′ : bi = ⊤ ∨ ci = ⊤

or ∃ i, j ∈ I ′ : (bi, bj 6= ⊤) ∧ (bi ∩ bj 6= ∅) ,

[(
⋃

i∈I′ bi,
⊔

i∈I′ ci)]≡ , otherwise,

where the operation
⊔

is the supremum operation in the complete join-semilattice S2. We
omit the rather technical proof that

∑

is well-defined and an ω-infinitary sum operation
for A.

It is easy to see that (A,
∑

) has property (R1)2. It is also easy to check that (A,
∑

)
has property (R2).

Now we show that the ω-complete m-monoid (A,
∑

) does not admit a related ω-
continuous m-monoid. Suppose, contrary to our claim, that there is an ω-continuous

1A complete join-semilattice is a poset [71] such that every nonempty set of elements of the lattice has
a supremum.

2In fact, this is the reason why we did not (i) add the empty set to the carrier set of S1 and did not
(ii) use union instead of disjoint union for the binary operation of S1; otherwise, for every j ∈ {1, 2},
we would have [(N, j)]≡ + [(∅, j′)]≡ = [(N, j′)]≡ in case (i) and [(N, j)]≡ + [(N, j′)]≡ = [(N, j′)]≡ in
case (ii).

A.3. Proof of Lemma 4.31 193

m-monoid (A,≤) such that (A,≤) and (A,
∑

) are related. Let j ∈ {1, 2}. For every
n ∈ N let ajn = [({n}, j)]≡ . We obtain

∑

n∈N a
j
n = [(N, j)]≡ for every nonempty N ⊆ N.

Thus, for every nonempty N ∈ Pfin(N),
(
∑

n∈N a
j
n

)

+ [(N \ N, j′)] = [(N, j′)]≡; hence,
(
∑

n∈N a
j
n

)

≤ [(N, j′)]≡ . Since also
∑

n∈∅ a
j
n = 0 ≤ [(N, j′)]≡, we obtain

[(N, j)]≡ =
∑

n∈N
ajn = ∨

{

∑

n∈N
ajn | N ∈ Pfin(N)

}

≤ [(N, j′)]≡ ,

because (A,≤) and (A,
∑

) are related. Hence, [(N, 1)]≡ ≤ [(N, 1′)]≡ = [(N, 2)]≡ and,
likewise, [(N, 2)]≡ ≤ [(N, 1)]≡. However, [(N, 1)]≡ 6= [(N, 2)]≡, which means that ≤ is not
a partial order, a contradiction. Thus,

(

A,
∑

)

6∈ As ; c. 2

A.3 Proof of Lemma 4.31

Proof. We let Σ = {α(0)}, ∆ = {null(0), suc(1)}, and A = (A, ◦, (∅, 1), θ) such that

• A =
(

(P(N)× {1, 2}) \ {(∅, 2)}
)

∪ {⊤},

• for every a1, a2 ∈ A we let

a1 ◦ a2 =











(

pr1(a1) ∪ pr1(a2),max(pr2(a1),pr2(a2))
)

if a1, a2 ∈ A \ {⊤} and

pr1(a1) ∩ pr1(a2) = ∅,

⊤ otherwise,

• θ(null)() =
(

{0}, 1
)

• for every a ∈ A, θ(suc)(a) =
(

{n + 1 | n ∈ pr1(a)},pr2(a)
)

if a ∈ A \ {⊤}, and
θ(suc)(a) = ⊤ otherwise.

It is easy to check that A is a distributive m-monoid over ∆. Next we define the relations
≤ and ⊑. To this end we define three auxiliary relations ≺0, ≺1, and ≺2 on A \ {⊤} as
follows:

≺0 =
{

(a, b) | a, b ∈ A \ {⊤},pr1(a) ⊂ pr1(b),pr2(b) ≥ pr2(a)
}

,

≺1 =
{(

(N, 1), (N, 2)
)

| N ∈ P(N) \ {∅}
}

,

≺2 =
{(

(N, 2), (N ′, 1)
)

| N,N ′ ∈ P(N) \ {∅}, N ⊆ N ′
}

.

Now we let

≤ = idA ∪ (A× {⊤}) ∪ ≺0 ∪≺1 ,

⊑ = idA ∪ (A× {⊤}) ∪ ≺0 ∪≺2 .

We prove that (A,≤) and (A,⊑) are ω-continuous m-monoids.
First we show that ≤ and ⊑ are partial orders on A. Clearly, ≤ and ⊑ are reflexive,

because idA ⊆ ≤ and idA ⊆ ⊑. Next we prove transitivity. Let a, b, c ∈ A such that
a ≤ b ≤ c. The only interesting case is that (a, b) ∈ ≺0∪≺1 and (b, c) ∈ ≺0∪≺1. Clearly,
a ≺0 b ≺0 c implies a ≺0 c. It is easy to check that a ≺1 b ≺0 c or a ≺0 b ≺1 c implies
a ≺0 c. The case a ≺1 b ≺1 c is not possible. The proof that ⊑ is transitive is slightly more
complicated but similar to the proof that ≤ is transitive. Next we prove antisymmetry.
Let a, b ∈ A such that a ≤ b ≤ a. The only interesting case is that (a, b) ∈ ≺0 ∪ ≺1 and

194 A. Additional proofs

(b, a) ∈ ≺0 ∪ ≺1. Then pr1(a) ⊆ pr1(b) ⊆ pr1(a) and, since a ≺1 b ≺1 a is not possible,
we obtain that one of the inclusions is proper, i.e., pr1(a) ⊂ pr1(a), a contradiction. The
proof that ⊑ is antisymmetric is similar to the proof that ≤ is antisymmetric.

