1,077 research outputs found

    Offshore marine visualization

    Get PDF
    In 85 B.C. a Greek philosopher called Posidonius set sail to answer an age-old question: how deep is the ocean? By lowering a large rock tied to a very long length of rope he determined that the ocean was 2km deep. These line and sinker methods were used until the 1920s when oceanographers developed the first echo sounders that could measure the water's depth by reflecting sound waves off the seafloor. The subsequent increase in sonar depth soundings resulted in oceanologists finally being able to view the alien underwater landscape. Paper printouts and records dominated the industry for decades until the mid 1980s when new digital sonar systems enabled computers to process and render the captured data streams.In the last five years, the offshore industry has been particularly slow to take advantage of the significant advancements made in computer and graphics technologies. Contemporary marine visualization systems still use outdated 2D representations of vessels positioned on digital charts and the potential for using 3D computer graphics for interacting with multidimensional marine data has not been fully investigated.This thesis is concerned with the issues surrounding the visualization of offshore activities and data using interactive 3D computer graphics. It describes the development of a novel 3D marine visualization system and subsequent study of marine visualization techniques through a number of offshore case studies that typify the marine industry. The results of this research demonstrate that presenting the offshore engineer or office based manager with a more intuitive and natural 3D computer generated viewing environment enables complex offshore tasks, activities and procedures to be more readily monitored and understood. The marine visualizations presented in this thesis take advantage of recent advancements in computer graphics technology and our extraordinary ability to interpret 3D data. These visual enhancements have improved offshore staffs' spatial and temporal understanding of marine data resulting in improved planning, decision making and real-time situation awareness of complex offshore data and activities

    Context-Enabled Visualization Strategies for Automation Enabled Human-in-the-loop Inspection Systems to Enhance the Situation Awareness of Windstorm Risk Engineers

    Get PDF
    Insurance loss prevention survey, specifically windstorm risk inspection survey is the process of investigating potential damages associated with a building or structure in the event of an extreme weather condition such as a hurricane or tornado. Traditionally, the risk inspection process is highly subjective and depends on the skills of the engineer performing it. This dissertation investigates the sensemaking process of risk engineers while performing risk inspection with special focus on various factors influencing it. This research then investigates how context-based visualizations strategies enhance the situation awareness and performance of windstorm risk engineers. An initial study investigated the sensemaking process and situation awareness requirements of the windstorm risk engineers. The data frame theory of sensemaking was used as the framework to carry out this study. Ten windstorm risk engineers were interviewed, and the data collected were analyzed following an inductive thematic approach. The themes emerged from the data explained the sensemaking process of risk engineers, the process of making sense of contradicting information, importance of their experience level, internal and external biases influencing the inspection process, difficulty developing mental models, and potential technology interventions. More recently human in the loop systems such as drones have been used to improve the efficiency of windstorm risk inspection. This study provides recommendations to guide the design of such systems to support the sensemaking process and situation awareness of windstorm visual risk inspection. The second study investigated the effect of context-based visualization strategies to enhance the situation awareness of the windstorm risk engineers. More specifically, the study investigated how different types of information contribute towards the three levels of situation awareness. Following a between subjects study design 65 civil/construction engineering students completed this study. A checklist based and predictive display based decision aids were tested and found to be effective in supporting the situation awareness requirements as well as performance of windstorm risk engineers. However, the predictive display only helped with certain tasks like understanding the interaction among different components on the rooftop. For remaining tasks, checklist alone was sufficient. Moreover, the decision aids did not place any additional cognitive demand on the participants. This study helped us understand the advantages and disadvantages of the decision aids tested. The final study evaluated the transfer of training effect of the checklist and predictive display based decision aids. After one week of the previous study, participants completed a follow-up study without any decision aids. The performance and situation awareness of participants in the checklist and predictive display group did not change significantly from first trial to second trial. However, the performance and situation awareness of participants in the control condition improved significantly in the second trial. They attributed this to their exposure to SAGAT questionnaire in the first study. They knew what issues to look for and what tasks need to be completed in the simulation. The confounding effect of SAGAT questionnaires needs to be studied in future research efforts

