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ABSTRACT 

Insurance loss prevention survey, specifically windstorm risk inspection survey is 

the process of investigating potential damages associated with a building or structure in the 

event of an extreme weather condition such as a hurricane or tornado. Traditionally, the 

risk inspection process is highly subjective and depends on the skills of the engineer 

performing it. This dissertation investigates the sensemaking process of risk engineers 

while performing risk inspection with special focus on various factors influencing it. This 

research then investigates how context-based visualizations strategies enhance the situation 

awareness and performance of windstorm risk engineers. 

An initial study investigated the sensemaking process and situation awareness 

requirements of the windstorm risk engineers. The data frame theory of sensemaking was 

used as the framework to carry out this study. Ten windstorm risk engineers were 

interviewed, and the data collected were analyzed following an inductive thematic 

approach. The themes emerged from the data explained the sensemaking process of risk 

engineers, the process of making sense of contradicting information, importance of their 

experience level, internal and external biases influencing the inspection process, difficulty 

developing mental models, and potential technology interventions. More recently human 

in the loop systems such as drones have been used to improve the efficiency of windstorm 

risk inspection. This study provides recommendations to guide the design of such systems 

to support the sensemaking process and situation awareness of windstorm visual risk 

inspection. 
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The second study investigated the effect of context-based visualization strategies 

to enhance the situation awareness of the windstorm risk engineers. More specifically, the 

study investigated how different types of information contribute towards the three levels 

of situation awareness. Following a between subjects study design 65 civil/construction 

engineering students completed this study. A checklist based and predictive display based 

decision aids were tested and found to be effective in supporting the situation awareness 

requirements as well as performance of windstorm risk engineers. However, the predictive 

display only helped with certain tasks like understanding the interaction among different 

components on the rooftop. For remaining tasks, checklist alone was sufficient. Moreover, 

the decision aids did not place any additional cognitive demand on the participants. This 

study helped us understand the advantages and disadvantages of the decision aids tested.  

The final study evaluated the transfer of training effect of the checklist and 

predictive display based decision aids. After one week of the previous study, participants 

completed a follow-up study without any decision aids. The performance and situation 

awareness of participants in the checklist and predictive display group did not change 

significantly from first trial to second trial. However, the performance and situation 

awareness of participants in the control condition improved significantly in the second trial. 

They attributed this to their exposure to SAGAT questionnaire in the first study. They knew 

what issues to look for and what tasks need to be completed in the simulation. The 

confounding effect of SAGAT questionnaires needs to be studied in future research efforts. 
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CHAPTER ONE 

INTRODUCTION 

Infrastructure inspection is the evaluation of the physical and functional conditions 

of civil infrastructure systems such as buildings, highways, bridges and sewer/water 

pipelines (Fenves, 1984). This is primarily a visual inspection process involving inspection 

personnel or team going to the inspection site to assess the condition of civil infrastructure. 

The objective of this process is the detection of any visual changes, such as leakages, cracks 

and corrosion, in these structures over the course of time (Stent, Gherardi, Stenger, Soga, 

& Cipolla, 2016). Civil infrastructure systems such as buildings, highways, bridges and 

tunnels need to be inspected routinely to prevent its failure. Condition assessment as well 

as the prediction of future state of the infrastructure must be implemented into the 

infrastructure maintenance plan (Ariaratnam, El-Assaly, & Yang, 2001). Traditional 

infrastructure inspection process involves inspectors physically going to the site, which can 

be time consuming and expensive (Lattanzi David & Miller Gregory, 2017). In addition, 

traditional risk inspection involves collecting primarily qualitative information, rendering 

it highly subjective. Without relevant quantitative information collected by the inspectors, 

the qualitative data provide only limited information and may be seen as irrelevant 

(Ellenberg, Kontsos, Moon, & Bartoli, 2016; Khan et al., 2015).  

To improve the effectiveness of infrastructure, various advanced technologies have 

been widely adopted (Zucchi, 2015.). The advantages of such systems include its ability to 

host a variety of intelligent sensing systems, real-time data analysis capability and its 

ability to collect data remotely with minimum task disruption and risk (Almadhoun, Taha, 

https://paperpile.com/c/ZXGwnX/5pjSD
https://paperpile.com/c/ZXGwnX/5pjSD
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/rhKZ8
https://paperpile.com/c/ZXGwnX/rhKZ8
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/PPPdM
https://paperpile.com/c/ZXGwnX/PPPdM
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4+cCcFP
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4+cCcFP
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4+cCcFP
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& Seneviratne, 2016; Gucunski et al., 2015; Lattanzi David & Miller Gregory, 2017). A 

variety of sensing systems including lidar, sonar, RGB camera and radar have been used 

to collect both qualitative as well as qualitative data (Agrawal et al., 2008; Ékes, 2016; 

Ékes Csaba, Neducza Boriszlav, & Henrich Gordon R., 2011; Eschmann, Kuo, Kuo, & 

Boller, 2012). Computer vision techniques and algorithms such as target detection and edge 

detection algorithms are used on the data collected by these techniques to facilitate 

inspector’s decision making by improving the accuracy of the inspection process (Chae  & 

Abraham, 2001; Ellenberg et al., 2016; Torok, Golparvar-Fard, & Kochersberger, 2013). 

In addition, navigation and path planning algorithms reduce the risk to the engineers by 

minimizing their exposure to adverse site conditions (Gucunski et al., 2015; Lim, La, & 

Sheng, 2014).    

PROBLEM STATEMENT 

As technology advances, users have access to copious amount of information. 

However, managing and making sense of this information can be a challenging task 

(Riveiro, Falkman, & Ziemke, 2008). Although these technologies facilitate decision 

making, manual inspection is still the fundamental step in assessing civil infrastructure 

(Zhu, 2011).  Further, the performance of the operator depends on various factors such as 

degradation of situation awareness (SA), automation complacency and vigilance 

decrement (Endsley, 1999; Endsley & Kiris, 1995). Automation complacency often leads 

to out-of-the-loop performance problems (Endsley & Kiris, 1995). Although these issues 

have been investigated in detail in visual inspection in other domains such as aircraft 

maintenance and manufacturing, there have been only limited research focusing on the 

https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4+cCcFP
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4+cCcFP
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/nbIbU+9gQiK+T8t8y
https://paperpile.com/c/ZXGwnX/nbIbU+9gQiK+T8t8y
https://paperpile.com/c/ZXGwnX/nbIbU+9gQiK+T8t8y
https://paperpile.com/c/ZXGwnX/nbIbU+9gQiK+T8t8y
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/xRvCq
https://paperpile.com/c/ZXGwnX/xRvCq
https://paperpile.com/c/ZXGwnX/xSZil
https://paperpile.com/c/ZXGwnX/xSZil
https://paperpile.com/c/ZXGwnX/Lqtdb+Gtv7K
https://paperpile.com/c/ZXGwnX/Lqtdb+Gtv7K
https://paperpile.com/c/ZXGwnX/Gtv7K
https://paperpile.com/c/ZXGwnX/Gtv7K
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importance of these issues in the domain of civil infrastructure inspection. Since the skill 

sets of individuals performing civil infrastructure inspection is quite different from the 

personnel in the other domains, there is a need to conduct more research focusing on the 

needs of people performing civil infrastructure inspection. Further, SA has been primarily 

investigated in the context of dynamic environment where the situation changes rapidly. 