Next we prove that (A,≤) and (A,⊑) are ω-cpos. Let us denote the supremum wrt
≤ by ∨ and the supremum wrt ⊑ by ⊔. Observe that (∅, 1) is the least element of A
wrt ≤ and the least element of A wrt ⊑. Let b : N → A be an ω-chain wrt ≤. We
show that b has a supremum wrt ≤. This is trivial if b is ultimately constant. If b is not
ultimately constant, then ran(b) ⊆ A \ {⊤} and for every n ∈ N there is an m ∈ N such
that pr1(b(n)) ⊂ pr1(b(n +m)); it is easy to check that

∨{b(n) | n ∈ N} =
(

⋃

n∈N
pr1(b(n)),max{pr2(b(n)) | n ∈ N}

)

. (A.1)

Let b′ : N → A be an ω-chain wrt ⊑. We show that b′ has a supremum wrt ⊑. This is
trivial if b′ is ultimately constant. If b′ is not ultimately constant, then it is easy to check
that

⊔{b′(n) | n ∈ N} =
(

⋃

n∈N
pr1(b

′(n)), 2
)

. (A.2)

It remains to prove that the operations ◦, θ(null), and θ(suc) are ω-continuous wrt the
partial orders ≤ and ⊑. By Observation 3.28(2) it suffices to show monotonicity and
b-continuity for ω-chains b that are not ultimately constant.

“ ◦ wrt ≤”: First we show that ◦ is monotone wrt ≤. Since ◦ is commutative, it suffices
to show that a ≤ a′ implies a ◦ b ≤ a′ ◦ b for every a, a′, b. This is trivial if a′ ◦ b = ⊤;
therefore, assume a′ ◦ b ∈ A \ {⊤}. The only interesting case is that (a, a′) ∈ ≺0 ∪ ≺1.
Then it is easy to check that (a ◦ b, a′ ◦ b) ∈ ≺0 ∪ ≺1.

Let b be an ω-chain wrt ≤ that is not ultimately constant. We prove that ◦ is b-
continuous. Since ◦ is commutative, it suffices to show that, for every a ∈ A, a ◦ ∨{b(n) |
n ∈ N} = ∨{a◦b(n) | n ∈ N}. This is trivial if a = ⊤. If a 6= ⊤ and pr1(a)∩pr1(b(n)) 6= ∅
for some n ∈ N, then obviously a ◦ ∨{b(n) | n ∈ N} = ∨{a ◦ b(n) | n ∈ N} is an immediate
consequence of Equation (A.1). Otherwise the ω-chain (a ◦ b(n) | n ∈ N) is not ultimately
constant, either; then it is easy to check that a ◦ ∨{b(n) | n ∈ N} = ∨{a ◦ b(n) | n ∈ N}
by using Equation (A.1).

“ ◦ wrt ⊑”: This can be shown similarly to the proof that ◦ is ω-continuous wrt ≤
while using Equation (A.2) instead of Equation (A.1).

“ θ(null) wrt ≤ and ⊑”: This is trivial because θ(null) is nullary.

“ θ(suc) wrt ≤”: First we show that θ(suc) is monotone wrt ≤. Let a, a′ ∈ A with
a ≤ a′. The only interesting case is that (a, a′) ∈ ≺0 ∪ ≺1; then it is easy to check that
(

θ(suc)(a), θ(suc)(a′)
)

∈ ≺0 ∪ ≺1.
Let b be an ω-chain wrt ≤ that is not ultimately constant. We prove that θ(suc) is b-

continuous. Clearly, the ω-chain
(

θ(suc)(b(n)) | n ∈ N
)

is not ultimately constant, either;
thus, Equation (A.1) yields θ(suc)

(

∨{b(n) | n ∈ N}
)

= ∨{θ(suc)(b(n)) | n ∈ N}.
“ θ(suc) wrt ⊑”: This can be shown similarly to the proof that θ(suc) is ω-continuous

wrt ≤ while using Equation (A.2) instead of Equation (A.1).

This finishes the proof that (A,≤) and (A,⊑) are ω-continuous m-monoids. It remains
to define the mwmd M over Σ and ∆. We let M = (P,R, q) such that P = {q(1)} and R
contains the following two rules:

q(x)← null() ; ∅ , q(x)← suc(q(x)) ; ∅ .

A.3. Proof of Lemma 4.31 195

Let t = α(). It is easy to show by induction on n that for every n ∈ N we obtain
T n(I(∅,1))(q(ε)) =

(

{m ∈ N | n > m}, 1
)

. Equations (A.1) and (A.2) yield

∨{T n(I(∅,1))(q(ε)) | n ∈ N} = (N, 1) ,

⊔{T n(I(∅,1))(q(ε)) | n ∈ N} = (N, 2) .

Hence, [[M]]fix
(A,≤)(t) = (N, 1) and [[M]]fix

(A,⊑)(t) = (N, 2). This finished the proof that

[[M]]fix
(A,≤) 6= [[M]]fix

(A,⊑). �

196 A. Additional proofs

Bibliography

[1] S. Abiteboul, P. Bunemann, and D. Suciu. Data on the Web. Morgan Kaufmann
Publishers, San Francisco, California, 2000.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers — Principles, Techniques, and
Tools. Addison–Wesley, 1986.