    From Radio to In-Pipe Acoustic Communication for Smart Water Networks in Urban Environments: Design Challenges and Future Trends

    Get PDF
    The smart management of water resources is an increasingly important topic in today’s society. In this context, the paradigm of Smart Water Grids (SWGs) aims at a constant monitoring through a network of smart nodes deployed over the water distribution infrastructure. This facilitates a continuous assessment of water quality and the state of health of the pipeline infrastructure, enabling early detection of leaks and water contamination. Acoustic-wave-based technology has arisen as a viable communication technique among the nodes of the network. Such technology can be suitable for replacing traditional wireless networks in SWGs, as the acoustic channel is intrinsically embedded in the water supply network. However, the fluid-filled pipe is one of the most challenging media for data communication. Existing works proposing in-pipe acoustic communication systems are romising, but a comparison between the different implementations and their performance has not yet been reported. This paper reviews existing works dealing with acoustic-based ommunication networks in real large-scale urban water supply networks. For this purpose, an overview of the characteristics, trends and design challenges of existing works is provided in he present work as a guideline for future research

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    PHOTOGRAMMETRIC SURVEY OF NARROW SPACES IN CULTURAL HERITAGE: COMPARISON OF TWO MULTI-CAMERA APPROACHES

    Get PDF
    Multi-camera devices are increasingly popular in various metrological applications, including cultural heritage digitalisation, where these devices are adopted as low-cost alternatives to more traditional methods or mobile mapping systems. They can be of two types: panoramic and non-panoramic configurations, with the former usually more compact and ready-made off-The-shelves and the latter usually custom-developed for metrological applications. In the paper, we compare the accuracy and reliability performance of two types of multi-camera: The spherical camera INSTA 360 Pro2 and the custom multi-camera rig Ant3D. The case study is a challenging spiral staircase environment, typical in many cultural heritage survey projects. The processed image datasets were evaluated in the most common constrain scenario (GCPs at both ends of the staircase) and the worst-case scenario (open-ended path, GCPs at the start). The datasets were processed with precalibrated IO and various degrees of multi-camera constraints up to precalibrated relative orientations. The results highlight that the nominal scale 1:50 can be achieved, e.g. an accuracy of <2 cm plus complete and precise point clouds and mesh results

    OIL SPILL MODELING FOR IMPROVED RESPONSE TO ARCTIC MARITIME SPILLS: THE PATH FORWARD

    Get PDF
    Maritime shipping and natural resource development in the Arctic are projected to increase as sea ice coverage decreases, resulting in a greater probability of more and larger oil spills. The increasing risk of Arctic spills emphasizes the need to identify the state-of-the-art oil trajectory and sea ice models and the potential for their integration. The Oil Spill Modeling for Improved Response to Arctic Maritime Spills: The Path Forward (AMSM) project, funded by the Arctic Domain Awareness Center (ADAC), provides a structured approach to gather expert advice to address U.S. Coast Guard (USCG) Federal On-Scene Coordinator (FOSC) core needs for decision-making. The National Oceanic & Atmospheric Administration (NOAA) Office of Response & Restoration (OR&R) provides scientific support to the USCG FOSC during oil spill response. As part of this scientific support, NOAA OR&R supplies decision support models that predict the fate (including chemical and physical weathering) and transport of spilled oil. Oil spill modeling in the Arctic faces many unique challenges including limited availability of environmental data (e.g., currents, wind, ice characteristics) at fine spatial and temporal resolution to feed models. Despite these challenges, OR&R’s modeling products must provide adequate spill trajectory predictions, so that response efforts minimize economic, cultural and environmental impacts, including those to species, habitats and food supplies. The AMSM project addressed the unique needs and challenges associated with Arctic spill response by: (1) identifying state-of-the-art oil spill and sea ice models, (2) recommending new components and algorithms for oil and ice interactions, (3) proposing methods for improving communication of model output uncertainty, and (4) developing methods for coordinating oil and ice modeling efforts

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Coastal Geohazard and Offshore Geotechnics

    Get PDF
    With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering
    • …
    corecore