Though infrastructure inspection process doesn’t involve any dynamic scenarios, SA is 

equally important in this context as well. So, this SA requirement also demands special 

attention from human factors researchers.  

This lack of research in this domain prompted us to look for studies in the domain 

of aircraft inspection and maintenance. One of the seminal papers about the SA 

requirements in the context of aircraft maintenance explains how three different levels of 

SA manifest during aircraft inspection and maintenance task (Endsley & Robertson, 2000). 

Level 1 SA in this scenario includes the detection of various defects such as metal fatigue, 

fluid leaks and wear. Level 2 SA is the inspector’s comprehension of these defects or 

elements they observed in the first level. Level 2 SA is a diagnostic step involving the 

inspector detecting the reasons for these issues. While attaining Level 2 SA from Level 1 

SA, the data gathered are processed and synthesized. According to (Endsley, 2015), this 

process is sensemaking, or making sense of the information available, which is a deliberate 

process in this context. Finally, Level 3 SA involves the projection of these issues on the 

performance of aircraft in the future (Endsley & Robertson, 2000). As Endsley and 

Robertson (2000) explained, the concept of SA is generally applied in dynamic systems. 

https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/b8O2x
https://paperpile.com/c/ZXGwnX/b8O2x
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
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However, inspection of complex systems such as aircrafts and civil infrastructure can also 

be challenging.  

Similar to aircraft maintenance scenario, civil infrastructure inspection also 

involves the prediction of the performance of the system in the future or in the event of 

extreme weather condition. This requires the inspection engineer to attain the highest level 

(Level 3) of SA. Endsley and Robertson (2000) explains how reaching Level 3 SA can be 

challenging for aircraft maintenance personnel as they don’t receive any feedback on the 

effects of their action. This is true in the context of infrastructure inspection as well. The 

inspection personnel will hardly receive feedback on the accuracy of their prediction. This 

inherent nature of such inspections makes the process of achieving Level 3 SA a 

challenging task.  

This skill to project the state of the infrastructure to future is especially important 

in insurance risk inspection, which is a specific type of infrastructure inspection. Insurance 

risk inspection, also termed as loss prevention surveys are carried out to ensure the safety 

and stability of the structure by reducing the severity of losses (Schlesinger & Venezian, 

1986). Insurance companies provide different types of loss-prevention services such as fire 

protection, windstorm and earthquake surveys for infrastructure insurance based on the 

type of insurance policy. Windstorm inspection is a type of visual risk assessment survey 

performed to investigate and identify the risk factors that might result in severe damages 

in the event of extreme weather conditions such as hurricanes or tornados (“What is the 

Windstorm Inspection Program?,” 1999). Like general infrastructure inspection, 

windstorm loss prevention surveys also involve a risk engineers going to the site to assess 

https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/zn9hl
https://paperpile.com/c/ZXGwnX/gsTJM
https://paperpile.com/c/ZXGwnX/gsTJM
https://paperpile.com/c/ZXGwnX/gsTJM
https://paperpile.com/c/ZXGwnX/gsTJM
https://paperpile.com/c/ZXGwnX/88WwT
https://paperpile.com/c/ZXGwnX/88WwT
https://paperpile.com/c/ZXGwnX/88WwT
https://paperpile.com/c/ZXGwnX/88WwT
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various risk factors associated with that particular infrastructure. Predicting the future state 

of the infrastructure is a crucial step in loss prevention survey, because the only time they 

can check the accuracy of their report is when they do a post-catastrophic loss investigation 

process. Past research have shown that predicting and forecasting into future can be a 

challenging task even for experts.  People are often overconfident in their own predictions 

(Pugh, Wickens, Herdener, Clegg, & Smith, 2018). This uncertainty is in future prediction 

is a result of lack of knowledge on the chance of events to occur, which in turn makes it 

probabilistic (Lipshitz & Strauss, 1997; Pugh et al., 2018). Even with the application of 

automation enabled technologies and intelligent sensors, this gap may not be bridged as 

the engineers are still required to make sense of the information gathered by such intelligent 

systems.  

Purpose of the Study 

One potential way to improve the Level 3 SA of risk engineers is by developing 

visualization strategies and decision aids facilitating their decision making. As Riveiro et 

al. (2008) explained, fusing information from multiple sources to understand the interaction 

among various elements and presenting it in an interactive way would support the situation 

awareness of the users. Such visualization strategies aiding risk engineers to predict the 

future state of the infrastructure system need to be developed. However, to develop such 

systems, there is a need to understand the sensemaking process and specific needs of risk 

engineers. The primary objective of this dissertation project is to investigate the 

effectiveness of various visualization strategies to improve the SA of infrastructure 

inspectors, specifically windstorm risk engineers.  

https://paperpile.com/c/ZXGwnX/zwfUw
https://paperpile.com/c/ZXGwnX/zwfUw
https://paperpile.com/c/ZXGwnX/3ItFG+zwfUw
https://paperpile.com/c/ZXGwnX/3ItFG+zwfUw
https://paperpile.com/c/ZXGwnX/xRvCq
https://paperpile.com/c/ZXGwnX/xRvCq
https://paperpile.com/c/ZXGwnX/xRvCq
https://paperpile.com/c/ZXGwnX/xRvCq
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THEORETICAL FRAMEWORK 

This study is based on the SA theory proposed by Endsley, (1995b). According to 

this theory SA is a construct achieved through situation assessment. It involves three levels: 

Level 1 involves perceiving elements/cues in the environment. Level 2 involves 

comprehending these elements and Level 3 involves projecting the status of the elements 

to the future. This concept is studied in detail in other domains such as aviation and aircraft 

maintenance. We try to draw parallels with these domains to understand the SA 

requirements of infrastructure inspection engineers. As the first step, we used the 

data/frame theory of sensemaking proposed by Klein, Phillips, Rall, & Peluso (2007) to 

understand how infrastructure inspectors make sense of the information available in the 

environment. Data/frame theory of sensemaking suggests that this process is a closed-loop 

transition between mental model formation and mental simulation. The sensemaking 

process begins with seeking information to find an anchor to establish a useful frame (a 

structure accounting for the data). This frame/hypothesis/mental model provides shape to 

the data. Then more data will be collected to elaborate the frame. The frame will then either 

be questioned or updated based on the data collected. If the new information contradicts 

the existing frame, the frame will be questioned and if it is consistent with the existing 

frame, the frame will be elaborated. If the inspector is satisfied with the current frame, that 

frame will be preserved. One of the results of questioning an existing frame is reframing. 

While going through reframing process, up to three frames may be tracked (Gary Klein et 

al., 2007). Alternative frames are considered to identify a frame that best fits the data.  