[4] A. Alexandrakis and S. Bozapalidis. Weighted grammars and Kleene’s theorem.
Inform. Process. Lett., 24(1):1–4, 1987.

[5] E.A. Ashcroft and F.E. Fich. A generalized setting for fixpoint theory. Theoretical
Computer Science, 9(2):243–256, 1979.

[6] G. Ausiello, P. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algo-
rithmic results, and a novel decremental approach. Theoretical Computer Science,
pages 312–328, 2001.

[7] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, 1998.

[8] Brenda S. Baker. Tree Transductions and Families of Tree Languages. In Proceed-
ings of the Fifth Annual ACM Symposium on Theory of Computing Austin, Texas,
pages 200–206, April/Mai 1973.

[9] B.S. Baker. Tree transducers and tree languages. Inform. and Control, 37:241–266,
1978.

[10] J. Bang-Jensen and G. Gutin. Digraphs: theory, algorithms and applications.
Springer-Verlag Berlin, 2008.

[11] M. Bartha. An algebraic definition of attributed transformations. pages 51–60,
1981.

[12] M. Bartha. Linear deterministic attributed transformations. Acta Cybernetica,
6:125–147, 1983.

[13] P. Bernays. Axiomatic set theory. Dover Publications, 1991.

[14] J. Berstel. Transductions and Context-Free Languages. Teubner Stuttgart, 1979.

197

198 Bibliography

[15] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoret.
Comput. Sci., 18(2):115–148, 1982.

[16] G. J. Bex, S. Maneth, and F. Neven. A Formal Model for an Expressive Fragment
of XSLT. Information Systems, 27(1):21–39, 2002.

[17] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. J. ACM, 44(2):201–236, 1997.

[18] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic Pro-
gramming: Syntax and Semantics. ACM Transactions on Programming Languages
and Systems, 23(1):1–29, 2001.

[19] S. Bistarelli, U. Montanari, and F. Rossi. Soft constraint logic programming and
generalized shortest path problems. Journal of Heuristics, 8:25–41, 2002.

[20] R. Bloem and J. Engelfriet. A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. J. Comput. System Sci., 61:1–50,
2000.

[21] B. Borchardt. Code selection by tree series transducers. In 9th International Confer-
ence on Implementation and Application of Automata, CIAA’04, Kingston, Canada,
volume 3317 of Lecture Notes in Comput. Sci., pages 57–67. Springer-Verlag, 2005.

[22] S. Bozapalidis. Equational elements in additive algebras. Theory Comput. Syst.,
32(1):1–33, 1999.

[23] B. Braden. Calculating sums of infinite series. The American Mathematical Monthly,
99(7):649–655, 1992.

[24] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible Markup Language (XML
1.0 W3C Recommendation). http://www.w3.org/TR/REC-xml/., 1998.

[25] T. J. I’A. Bromwich and T. M. MacRobert. An introduction to the theory of infinite
series / by T.J. I’A. Bromwich. Macmillan, London :, 2nd ed. rev. / with the
assistance of T.M. MacRobert. edition, 1926.

[26] J. R. Büchi. Weak second–order arithmetic and finite automata. Zeitschr. für math.
Logik und Grundl. der Mathem., 6:66–92, 1960.

[27] M. Büchse, J. May, and H. Vogler. Determinization of weighted tree automata
using factorizations. In Finite-State Methods and Natural Language Processing -
FSMNLP 2009, 8th International Workshop, 2009. extended version submitted.

[28] M. Büchse and T. Stüber. Monadic datalog tree transducers. In A. H. Dediu, A.-
M. Ionescu, and C. Mart́ın-Vide, editors, LATA, volume 5457 of Lecture Notes in
Computer Science, pages 267–278. Springer, 2009.

[29] A.W. Burks, D.W. Warren, and J.B. Wright. An analysis of a logical machine using
parenthesis-free notation. Mathematical tables and other aids to computation, pages
53–57, 1954.

[30] S. Burris and H.P. Sankappanavar. A course in universal algebra. Springer, 1981.

Bibliography 199

[31] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische
Annalen, 46(4):481–512, 1895.

[32] B. Courcelle. Attribute grammars: definitions, analysis of dependencies, proof meth-
ods. In B. Lorho, editor, Methods and tools for compiler construction, pages 81–102.
Cambridge University Press, 1984.

[33] B. Courcelle. Basic notions of universal algebra for language theory and graph
grammars. Theoret. Comput. Sci., 163:1–54, 1996.

[34] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge Univ
Pr, 2002.

[35] P. Deransart, M. Jourdan, and B. Lorho. Attribute Grammars - Definitions, Systems
and Bibliography, volume 323 of Lecture Notes in Comput. Sci. Springer-Verlag,
1988.

[36] R. Diestel. Graph Theory (Graduate Texts in Mathematics). Springer-Verlag Berlin,
1997.

[37] J. Doner. Decidability of the weak second-order theory of two successors. Notices
Amer. Math. Soc., 12:Abstract No. 65T 648, 819, 1965.

[38] J. Doner. Tree acceptors and some of their applications. J. Comput. System Sci.,
4:406–451, 1970.

[39] F. Drewes. Tree-based Picture Generation. Theoret. Comput. Sci., 246(1):1–51,
2000.

[40] F. Drewes. Tree-based Generation of Languages of Fractals. Theoret. Comput. Sci.,
262(1-2):377–414, 2001.

[41] M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

[42] M. Droste and W. Kuich. Semirings and formal power series. In M. Droste,
W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata, chapter 1.
Springer-Verlag, 2008.

[43] M. Droste, Chr. Pech, and H. Vogler. A Kleene theorem for weighted tree automata.
Theory Comput. Syst., 38:1–38, 2005.

[44] M. Droste, T. Stüber, and H. Vogler. Weighted automata over strong bimonoids.
Inform. Sci., 180:156–166, 2010.

[45] M. Droste and H. Vogler. Weighted tree automata and weighted logics. Theoret.
Comput. Sci., 366:228–247, 2006.

[46] C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

[47] H.B. Enderton. Elements of set theory. Academic Press California, 1977.

200 Bibliography

[48] J. Engelfriet. Bottom-up and top-down tree transformations - a comparison. Math.
Systems Theory, 9(3):198–231, 1975.

[49] J. Engelfriet. Tree automata and tree grammars. Technical Report DAIMI FN-10,
Aarhus University, 1975.

[50] J. Engelfriet. Attribute grammars: Attribute evaluation methods. in: Methods and
Tools for Compiler Construction, 1983.

[51] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series trans-
formations. J. Autom. Lang. Comb., 7:11–70, 2002.

[52] Z. Ésik and W. Kuich. Formal tree series. J. Autom. Lang. Comb., 8(2):219–285,
2003.

[53] Z. Ésik and G. Liu. Fuzzy tree automata. Fuzzy Sets and Systems, 158:1450–1460,
2007.

[54] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection. Acta
Inform., 31(8):741–760, 1994.

[55] A.A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of set theory. North Holland,
1973.

[56] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.

[57] Z. Fülöp, Z. Gazdag, and H. Vogler. Hierarchies of tree series transformations.
Theoret. Comput. Sci., 314:387–429, 2004.

[58] Z. Fülöp, A. Maletti, and H. Vogler. A Kleene theorem for weighted tree automata
over distributive multioperator monoids. Theory Comput. Syst., 44:455–499, 2009.

[59] Z. Fülöp, T. Stüber, and H. Vogler. A büchi-like theorem for weighted tree automata
over multioperator monoids. Theory of Computing Systems, pages 1–38, 2010.

[60] Z. Fülöp and H. Vogler. Syntax-directed semantics — Formal Models Based on Tree
Transducers. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer-Verlag, 1998.

[61] Z. Fülöp and H. Vogler. Tree series transformations that respect copying. Theory
Comput. Syst., 36(3):247–293, 2003.

[62] Z. Fülöp and H. Vogler. Weighted tree transducers. J. Autom. Lang. Comb., 9:31–
54, 2004.

[63] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In M. Droste,
W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata, chapter 9.
Springer-Verlag, 2009.

[64] G. Gallo, G. Longo, and S. Pallottino Sang. Directed hypergraphs and applications.
Discrete Applied Mathematics, 42(2-3):177–201, 1993.

[65] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

Bibliography 201

[66] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer-Verlag,
1997.

[67] J.S. Golan. Semirings and their Applications. Kluwer Academic Publishers, Dor-
drecht, 1999.

[68] G. Gottlob and C. Koch. Monadic queries over tree-structured data. In LICS ’02:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
pages 189–202, Washington, DC, USA, 2002. IEEE Computer Society.

[69] G. Gottlob and C. Koch. Monadic datalog and the expressive power of languages
for web information extraction. J. ACM, 51(1):74–113, 2004.

[70] G. Grätzer. Universal Algebra. D. van Nostrand Comp., 1968.

[71] G. Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel, 2003.

[72] U. Hebisch and H.J. Weinert. Semirings - Algebraic Theory and Applications in
Computer Science. World Scientific, Singapore, 1998.

[73] H. Herrlich. Axiom of choice. Springer-Verlag Berlin, 2006.

[74] W. Hodges. Logical features of Horn clauses. Handbook of Logic in Artificial Intel-
ligence and Logic Programming, Logical Foundations, 1:449–503, 1993.

[75] S. Hölldobler. Logik und Logikprogrammierung. Synchron, Wissenschaftsverl. der
Autoren, 2003.

[76] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

[77] L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the Ninth Interna-
tional Workshop on Parsing Technology, pages 53–64, Vancouver, British Columbia,
2005. Association for Computational Linguistics.

[78] M. Jazayeri. Simpler construction for showing the intrinsically exponential com-
plexity of the circularity problem for attribute grammars. J. ACM, 28:715–720,
1981.

[79] M. Jazayeri, W.F. Ogden, and W.C. Rounds. The Intrinsically Exponential Com-
plexity of the Circularity Problem for Attribute Grammars. Comm. of the ACM,
18(12):697–706, 1975.

[80] T.J. Jech. Set theory. Springer-Verlag, 2006.

[81] G. Karner. On limits in complete semirings. In Semigroup Forum, volume 45, pages
148–165. Springer-Verlag, 1992.

[82] N. Klarlund, Th. Schwentick, and D. Suciu. XML: Models, Schemas, Types, Log-
ics, and Queries. In Logics for Emerging Applications on Databases, pages 1–41.
Springer-Verlag, 2003.

[83] S.C. Kleene. Introduction to Metamathematics. van Nostrand, 1952.

202 Bibliography

[84] D. Klein and C.D. Manning. Parsing and hypergraphs. In Proceedings of IWPT,
pages 123–134, 2001.