 

https://paperpile.com/c/ZXGwnX/TiAMZ
https://paperpile.com/c/ZXGwnX/TiAMZ
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
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RESEARCH OBJECTIVES 

The primary objectives of this dissertation project is to investigate the effectiveness 

of various visualization strategies to improve the SA of infrastructure inspectors, 

specifically windstorm risk engineers. More specifically, this dissertation explores the 

following research problems:  

1. Understanding and characterizing various automation enabled infrastructure 

inspection techniques focusing in the human factors considerations of using such 

techniques. 

a. To understand the state of the art of automation assisted infrastructure 

inspection systems 

b. To explore the limitations of automation assisted infrastructure inspection 

systems 

c. To understand the extent of integration of human factors principles in the 

design and integration of automation assisted infrastructure inspection 

2. Investigating the sensemaking process of  risk engineers while performing risk 

inspection using the data/frame theory of sensemaking, proposed by (Gary Klein et 

al., 2007), through a qualitative research approach. 

a. To understand the needs of windstorm risk engineers 

b. To investigate potential strategies to improve the SA of risk engineers 

3. Investigating the effectiveness of various visualization aids to improve the SA of 

infrastructure inspectors, more specifically risk engineers.  

https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
https://paperpile.com/c/ZXGwnX/rXKE7
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4. Investigating the transfer or training effect of the visualization aids used to improve 

the SA of risk engineers.  

Research Questions 

The overall research questions are listed below: 

1. What is the status of the research in the domain of automation assisted infrastructure 

inspection process? 

2. What process do windstorm risk engineers employ to make sense of the information 

available to them? 

3. What is the extent to which the theory of SA (Endsley, 1995) is applicable in the 

domain of infrastructure risk inspection? 

DISSERTATION ORGANIZATION 

This dissertation is organized as follows: Chapter 2 details the results of the 

systematic review of literature on automation enabled infrastructure inspection systems. 

Chapter 3 discusses the results of the qualitative research to understand the sensemaking 

process of risk engineers within the framework of data/frame theory of sensemaking. 

Chapter 4 explores the effectiveness of these context-based visual decision aids. Chapter 5 

explores the transfer of training effect of these decision aids. Chapter 6 summarizes the 

findings and discusses future research directions. 

 

 

https://paperpile.com/c/ZXGwnX/TiAMZ
https://paperpile.com/c/ZXGwnX/TiAMZ


 9 

 CHAPTER TWO 

A SURVEY OF AUTOMATION-ENABLED HUMAN-IN-THE-LOOP SYSTEMS 

FOR INFRASTRUCTURE VISUAL INSPECTION 

INTRODUCTION 

Infrastructure inspection is the evaluation of the physical and functional conditions 

of civil infrastructure systems such as buildings, highways, bridges and sewer/water 

pipelines (Fenves, 1984). This process, which is primarily vision-based, involves detection 

of any visual changes, such as leakages, cracks and corrosion, in these structures over the 

course of time (Stent et al., 2016). A trained inspector visits the site and assesses their 

condition by looking over the structure and recording the qualitative aspects of the 

infrastructure (Kuo et al., 2016). Infrastructure systems such as road networks, bridges, 

tunnels, pipelines and dams require inspection on a regular basis (Lattanzi David & Miller 

Gregory, 2017) to detect defects prior to their development into failures. The current 

inspection processes are often time-consuming, requiring the interruption of the regular 

functioning of the infrastructure system. As a result, the standard procedures used are 

limited in terms of the time and access requirements. These issues, especially the latter, 

result in delays in the inspection process, leading to longer gaps between inspections 

(Henrickson, Rogers, Lu, Valasek, & Shi, 2016). In addition, the conventional inspection 

processes are expensive. More importantly, these inspections require a team of experienced 

professionals operating complex systems possibly risking their lives under hazardous 

working conditions (Ellenberg et al., 2016; Henrickson et al., 2016; Lattanzi David & 

Miller Gregory, 2017). For example, highway or bridge infrastructure inspection requires 

https://paperpile.com/c/ZXGwnX/5pjSD
https://paperpile.com/c/ZXGwnX/5pjSD
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/It48p
https://paperpile.com/c/ZXGwnX/gikXo
https://paperpile.com/c/ZXGwnX/gikXo
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/B6fqS
https://paperpile.com/c/ZXGwnX/B6fqS
https://paperpile.com/c/ZXGwnX/nbIbU+B6fqS+cCcFP
https://paperpile.com/c/ZXGwnX/nbIbU+B6fqS+cCcFP
https://paperpile.com/c/ZXGwnX/nbIbU+B6fqS+cCcFP
https://paperpile.com/c/ZXGwnX/nbIbU+B6fqS+cCcFP
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lane closures and direct exposure of inspectors to highway traffic (Lattanzi David & Miller 

Gregory, 2017). In addition, the inspection process is often subjective with the accuracy of 

the findings depending on the inspector’s skills and experience. Without relevant 

quantitative information collected by the inspectors, the qualitative data provide only 

limited information and may be seen as irrelevant (Ellenberg et al., 2016; Khan et al., 

2015). These challenges highlight the inefficiency and the cost of the current conventional 

inspection methods. 

Conventional infrastructure inspection is conducted by a skilled inspector who 

physically goes to the site and performs the inspection task (Lattanzi David & Miller 

Gregory, 2017). With the advancement of computing and information technology, the 

application of such automated technologies as unmanned aerial vehicles has increased over 

the past few years (Zucchi, 2015.), with these systems being widely used today for 

infrastructure inspection to complete the task with minimum disruption and risk at reduced 

cost (Lattanzi & Miller, 2017). Unlike human inspectors, such technologies are consistent 

(Newman & Jain, 1995), and Unmanned Aerial Vehicles (UAVs) such as drones and 

helicopters can extend the capabilities of human operators, augmenting their accessibility 

to structures. In addition, because these systems could be equipped with laser technologies, 

Global Positioning System (GPS) systems, cameras, and thermal imaging techniques for 

navigation and data collection (Gucunski et al., 2015), they are capable of collecting both 

quantitative data such as dimensions, moisture content and material properties and 

qualitative information such as the physical appearance and general condition (Agrawal et 

al., 2008; Ékes, 2016; Ékes Csaba et al., 2011; Eschmann et al., 2012). This ability to 

https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/nbIbU+AWibq
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/PPPdM
https://paperpile.com/c/ZXGwnX/PPPdM
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/kvX10
https://paperpile.com/c/ZXGwnX/kvX10
https://paperpile.com/c/ZXGwnX/rdXd4
https://paperpile.com/c/ZXGwnX/rdXd4
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
https://paperpile.com/c/ZXGwnX/b6OuD+o7v3p+6Vg0U+3VmoG
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collect quantitative as well as qualitative information facilitates informed decision making 

pertaining to infrastructure management (Lattanzi & Miller, 2017). 

One of the most promising features of these automaton-assisted inspection systems 

is their intelligent sensing capability using non-destructive technologies. The use of such 

sensors improves the quality of the data collected as well as provides real-time data analysis 

capabilities (Almadhoun et al., 2016; Gucunski et al., 2015). Moreover, algorithms have 

been developed to improve the efficiency of the inspection process by making the system 

autonomous, thereby reducing human involvement. For example, target detection 

algorithms can detect damages such as cracks, rust or spalling from the imagery collected 

using high resolution cameras integrated in the inspection system, thereby improving the 

efficiency and accuracy of the inspection process by reducing the subjectivity of human 

inspectors (Chae & Abraham., 2001; Ellenberg et al., 2016; Torok et al., 2013). In addition, 

autonomous operation of robotic systems facilitated by a path planning algorithm reduces 

the risk to the inspector (Gucunski et al., 2015; Lim et al., 2014) and minimizes the time 

required to complete the inspection process (Lattanzi & Miller, 2017). 