[85] G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic, Theory and Application.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[86] K. Knight and J. Graehl. An overview of probabilistic tree transducers for natural
language processing. In Computational Linguistics and Intelligent Text Processing,
CICLing 2006, volume 3406 of Lecture Notes in Comput. Sci., pages 1–24. Springer-
Verlag, 2005.

[87] K. Knight and J. May. Applications of weighted automata in natural language
processing. In M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted
Automata, chapter 14. Springer-Verlag, 2009.

[88] K. Knopp. Theory and Application of Infinite Series. Dover, 1990.

[89] D. E. Knuth. Semantics of context-free languages: Correction. Math. Systems
Theory, 5(1):95–96, 1971. Errata of [90].

[90] D.E. Knuth. Semantics of context–free languages. Math. Systems Theory, 2:127–
145, 1968.

[91] H.-P. Kolb, U. Mönnich, and F. Morawietz. Descriptions of Cross-Serial Dependen-
cies. Grammars, 3(2):189–216, 2000.

[92] K.V. Krishna. Near-Semirings: Theory and Applications. PhD thesis, IIT Delhi,
New Delhi, India, 2005.

[93] J.L. Krivine. Introduction to axiomatic set theory. Springer-Verlag, 1971.

[94] A. Kühnemann and H. Vogler. Attributgrammatiken. 1997.

[95] W. Kuich. Formal power series over trees. In S. Bozapalidis, editor, 3rd International
Conference on Developments in Language Theory, DLT 1997, Thessaloniki, Greece,
Proceedings, pages 61–101. Aristotle University of Thessaloniki, 1998.

[96] W. Kuich. Linear systems of equations and automata on distributive multioperator
monoids. In Contributions to General Algebra 12 - Proceedings of the 58th Workshop
on General Algebra “58. Arbeitstagung Allgemeine Algebra”, Vienna University of
Technology. June 3-6, 1999, pages 1–10. Verlag Johannes Heyn, 1999.

[97] W. Kuich. Tree transducers and formal tree series. Acta Cybernet., 14:135–149,
1999.

[98] W. Kuich. Formal series over algebras. Mathematical Foundations of Computer
Science 2000, pages 488–496, 2000.

[99] G. Lallement. Semigroups and combinatorial applications. John Wiley & Sons, Inc.
New York, NY, USA, 1979.

[100] J. Landin. An introduction to algebraic structures. Dover Publications, 1989.

Bibliography 203

[101] J.L. Lassez, V.L. Nguyen, and E. Sonenberg. Fixed Point Theorems and Semantics:
A Folk Tale. INFO. PROC. LETT., 14(3):112–116, 1982.

[102] J.W. Lloyd. Foundations of Logic Programming. Springer–Verlag, 1987. Second,
extended edition.

[103] A. Maletti. Relating tree series transducers and weighted tree automata. Internat.
J. Found. Comput. Sci., 16(4):723–741, 2005.

[104] A. Maletti. Compositions of tree series transformations. Theoret. Comput. Sci.,
366:248–271, 2006.

[105] A. Maletti. The Power of Tree Series Transducers. Der Andere Verlag, Tönning,
Lübeck und Marburg, 2006. (Ph.D. thesis, 2006, TU Dresden, Germany).

[106] J. May, K. Knight, and H. Vogler. Efficient inference through cascades of weighted
tree transducers. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages 1058–1066, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[107] J. Michaelis, U. Mönnich, and F. Morawietz. On minimalist attribute grammars
and macro tree transducers. In C. Rohrer, A. Rossdeutscher, and H. Kamp, ed-
itors, Linguistic Form and its Computation, pages 287–326, Stanford, 2001. CSLI
Publications.

[108] M. Mohri. Minimization algorithms for sequential transducers. Theoretical Com-
puter Science, 234:177–201, 2000.

[109] G.H. Moore. Zermelo’s axiom of choice: its origins, development, and influence.
Springer-Verlag, 1982.

[110] F. Morawietz and T. Cornell. The MSO Logic-Automation Connection in Linguis-
tics. In A. Lecomte, F. Lamarche, and G. Perrier, editors, 2nd International Con-
ference on Logical Aspects of Computational Linguistics, LACL’97, Nancy, France,
September 22-24, 1997, Selected Paper, volume 1582 of Lecture Notes in Comput.
Sci., pages 112–131, 1999.

[111] M. Nivat. Transduction des langages de Chomsky. Ann. de l’Inst. Fourier, 18:339–
456, 1968.

[112] A. Oberschelp. Allgemeine Mengenlehre. BI Wissenschaftsverlag, 1994.

[113] Chr. Pech. Kleene-Type Results for Weighted Tree Automata. PhD thesis, TU
Dresden, 2003.

[114] D. Radovanović. Weighted tree automata over strong bimonoids. Technical report,
Technische Universität Dresden, 2009. Report TUD-FI09-02, February 2009.

[115] G.N. Raney. Completely distributive complete lattices. Proceedings of the American
Mathematical Society, 3(5):677–680, 1952.

[116] W.C. Rounds. Trees, transducers and transformations. PhD thesis, Stanford Uni-
versity, 1968.

204 Bibliography

[117] W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4(3):257–
287, 1970.

[118] W. Rudin and J. Cofman. Principles of mathematical analysis. McGraw-Hill New
York, 1964.

[119] G. Schmidt and T. Ströhlein. Relations and graphs: discrete mathematics for com-
puter scientists. Springer-Verlag Berlin, 1993.

[120] H. Seidl. Finite tree automata with cost functions. Theoret. Comput. Sci.,
126(1):113–142, 1994.

[121] T. Stüber. Decomposition of Weighted Multioperator Tree Automata. Master thesis,
Technische Universität Dresden, 2006.

[122] T. Stüber and H. Vogler. Weighted monadic datalog. Theor. Comput. Sci., 403(2-
3):221–238, 2008.

[123] T. Stüber, H. Vogler, and Z. Fülöp. Decomposition of weighted multioperator tree
automata. Int. J. Foundations of Computer Sci., 20(2):221–245, 2009.

[124] G. Takeuti and W.M. Zaring. Axiomatic set theory. Springer-Verlag, 1973.

[125] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal
of Mathematics, 5(2):285–309, 1955.

[126] P. Taylor. Practical foundations of mathematics. Cambridge University Press, 1999.

[127] J. W. Thatcher. Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. J. Comput. Syst. Sci., 1(4):317–322, 1967.

[128] J. W. Thatcher and J. B. Wright. Generalized finite automata. Notices of the
American Mathematical Society, 12:Abstract No. 65T – 649, 820, 1965.

[129] J.W. Thatcher. Generalized2 sequential machine maps. IBM Res. Report RC 2466,
1969.

[130] J.W. Thatcher. Generalized2 sequential machine maps. J. Comput. System Sci.,
4(4):339–367, 1970.

[131] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic. Math. Syst. Theory, 2(1):57–81,
1968.

[132] A.M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(1):230, 1937.

[133] W.G. van Hoorn and B. van Oozelaa. Fundamental notions in the theory of semin-
earrings. Compositio Math., 18:65–78, 1967.

[134] J. von Neumann. Zur Einführung der transfiniten Zahlen. Acta Litterarum ac Sci-
entiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum
mathematicarum, 1:199–208, 1923.

Bibliography 205

[135] W. Wechler. Universal Algebra for Computer Scientists, volume 25 of Monogr. The-
oret. Comput. Sci. EATCS Ser. Springer-Verlag, Heidelberg/Berlin, first edition,
1992.

[136] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematis-
che Annalen, 65(2):261–281, 1908.

206 Bibliography

List of Symbols

∅ . 11
∈ . 11

⊆ . 11

⊂ . 11

∪ . 11

∩ . 11

\ . 11
× . 11

P(A).11

Pfin(A) 11

|A| . 11
N . 11

N+ . 11

max(N) 11

[n] . 11

a ρ b 12

ρ−1 . 12

ρ(A′).12

dom(ρ).12

ran(ρ).12

ρ|A′ . 12

ρ ; τ . 12

idA .12

τ+ . 13

τ∗ .13

[a]τ . 13

A/τ . 13

τ cov . 13

ρ(a) . 14

ρ : A→ B 14

BA .14

ρ[a 7→ b] 15

ρ[a1 7→ b1, . . . , an 7→ bn] .15

[a1 7→ b1, . . . , an 7→ bn] . . 15

fn . 15

f(a1, . . . , an) 15

pri . 15

(fi | i ∈ I).15
An . 15

Ops(A)(n) 15

Ops(A) 15

a ◦ b.16
Famω

A 16
∑

i∈I ai 16

rk(σ).17

maxrk(Σ) 17

Σmon 17

A∗ . 18

ε . 18

a1 · · · an 18

|a1 · · · an|18
w · v 18

TΣ(D) 18

γn(t) 18

TΣ . 18

topΣ,D
σ 19

topσ 19

toplang
σ 19

TΣ(D).19

θΣ . 19

TΣ . 19

indyield 19

pos(t) 19

ind(t) 19

size(t) 19

height(t) 19

t(w).20

t|w . 20

t[t′]w 20

t← t̄ 21

out(e) 22

ini(e) 22

Hv,U
G 24

Hv
G . 26

dec↑(η, U,G) 26

dec↑(η, U) 26

≺G .28

dec↓(η, U,G) 32

dec↓(η, U) 32

A/≡ 35

A× B 35
∑

i∈I ai 36

A〈〈T∆(D)〉〉 36
supp(λ) 36

A〈T∆(D)〉 36
0̃ .36

λ1 + λ2 36
∑

i∈I λi 36

a.t . 37

A⊥ .38

∨B . 44

∧B . 44

As ; c 51

Γ(H).56

V . 56

spΣ . 56

h← b ;G56

rh . 56

rb . 56

rG . 56

var(rh) 56

var(rb) 56

207

208 List of Symbols

var(rG).56

var(r) 56

Bt . 58

ρ1,Γ . 58

ρ2 . 58

ρ3 . 58

ΦM,t 58

ΦM,t,c 58

ΦM,t,c 58

Gdep
M,t 60

IM,t,A 65

hI .65

I0 . 65

TM,t,A 65

I . 65

T . 65

[[M]]fix
A68

WMDfix(Σ,∆,A).70

[[M]]fix
(A,≤) 72

WMDfix
(

Σ,∆, (A,≤)
)

. . 72

GM,t 75

hM,t .75

[[M]]hyp
A 76

WMDhyp(Σ,∆,A).76

[[M]]hyp
(A,

P

) 79

WMDhyp
(

Σ,∆, (A,
∑

)
)