Data collection using automated systems reduces the risk to the inspectors by 

eliminating the need for them to go physically to a dangerous inspection environment. For 

example, implementation of remotely operated autonomous systems for bridge inspection 

reduces the exposure of inspectors to traffic (Gucunski et al., 2015). Commercially 

available UAVs used for such infrastructure inspection are inexpensive and can be 

equipped with other inexpensive hardware units for sensing, data processing and 

navigation (Máthé & Buşoniu, 2015). These systems, which are primarily used for vision-

https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4
https://paperpile.com/c/ZXGwnX/Bn46U+rdXd4
https://paperpile.com/c/ZXGwnX/9gQiK+nbIbU+T8t8y
https://paperpile.com/c/ZXGwnX/9gQiK+nbIbU+T8t8y
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/rdXd4+3DfNH
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/rdXd4
https://paperpile.com/c/ZXGwnX/rdXd4
https://paperpile.com/c/ZXGwnX/ryX6V
https://paperpile.com/c/ZXGwnX/ryX6V


 12 

based inspection, eliminate the need for disrupting the normal operation of the 

infrastructure system (Khan et al., 2015). Though the advantages of unmanned aerial 

systems are promising, these systems are significantly affected by disturbances in the 

external environment (Lattanzi & Miller, 2017). Moreover, the inspector has to be skilled 

at controlling these complex robotic systems. Though automation assisted technologies can 

assist inspectors while performing inspection and maintenance tasks, such tasks are not 

100% automated yet. None of the articles reviewed in this paper investigated the use of a 

fully automated system. 

Operator performance in an automation enabled system is mediated by vigilance 

decrements, complacency and loss of situation awareness (SA), which have been discussed 

at length in the literature (Endsley, 1999; Endsley & Kiris, 1995). In addition, studies 

suggest that the SA of the operators may be degraded because the automation will 

accomplish some of the tasks with minimal operator intervention (Cummings, 2004). SA 

is the perception of the elements/cues in the environment (level 1), comprehension of the 

current situation of the elements (level 2) and the projection of the status of the elements 

and environment in the future (level 3) (Endsley, 1995b). Any of these levels of SA can be 

affected by automated systems that keep humans out-of-the-loop. Going out-of-the loop is 

a known consequence of automation as explained in the earlier studies on human-

automation interaction (Endsley & Kiris, 1995). Out of the loop performance problems are 

characterized by a decreased ability of the human operator to intervene in system control 

loops and assume manual control when needed in overseeing automated systems. First, 

human operators acting as monitors have problems in detecting system errors and 

https://paperpile.com/c/ZXGwnX/AWibq
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/cCcFP
https://paperpile.com/c/ZXGwnX/Lqtdb+Gtv7K
https://paperpile.com/c/ZXGwnX/Lqtdb+Gtv7K
https://paperpile.com/c/ZXGwnX/svvp7
https://paperpile.com/c/ZXGwnX/svvp7
https://paperpile.com/c/ZXGwnX/TiAMZ
https://paperpile.com/c/ZXGwnX/TiAMZ
https://paperpile.com/c/ZXGwnX/Gtv7K
https://paperpile.com/c/ZXGwnX/Gtv7K
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performing tasks manually in the event of automation failures. Hence, it is important to 

keep the operator in the loop to avoid potential automation failure. In addition, making 

sense of the data generated by such technologies can be challenging. In order to further the 

research pertaining to the application of automated technologies in infrastructure 

inspection, it is important to understand the state of the art and the limitations associated 

with such technologies. The diversity of the application domain and the number of research 

studies published investigating various visual inspection technologies render it difficult for 

researchers and practitioners to comprehend the advantages and disadvantages of such 

technologies. 

Accordingly, the systematic review reported here aims to investigate the 

application of automated systems for infrastructure assessment following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) format. To 

explore the recent developments in this domain, we reviewed peer-reviewed journal and 

conference articles published from 2000 to 2018. Our specific objectives were to 1) 

determine the primary application domains of automation-assisted visual inspection, 2) to 

identify the types of sensing technologies used for automated infrastructure inspection, 3) 

to classify the articles identified here based on the extent of the involvement of the machine 

in conducting the inspection tasks, 4) to determine the types of navigational and control 

technologies used, 5) to identify the types of algorithms used for navigational purposes and 

data processing and analyses, and finally 6) to identify the gap in the literature and propose 

future research directions. 

 



 14 

METHOD 

Inclusion and exclusion criteria 

This study included research articles involving automation enabled infrastructure 

visual inspection technologies, published in peer-reviewed publications and conference 

proceedings in English after 2000. Studies not involving visual inspection technologies 

were excluded. Furthermore, review papers, posters, extended abstracts or patented 

technologies were not included in this study.  

Search strategy and outcomes 

This research was exempted from approval by the Clemson University Institutional 

Review Board, because no active subjects participated. A broad search for articles in 

English published since 2000 was conducted using Web of Knowledge, ASCE Library, 

ACM Digital Library, and IEEE during the months of July and August 2017 and July 2018. 

A combination of keywords listed in Table 2.1, connected using Boolean operators 

(and/or), yielded 1048 articles. First, these articles were screened based on title and abstract 

for the following exclusion criteria: review papers, conference proceedings, letters, 

comments or extended abstracts, articles not exploring visual inspection and languages 

other than English, resulting in 865 being excluded. The 183 remaining articles were 

subsequently screened based on their full texts; 137 of these 183 articles were found not to 

satisfy the inclusion criteria and were, therefore, excluded. In addition, 15 articles cited by 

the articles selected were also screened, with 7 of them satisfying the inclusion criteria.  At 

the end of the screening process, a total of 53 articles were selected for this review. Figure 

2.1 shows the literature selection process. 
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Table 2.1. Keywords used 
Infrastructure 
Inspection 
Automation 
Sensors 
Insurance 

Risk 
Robots 
UAV 
Drone 

 

Data abstraction and synthesis 

Selected articles were reviewed thoroughly, and data were extracted to 

systematically synthesize the information pertinent to the scope of this review. The 

extracted details are categorized and summarized in Appendix A, with the Results Section 

providing more detailed information about the individual categories. Table 2.2 lists the 

journals and conference proceedings in which the articles reviewed were published. 
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Figure 2.1. Article selection process 
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Table 2.2. Journals and conference proceedings in which the selected articles were published  
Area Journal Conference 

Civil Engineering Journal of Computing in Civil 
Engineering (ASCE)  
Journal of Performance of Constructed 
Facilities (ASCE) 
Journal of Infrastructure Systems (ASCE) 
Journal of Performance of Constructed 
Facilities (ASCE) 
Journal of Survey Engineering (ASCE) 
Journal of Performance of Constructed 
Facilities (ASCE) 
Automation in Construction (Elsevier) 
Structural Control and Health Monitoring 
(Wiley Online Library) 
Structure and Infrastructure Engineering 
(Taylor & Francis) 

Pipelines Conference (ASCE), 
Structures Congress (ASCE), 
International Conference on 
Computing in Civil and Building 
Engineering (ASCE) 
Construction Research Congress 
(ASCE) 
International Conference on Rail 
Transportation (ASCE) 
European Workshop on Structural 
Health Monitoring 
Smart Structures and Material 
Systems + Nondestructive Evaluation 
and Health Monitoring (SPIE) 
Health Monitoring of Structural and 
Biological Systems (SPIE) 
 

Nuclear Engineering Nuclear Engineering and Design 
(Elsevier) 
Journal of Nuclear Science and 
Technology (Taylor & Francis Online) 

 

Electrical Engineering Journal of Field Robotics (Wiley Online 
Library) 

International Conference on 
Advanced Robotics (IEEE) 
International Conference on 
Unmanned Aircraft Systems (IEEE), 
International Conference on Field 
and Service Robotics (Springer)  

Petroleum Engineering  Saudi Arabia Section Annual 
Technical Symposium and Exhibition 
(Society of Petroleum Engineers) 

Remote Sensing and 
Computer Vision 

International Archives of the 
Photogrammetry, Remote Sensing and 
Spatial Information Sciences 
Remote Sensing (MDPI) 
Geoinformatica (Springer) 

Annals of the Photogrammetry, 
Remote Sensing and Spatial 
Information Sciences (ISPRS) 
The International Conference on 
Quality Control by Artificial Vision 
(SPIE) 
 

System/Mechanical/ 
Electronics/Industrial 
Engineering 

Transactions on Mechatronics 
(IEEE/ASME) 
Transactions on Automation Science and 
Engineering (IEEE) 
Smart Materials and Structures (IOP 
Science) 
Robotics and Computer–Integrated 
Manufacturing (Elsevier) 
IEEE Systems Journal (IEEE) 

International Mechanical Engineering 
Congress and Exposition (ASME) 
Systems Conference (IEEE) 
International Conference on 
Intelligent Robots and Systems 
(IEEE) 

Ocean Engineering Ocean Engineering (Elsevier) Oceans (IEEE) 
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RESULTS 

The primary themes identified from the data synthesis were the type of automation 

used, the levels of automation, the sensors/technologies used for data collection and 

navigation, the control mechanism and the algorithm used for data analysis as detailed in 

Appendix A. Of the 53 studies reviewed in this research, 26 were conducted in the United 

States; six in Canada; three each in Korea, and Spain; two each in Australia, China, 

Germany, Italy, and Japan; and one each in Brazil, France, Greece, Italy, Scotland, and the 

United Arab Emirates, with three studies involving collaboration of researchers from more 

than one country. 

Application domain 

The application of automation-assisted inspection can be seen in a wide variety of 

domains ranging from bridge inspection to ship hull and harbor inspection, with bridge 

inspection being the most frequently addressed domain (20 studies). Other applications 

include pipeline inspection (9 studies), road inspection (4 studies), building inspection (3 

studies), tunnel/culvert inspection (3 studies), power line/cable inspection (2 studies), 

nuclear power plant and reactor vessel (2 studies), dam inspection (2 studies), masonry 

wall inspection (1 studies), oil and gas refinery (1 study), harbor and ship inspection (1 

study), and underwater application (1 study). Two studies investigated the application of 

autonomous system for general infrastructure inspection (Romulo Gonçalves Lins, Givigi, 

Freitas, & Beaulieu, 2018; Rea & Ottaviano, 2018). 

More specifically, 20 of the 53 studies explored the possibility of automating bridge 

inspection (Chen, Rice, Boyle, & Hauser, 2011; Ellenberg, Branco, Krick, Bartoli, & 

https://paperpile.com/c/ZXGwnX/kamfD+JVkT5
https://paperpile.com/c/ZXGwnX/kamfD+JVkT5
https://paperpile.com/c/ZXGwnX/kamfD+JVkT5
https://paperpile.com/c/ZXGwnX/kamfD+JVkT5
https://paperpile.com/c/ZXGwnX/1FvPb+Pt4i2+QQLkQ+nbIbU+rdXd4+3R1yp+AWibq+rJbvL+UBZY8+3DfNH+0cyFJ+PeU1N+jCQPP+J5CGV+iPG0w+SVHI7+kg7f4+zo4rU+irKZW+osSLg
https://paperpile.com/c/ZXGwnX/1FvPb+Pt4i2+QQLkQ+nbIbU+rdXd4+3R1yp+AWibq+rJbvL+UBZY8+3DfNH+0cyFJ+PeU1N+jCQPP+J5CGV+iPG0w+SVHI7+kg7f4+zo4rU+irKZW+osSLg
https://paperpile.com/c/ZXGwnX/1FvPb+Pt4i2+QQLkQ+nbIbU+rdXd4+3R1yp+AWibq+rJbvL+UBZY8+3DfNH+0cyFJ+PeU1N+jCQPP+J5CGV+iPG0w+SVHI7+kg7f4+zo4rU+irKZW+osSLg
https://paperpile.com/c/ZXGwnX/1FvPb+Pt4i2+QQLkQ+nbIbU+rdXd4+3R1yp+AWibq+rJbvL+UBZY8+3DfNH+0cyFJ+PeU1N+jCQPP+J5CGV+iPG0w+SVHI7+kg7f4+zo4rU+irKZW+osSLg
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Kontsos, 2014; Ellenberg, Kontsos, & Moon, 2016; Ellenberg et al., 2016; Eschmann 

Christian & Wundsam Timo, 2017; Gucunski et al., 2015; Hackl, Adey, Woźniak, & 

Schümperlin, 2017; Harris, Brooks, & Ahlborn, 2016; Hiasa, Karaaslan, Shattenkirk, 

Mildner, & Catbas, 2018; Khaloo, Lattanzi, Cunningham, Dell’Andrea, & Riley, 2018; 

Khan et al., 2015; La et al., 2013a, 2013b; Lim et al., 2014; Lins & Givigi, 2016; Moselhi, 

Ahmed, & Bhowmick, 2017; Murphy et al., 2011; Son, Hwang, Kim, & Kim, 2014; Wang 

et al., 2017; Yoder & Scherer, 2016), and four articles investigated the application of 

automation assisted technologies for highway inspection (Fujita, Shimada, & Ichihara, 

2017; Villarino, Riveiro, Martínez-Sánchez, & Gonzalez-Aguilera, 2014; Wang & Birken, 

2015, Yeum, Choi, & Dyke, 2017). These statistics reflect the importance of the timely 

maintenance and repair of bridge structures and highways, for they are among the most 

critical infrastructures supporting our communities. Concrete bridge decks and asphalt road 

surfaces are constantly exposed to vehicular traffic resulting in rapid 

deterioration.  Inspection process can be optimized by minimizing the disruption to traffic 

flow with the help of automation-assisted techniques (Gucunski et al., 2015). In addition 

to highway and bridge inspection, pipeline inspection is another area that benefits from 

automated technologies (Agrawal et al., 2008; Chae & Abraham., 2001; Ékes, 2016; Ékes 

et al., 2011; Halfawy & Hengmeechai, 2014; Kwak et al., 2007; Moradi & Zayed, 2017; 