79

∼r . 83

r–WMDfix(Σ,∆,A).85

c–WMDfix(Σ,∆,A) 85

l–WMDfix(Σ,∆,A) 85

p–WMDfix(Σ,∆,A) 85

pr–WMDfix(Σ,∆,A) . . . 85

pc–WMDfix(Σ,∆,A) . . . 85

Ht(c) 89

H ′
t(c

′) 89

H ′
t(c

′, ran(νt)) 89

⊳t . 89

hνt . 89

He
i . 89

Πt . 90

hπt . 90

hcπt
. 90

I(r) 111

I(R′) 111

L(M)122

MSO(Σ) 122

true. 123

false 123

Free(ϕ) 123

ΨV ,t 123

(t, ρ) |= ϕ 123

t |= ϕ 123

LV(ϕ).123

L(ϕ) 123

ϕ(X1, . . . ,Xn) 124

t |= ϕ(W1, . . . ,Wn) 124

≤t . 125

〈S′〉+,· 136

〈S′〉+ 136

∆S .137

AS .137

[[M]] (wmd) 138

[[M]]≤ (wmd). 138

WMD(Σ,S).138

WMD
(

Σ, (S,≤)
)

. 138

S〈〈TΣ〉〉 138
ξM . 140

p(), a, q(x), b 140

size(r) 140

size(M) 140

RM(t) (wta) 143

wtM,t(κ) (wta).143

wt(κ) (wta) 143

[[M]] (wta) 144

Rec(Σ,S) 144

weightM 147

∆mon 152

P∆,D
fin 152

P∆,D
ℵ0

. 152

P∆
fin 154

P∆
ℵ0

. 154

P∆
fin 154

[[M]] (mdtt) 155

r–MDTT(Σ,∆) 155

≺p
G 156

L(G).161

RM(t) (wmta) 169

Ru,A
M (t) (wmta) 169

wtM,t,A(κ) (wmta) 169

wt(κ) (wmta) 169

[[M]]A (wmta). 170

[[M]] (wmta) 170

Rec(Σ,A) 171

h–Rec(Σ,A) 171

th–Rec(Σ,A).171

Π . 171

FIN(Σ,∆) 172

χtt
L ∈ FIN(Σ,Σ) 172

fork(Σ) 172

[[G,H]] ⊆ TΣ 172

LLOC(Σ) 172

LOC(Σ) 172

FTA(Σ). 172

[[ρ]] (relabeling).172

REL(Σ,∆). 172

i–REL(Σ,∆) 172

LLOC 172

LOC 172

FTA 172

REL 172

i–REL 172

λ;ψ 173

Φ;Ψ 173

ΣV . 179

MExp(Σ,∆) 179

Free(e) 180

hω . 180

ω[U ; V] 180

T v
ΣV

. 180

(t, ρ)[x 7→ w] 180

(t, ρ)[X 7→W]180

[[e]]V ,A 181

[[e]]V181

[[e]] . 181

M(Σ,A) 181

Index

ω-chain . 44

ω-complete m-monoid 40

ω-complete partial order 45

ω-continuous . 46

ω-continuous m-monoid.47

ω-continuous semirings 137

ω-continuous strong bimonoid 137

ω-cpo . 45

ω-distributive. .41

ω-idempotent . 41

ω-infinitary operation 16

ω-infinitary sum operation 40

canonical . 42

ε-rule instance . 58

absorbing. .16

absorptive

m-monoid . 37

absorptive extension 38

acyclic. .13

additively locally finite 136

algebra . 17

antisymmetric . 13

arity. .15

assignment . 123

associated m-monoid 137

associated signature 137

associative. 16

atoms . 56

att mdtt . 164

attributed tree transducer mdtt 164

bijection . 15

binary . 15

body . 56

Boolean semiring . 136

bottom decomposition 32

bounded derivations 80

carrier set . 17

characteristic tree transformation 172

circular . 62

closed. .14 f.

coefficient . 36

cofinal subset . 44

commutative

monoid . 36

operation . 16

strong bimonoid 136

complete lattice . 44

complete m-monoid homomorphism . . 152

completely equivalent 86

composite relation . 12

composition

mapping . 15

transformation, series 173

concatenation . 18

connected . 84

consequence interpretation 65

constants . 15

continuous. .45

countable . 11

covering relation . 13

cyclic . 13

definable . 123

definable by m-expressions.181

dependency graph . 60

dependency hypergraph.60

derivations . 60

209

210 Index

deterministic . 122

diagram . 12

digraph. 12

digraph reduct. .34

direct dependence relation 28

direct product . 35

directed . 44

directed graph . 12

distributive . 38

dm-monoid . 38

domain . 12

edges . 12

empty family . 15

empty interpretation.65

empty mapping . 14

empty string. .18

empty tree series . 36

equivalence class . 13

equivalence relation . 13

equivalent . 155

evaluation homomorphism 19

executable . 158

extends . 12

extension . 15

family . 15

family of operations 179

final states . 122

finite state tree automaton 122

fixpoint. .15

flattening. .140

forks . 172

free variables . 180

freely generated . 18

fta . 122

recognized tree language.122

generalized partition 15

generated

m-monoid . 152

universal algebra 17

greatest element . 44

guard. .56

head. .56

height . 19

hom wmta. .171

homomorphism

universal algebra 17

homomorphism induced 180

homomorphism wmta.171

hyp-equivalent . 86

hyperedges . 22

hypergraph . 22

hypergraph diagram 23

hyperpath . 26

hyperpath segment . 24

idempotent

m-monoid . 37

operation . 15

strong bimonoid 136

identity relation . 12

image . 14

immediate consequence operator 65

independent guards. 111

index . 18

index set . 15

indices. .19

infimum . 44

initial . 18

initial segment of N .12

injective . 14

inner vertex . 24

input vertex

hyperedge . 22

hyperpath segment 24

interpretation. .65

inverse relation . 12

irreflexive. .13

isomorphic . 17

isomorphism. 17

label . 20

language accepted . 161

language top concatenation 19

leaf . 19

least element . 44

length . 18

local . 84 f.

locally finite . 136

tree series . 36

longest common prefix 18

lower bound . 44

Index 211

m-definable. .181

m-expressions . 179

m-monoid . 37

m-monoid homomorphisms 152

mapping. .14

mdtt . 155

minimal . 13

monadic . 17

monadic datalog tree transducers 155

monoid . 36

monomial tree series 37

monotone . 16

MSO-logic formulas 122

multioperator expressions.179

multioperator monoid 37

mutually cofinal . 44

mwmd. .56

natural numbers . 11

neutral . 16

non-circular . 62

non-overlapping . 172

nullary . 15

olf . 73

operation . 15

output vertex

hyperedge . 22

hyperpath segment 24

partial mapping . 14

partial order . 13

partially ordered set 13

partition . 15

planar . 12

polynomial tree series.36

poset . 13

position mapping . 114

positions . 19

prefix. .18

projection . 15

proper . 84

proper prefix . 18

proper subtree . 20

pumping dependence relation 156

query predicate . 56

quotient semigroup . 35

quotient set . 13

range . 12

rank . 17

ranked alphabet . 17

recognizable

tree language. 122

tree series over m-monoid 170

tree series over strong bimonoid . . 144

reflexive . 13

relabeling . 172

related

m-monoids . 49

mwmd . 89

wmta . 173

relation . 12

represents . 169

restricted . 83 f.

restriction . 12

root . 19

rule instances . 58

rules. .56

run semantics . 170

semantically equivalent 138

semantics. .181

semiconnected . 111

semigroup . 35

semigroup congruence 35

semiring . 136

sentence

m-expression . 180

MSO-logic. .123

shape preserving. .172

signature . 17

size . 19

states . 122

strict order . 13

strict part . 13

string. .18

strong bimonoid . 135

strongly absorptive 177

strongly related. .89

structural atom instances 58

structural atoms . 56

structural predicates 56

substitution . 20

212 Index

subtree . 20

successful run

fta . 122

wmta . 169

wta . 143

sum . 36

support. .36

supportive

operation . 37

run. .169

supremum

ω-chain. .44

set . 44

surjective . 14

symmetric . 13

tentacles. .23

term algebra. .19

top concatenation . 19

top decomposition . 26

total . 171

total order. .13

totally ordered . 13

transitive . 13

transitive closure . 13

transitive reflexive closure 13

tree language . 18

local . 172

tree language defined 172

tree series . 36

tree series defined by 138

tree series fixpoint-defined

finitary . 68

infinitary . 72

tree series hypergraph-defined

finitary . 76

infinitary . 79

tree series recognized

wmta . 170

wta . 144

tree substitution . 21

tree transformation 155

finite . 155

tree transformation defined 172

trees. .18

tropical bimonoid. .136

tropical semiring . 136

tuple . 15

ultimately constant . 44

unary . 15

upper bound . 44

user-defined atom instances 58

user-defined atoms. .56

user-defined predicates.56

valid

tree encoding. .180

variable assignment.58

variable assignment . 58

variable connection relation 83

variables. .56

variables occurring . 56

vertices

directed graph. 12

hypergraph . 22

weakly non-circular . 62

weighted monadic datalog program . . . 138

weighted tree automaton 143

well-founded . 14

wmd . 138

wmta. .168

wmta mwmd . 168

wta . 143

zero-sum free . 36

	Introduction
	Preliminaries
	Notation
	Sets and Relations
	Mappings and Operations
	Signatures and Algebras
	Strings and Trees
	Hypergraphs

	M-monoids
	Semigroups and monoids
	General m-monoids
	M-monoids with infinite behavior
	Complete m-monoids
	Continuous m-monoids
	Relationships

	Conclusion and open problems

	M-weighted monadic datalog programs
	Syntax
	Semantics
	Instantiations
	Fixpoint semantics
	Hypergraph semantics
	Comparison of fixpoint and hypergraph semantics

	Normal forms
	Syntactic Subclasses
	Relatedness
	Motivation
	Formal definition
	Weak relatedness
	Strong relatedness

	Proper
	Connected
	Local

	Deciding circularity
	Recognizable tree languages
	Defining circularity

	Weighted monadic datalog
	Strong bimonoids and semirings
	Weighted monadic datalog programs
	Expressiveness of wmd
	Comparison of finitary with infinitary semantics
	Comparison with monadic datalog
	Comparison with recognizable tree series

	Combined Complexity
	Open problems

	Monadic datalog tree transducers
	Free m-monoids
	Mwmd over free m-monoids
	Normal forms
	Semiconnected
	Attributed Tree Transducers

	Open problems

	Weighted multioperator tree automata
	Syntax and semantics of weighted multioperator tree automata
	Decomposition and composition
	Tree transformations
	Decomposition
	Composition

	M-definable tree series
	A Büchi-like theorem
	From automata to m-expressions
	From m-expressions to automata

	Further results

	Additional proofs
	Proper classes in formal language theory
	Counterexample for (R1) and (R2)
	Proof of Lemma 4.31

	Bibliography
	List of Symbols
	Index