Painumgal, Thornton, Uray, & Nose, 2013) as traditional methods such as Closed-Circuit 

Television (CCTV)-based and manual inspection are not capable of producing accurate 

quantitative account of the pipe defects, especially the non-surface defects. Moreover, 

these methods are subjective and often result in inaccurate condition assessments due to 
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the operator skills and biases (Ékes, 2016; Kwak et al., 2007). However, technologies such 

as Laser Detection And Ranging (ladar), lidar, Sound Navigation And Ranging (sonar), 

Ground Penetrating Radar (GPR), infrared imagery, and gyroscopy, when used in 

combination with conventional technologies, produce a fairly accurate account of pipe 

dimensions and sediment depth (Ékes et al., 2011; Javadnejad, Simpson., Gillins, Claxton, 

& Olsen., 2017). Underground tunnels and power lines are also examples of networked 

infrastructures requiring regular maintenance. However, the complex buried environment 

makes their inspection and maintenance challenging, time-consuming, and expensive 

(Protopapadakis et al., 2016). To address some of these issues, laser sensors and scanners, 

and Red Green Blue (RGB) cameras have been used for tunnel inspection (Protopapadakis 

et al., 2016). Jiang, Sample, Wistort, & Mamishev (2005) explored using similar 

technologies in combination with lidar for the condition assessment of underground power 

lines, and Larrauri, Sorrosal, & González (2013) used UAVs equipped with video and an 

Infrared (IR) thermal camera to inspect overhead power lines. 

The application of automation-assisted condition assessment technologies is not 

limited to networked infrastructures. Researchers have also explored the possibility of 

using these advanced technologies to inspect dam structures and penstocks (Özaslan et al., 

2016; Ridao, Carreras, & Ribas, 2010), nuclear reactors (Cho et al., 2004; Dong, Chou, 

Fang, Yao, & Liu, 2016), and oil and gas refineries (Steele et al., 2014) as well as for crack 

detection in buildings and masonry walls (Eschmann et al., 2012; Lins & Givigi, 

2016).  More specifically, UAVs, Micro Aerial Vehicles (MAVs) and autonomous 

underwater vehicles equipped with sensors such as cameras, IR cameras, and pressure 
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sensors have been used for concrete crack detection and dam structure inspection; nuclear 

power reactors have been inspected using remotely operated vehicles to protect inspectors 

from possible radiation exposure (Dong et al., 2016), and  oil and gas refinery inspection 

robots have been equipped with methane gas sensors that detect possible gas leakage 

(Steele et al., 2014).  

Not only routine inspections but also post-disaster inspection procedures can be 

expedited with the use of automation. Manual inspection is time-consuming and often not 

safe under a post-catastrophic condition. Using remotely operated technologies such as 

tele-operated robots and UAVs can improve the overall efficiency, accuracy, and safety of 

the inspector (Murphy et al., 2011; Torok et al., 2013). For example, Murphy et al. (2011) 

investigated how Unmanned Marine Vehicles (UMVs) could improve the inspection 

process of a bridge in Texas in the aftermath of Hurricane Ike. Furthermore, Dabove, Di 

Pietra, & Lingua (2018) investigated the possibility of using tablet technology to capture 

images in a post-earthquake scenario. 

Sensors and technology 

The sensors used for data collection can be broadly classified into two categories: 

those used for inspection and those used for navigation and control. The sensors used for 

inspection range from cameras to vibration detectors. As this review focuses only on 

articles exploring visual inspection techniques, the automated technologies analyzed here 

included RGB still or video cameras. Additionally, CCTV-based images and videos were 

used for underground pipe and sewer inspection applications (Chae & Abraham., 2001; 

Ékes, 2016; Ékes et al., 2011; Halfawy & Hengmeechai, 2014; Kwak et al., 2007; Moradi 
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& Zayed , 2017). Other technologies such as GPR, sonar, lidar, optical scanner and 

gyroscope were also used to improve the data collection (Ékes, 2016; Gucunski et al., 2015; 

Moselhi et al., 2017). Moselhi et al. (2017) used a combination of GPR and IR technology 

for bridge defect detection. In addition, GoPro cameras and commercially available off-

the-shelf digital cameras were used for visual data collection (Ellenberg, Kontsos, & Moon, 

2016; Ellenberg et al., 2016; Henrickson et al., 2016; Khaloo et al., 2018; Khan et al., 

2015). For bridge inspections, the equipment used in combination with video/still camera 

included impact echo to detect surface delamination; electrical resistivity measures and 

GPR techniques to characterize corrosive environment and to locate rebar corrosion 

(Gucunski et al., 2015); lidar scanners to assess surface conditions such as cracks, spalls, 

scaling and roughness (Eschmann & Wundsam, 2017; Harris et al., 2016); IR imagery and 

radar to locate subsurface anomalies and defects (Harris et al., 2016); IR laser projector to 

obtain  depth information from RGB images (Ellenberg et al., 2014); and seismic/acoustic 

sensor array for crack detection (La et al., 2013a). IR thermal imaging techniques were 

used in power line inspection and management to detect excessive heat buildup (Larrauri 

et al., 2013). Further, this technology was also used in bridge inspection application (Hiasa 

et al., 2018) and general infrastructure application (Rea & Ottaviano, 2018). Additionally, 

long wavelength IR technology is used to detect and classify humidity (Eschmann 

Christian & Wundsam Timo, 2017). A 3D model embedded with georeferenced 

environment was developed to support realistic inspection and navigation. Terrestrial lidar 

technology was even used for generating point clouds for Civil Integrated Management 

(CIM) model (Javadnejad et al., 2017). Further, lidar technology was also used to measure 
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cross sectional shape and for centroid alignment (Vong, Ravitharan, Reichl, Chevin, & 

Chung, 2017). In addition, dielectric sensors were used to detect the presence of water in 

cable insulation, and acoustic sensors are used to measure partial discharge (Jiang et al., 

2005). 

The sensors used in oil and gas refinery inspection include microphones for acoustic 

sensing of leaks and explosions, methane gas sensors for the detection of toxic gases and 

thermal cameras (Steele et al., 2014). Other sensors used for data collection include water 

leakage sensors and temperature and pressure sensors in dam and penstock inspections. 

Sensors used for navigation purposes include but are not limited to GPS, video/still 

cameras, Doppler velocity logs, motion sensors, gyroscopes, accelerometers, 

magnetometers, inertial navigation systems (comprised of gyroscope, accelerometer and 

magnetometer), pressure sensors, laser and ultrasonic sensors, and motion planning sensors 

(Ridao et al., 2010). Additionally, Rea and Ottaviano (2018) used magnetic field sensor 

and gravity sensor for navigation purpose. Moreover, underwater autonomous inspection 

robots are equipped with buoyancy modules and echo sounders (Dong et al., 2016). 

However, not all the papers detailed the sensors used for defect detection and 

navigation purposes. If the study objective was algorithm development/enhancement, the 

description of the technology investigated was not very well-developed. Instead, it focused 

on algorithm testing and validation. For example, Halfawy and Hengmeechai (2014) 

developed a novel algorithm to automatically identify, locate and extract regions of interest 

(ROI) based on camera motion without including a detailed account of the technologies 

used in their study.  
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Levels of automation 

Automating a system means that a function previously carried out by human 

operators is fully or partially replaced by a machine/computer. Based on the extent of 

involvement by the machine in relation to the involvement of the human, Sheridan (2002) 

categorized automated systems into 8 categories (Sheridan, 2002; Wickens, Gordon, Liu, 

& Lee, 2003). According to Sheridan (2002), different dimensions represented by these 

scales are: the degree of specificity required for inputting requests to the machine by 

humans; the degree of specificity with which the system communicates results or 

recommendations with human; the degree to which human is responsible for initiating 

actions; and the timing and detail of feedback to the human after machine takes action. 

Classification of reviewed articles based on this scale may not be perfect, because, it is 

solely based on the qualitative information available in the articles. No metrics were taken 

into account for the purpose of categorizing the articles reviewed into different levels of 

automation. Not all articles reviewed here could be classified into one of these categories 

because the tasks carried out by human and machine were not distinctly defined or 

explained. However, with the limited information available, they were classified based on 

the level of automation framework developed by Sheridan and Wickens et al. ( Sheridan, 

2002; Wickens et al., 2003). Additionally, different aspects of a single technology may call 

for different levels of automation. For example, if the inspection system is capable of 

collecting data autonomously, but requires manual data analysis, the data collection module 

will fall into a higher automation category than data analysis module. Identifying 

automation assisted systems into different categories will potentially help develop training 
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strategies for inspectors. Additionally, the system designer can decide what tasks need to 

be automated and what tasks need to be manually controlled. Knowing this in advance will 

help operators prepare for any kinds of automation failures. Table 2.3 presents the 

classification of the articles based on their level of autonomy. 

 
Table 2.3. Levels of Automation(Sheridan, 2002; Wickens et al., 2003) and classification of articles 

Level Role of automation and 
human 

Articles 

1 Automation offers no aid; 
Human in complete 
control. 

None 

2 Automation suggests 
multiple alternatives, filters 
and highlights what it 
considers to be the best 
alternatives. 

Chen et al., 2011; Dabove et al., 2018; Dong et al., 2016; 
Ellenberg, Kontsos, Bartoli, & Pradhan, 2014; Gucunski et al., 
2015; Harris et al., 2016; Henrickson et al., 2016; Hiasa et al., 
2018; Khaloo et al., 2018; Moselhi et al., 2017; Villarino et al., 
2014; Wang et al., 2017 

3 Automation selects an 
alternative, one set of 
information, or a way to do 
the task and suggests it to 
the person. 

Attard, Debono, Valentino, & Di Castro, 2018; Ékes, 2016; Ékes 
et al., 2011; Ellenberg et al., 2014; Ellenberg, Kontsos, & Moon, 
2016; Ellenberg et al., 2016; Eschmann 
Christian & Wundsam Timo, 2017; Eschmann et al., 2012; Fujita 
et al., 2017; Hackl et al., 2017; Halfawy & Hengmeechai, 2014; 
Javadnejad Farid et al., 2017; Larrauri et al., 2013; Lee, Kim, Kim, 
Myung, & Choi, 2012; R. G. Lins & Givigi, 2016; Moradi Saeed 
& Zayed Tarek, 2017; Protopapadakis et al., 2016; Son et al., 
2014; Wang & Birken, 2015; Yeum et al., 2017 

4 Automation carries out the 
action if the person 
approves. 

Attard et al., 2018; Cho et al., 2004; La et al., 2013a; Romulo 
Gonçalves Lins et al., 2018; Merz & Chapman, 2011; Murphy et 
al., 2011; Özaslan et al., 2016; Rea & Ottaviano, 2018; Vong et 
al., 2017; Yoder & Scherer, 2016 

5 Automation provides the 
person with limited time to 
veto the action before it 
carries out the action. 

None 

6 Automation carries out an 
action and then informs the 
person 

Gucunski et al., 2015; Jiang et al., 2005; Lim et al., 2014; 
Painumgal et al., 2013; Reed, Wood, Vazquez, & Mignotte, 2010; 
Ridao et al., 2010; Steele et al., 2014 

7 Automation carries out an 
action and informs the 
person only if asked 

None 
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8 Automation selects 
method, executed task, and 
ignores the human (the 
human has no veto power 
and is not informed) 

None 

 

As this table shows, none of the articles surveyed in this review exemplify Level 1 

(computer offers no aid, human completes all the tasks) nor Levels 7, 8 (computer carries 

out all the tasks without any human involvement). If the automated system suggests 

multiple alternatives, highlighting what it considers to be the best alternative, it is 

considered Level 2 automation.  An example of such a system is a robot that merely 

displays and highlights the data it collected after preliminary analyses. More specific 

examples of Level 2 autonomous systems include the data visualization module of the 

bridge deck inspection robot Robotics Assisted Bridge Inspection Tool (RABIT) 

(Gucunski et al., 2015), remote sensing technologies used for bridge deck inspection 

(Harris et al., 2016), image processing techniques providing texture variation (Henrickson 

et al., 2016) and the UAV-based bridge assessment system explained in Khan et al. (2015). 

The image fusion technique combining IR and GPR images and the data processing 

techniques such as histogram equalization, threshold, edge detection, subtraction and 

image segmentation used to improve the accuracy of bridge condition assessment is also 

an example of Level 2 automation as these techniques highlight what it considered to be 

the best alternative (Moselhi et al., 2017). 

The LADAR-based pipeline inspection method explained by Kwak et al. (2007) is 

also an example of Level 2 automation, with the robotic system collecting and providing 

the data to the inspector for analysis.  The data management and visualization system of 
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the ultrasonic crawler robot used for pipe inspection, also an example of Level 2 

automation, filters and highlights critical areas as do the 3D point cloud images of curtain 

walls generated using lidar (Liu, Jennesse, & Holley, 2016). In addition, the technologies 

such as 2D and 3D photogrammetric modeling and laser scanning used to generate 3D 

point cloud models for infrastructure systems (Khaloo et al., 2018; Villarino et al., 2014) 

and the photo enhancement techniques used to improve the images for viewing and 

measurement purposes are also considered Level 2 automation (Chen et al., 2011). Dabove 

et al. (2018) also used 3D point clouds generated from images captured using tablets for 

post-earthquake inspection. The remotely operated vehicle deployed for the inspection of 

nuclear reactor vessels is controlled by the operator using the camera information collected 

by the robot (Dong et al., 2016). This system highlights what is important on the site and 

the controller makes the ultimate decision, meaning Remotely Operated Vehicle (ROV) is 

categorized as Level 2. The camera based inspection system mounted on a car to inspect 

catenary bridges is an example of Level 2 automation because the system doesn’t process 

the image data. It merely displays the images collected (Wang et al., 2017).  Similarly, the 

bridge inspection drone explained in Hiasa et al. (2018) is also an example of level 2 

system, because the drone is manually controlled and the data is manually analyzed. 

For Level 3, the automation selects one alternative and presents it to the inspector. 

Examples of this level include the GPR system (Ékes et al., 2011) and the pipe inspection 

system that accurately calculates the sediment volume and pipe dimensions (Ékes, 2016). 

Algorithms developed to detect cracks/damages, to plan paths, to detect sediment volume 

and to control the robot are also examples of Level 3 automation. These algorithms process 
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and analyze the data, providing the operator with one best answer or solution. Examples of 

such algorithms are the crack detection algorithm that provides inspectors with exact 

locations of cracks (Torok et al., 2013), the crack detection algorithm used in bridge 

inspection for identifying cracks (Ellenberg, et al., 2014; Ellenberg et al., 2014; Eschmann 

& Wundsam, 2017) and to detect cracks in tunnels (Protopapadakis et al., 2016), automatic 

ROI and debris detection algorithms (Halfawy & Hengmeechai, 2014), the crack detection 

algorithm used to detect bridge-related damages (Ellenberg et al., 2016), the artificial 

neural network algorithm used to detect cracks in sewer pipelines (Chae & Abraham., 

2001), the hidden Markov model based on Viterbi algorithm to detect sewer pipeline 

defects (Moradi & Zayed, 2017), the decision tree algorithm used for the determination of 

rusted surface and blasting areas of steel bridges, the algorithm based on machine learning 

for detecting cracks in asphalt pavement using surface imagery (Fujita et al., 2017), the 

data analysis module of the Versatile Onboard Traffic Embedded Roaming Sensors 

(VOTERS) mobile sensor system used for surface and subsurface assessment of roadways 

(Wang & Birken, 2015), the delamination identification algorithm used to identify damages 

from images from UAVs on steel bridge surfaces (Ellenberg, Kontsos, & Moon, 2016), the 

automated image localization technique developed to extract regions of interest on images 

taken by UAV cameras (Yeum et al., 2017), the  color restoration and target detection 

algorithms used for underwater applications (Lee et al., 2012), and the image processing, 

crack detection and edge detection algorithm used for building inspection (Eschmann et 

al., 2012). Further, the computer vision technique, Tinspect, explained by Attard et al. 

(2018) is also an example of Level 3 automation as they investigated the possibility of 
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using various image processing and change detection methods to inspect the changes on 

the large hadron collider (LHC) tunnel linings. The processed images help the inspector 

identify any changes to the tunnel linings.  

The autonomous robotic system used for structural health monitoring is also an 

example of Level 3 automation as it triggers an alarm to inform users of the condition of 

the structure (Lins & Givigi, 2016). Further the Structures from Motion (SfM) method 

explained by Javadnejad et al. (2017) is also an example of Level 3 automation extracting 

pipe features with minimal supervision based on point clouds established. Hackl et al. 

(2017) developed a Level 3 automation system to generate fluid dynamic simulations from 

topographic images collected using UAVs. This technology helps inspectors determine the 

hydraulic stability of the structure based on the computational fluid dynamic simulations. 

Since, this technique only aids decision making by developing model, it is categorized as 

a Level 3 system. 

In a Level 4 system, the robotic system carries out actions after the operator 

approves them.  The autonomous robotic system used for bridge inspection is an example 

of Level 4 automation. It uses an Extended Kalman Filter (EKF) for localization, and a 

motion planning and control algorithm generates a path for the robot to follow (La et al., 

2013a). The robotic system explained by Lins et al. (Lins et al., 2018), used for structural 

health monitoring, uses Vision-Based Measurement (VBM) algorithm and Velocity 

Estimation (VE) algorithm to measure obstacle in its trajectory and to control its trajectory. 

Further, it is capable of processing the data to detect and measure crack information. These 

features make it a Level 4 automation system (Lins et al., 2018). The KeproVt, underwater 
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robot used for nuclear vessel inspection also uses a path generation algorithm. Even though 

the robot is manually controlled by hand-held devices, its path is generated by the algorithm 

(Cho et al., 2004). Other underwater marine systems used for inspection after Hurricane 

Ike were also Level 4 systems as they are capable of performing inspections both manually 

and automatically (Murphy et al., 2011). Similarly, the robotic system used for general 

infrastructure inspection is also an example of Level 4 system because it has both 

teleoperated and autonomous modes. Additionally, it generates 3D scans of the data 

collected (Rea & Ottaviano, 2018). Further, the UAS, capable of performing both 

autonomous and semi-autonomous inspection, used for railway and tunnel inspection is 

also an example of level 4 automation (Vong et al., 2017).  Another example is the MAV 

used for dam inspection, a system controlled by an operator using an RC interface based 

on the position estimation result calculated by the algorithm (Özaslan et al., 2016). Micro 

aerial vehicles, also Level 4 automation systems, have been used to conduct autonomous 

exploration and to develop 3D models for bridge structures with minimal input from the 

operator exhibiting performance as good as a system controlled by a skilled pilot (Yoder 

& Scherer, 2016). Another example of a Level 4 aerial automation system is the 

autonomous unmanned helicopter system used for infrastructure inspection. This system is 

controlled by a pilot who provides commands for flight operations (Merz & Chapman, 

2011). The oil and gas refinery inspection robot detailed in Steele et al. (2014) is 

teleoperated by an operator who gives high level commands directing the robot to a 

particular point. This Level 4 robotic system then automatically collects the data using 

sensors(Steele et al., 2014).  
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Highly automated Level 6 systems carry out all the actions autonomously while 

keeping the operators informed about the actions, one example being the PICTAN pipe 

inspection system. The position estimation algorithm used in the system calculates the 

position of a pipe inspection robot based on the images it captures (Painumgal et al., 2013). 

In addition, the bridge inspection Robotic Crack Inspection and Mapping (ROCIM) robotic 

system, another example of a Level 6 system, carries out inspection tasks using a path 

planning and a crack detection algorithm (Lim et al., 2014). Another example of Level 6 

automation is the ship hull and harbor inspection robot capable of conducting inspection 

tasks autonomously using tracking and anomaly detection algorithms, real-time 3D 

reconstruction techniques and dead-reckoning navigation. The operator can take control of 

the robot with a joystick if the automation fails (Reed et al., 2010). The robotic system used 

for the inspection of underground cable systems, another example of Level 6 automation, 

keeps the inspector informed of the sensor output data through a user interface in the 

autonomous mode (Jiang et al., 2005). A tunnel inspection monorail (TIM) used to 

investigate LHC tunnel is an example of Level 6 automation as it collects images without 

any human intervention (Attard et al., 2018). The autonomous underwater vehicle used for 

the visual inspection of hydraulic dam also falls in the category of Level 6 automation as 

the intelligent control architecture controls the system autonomously with the help of 

sensors and a perception module (Ridao et al., 2010). 

 

Navigation and control 
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It is important that the navigation and control technologies and their user interfaces 

of automated infrastructure systems are easy to understand and useful for the maintenance 

personnel as complicated technologies and user interfaces can lead to reduced utility. 

Articles analyzing automated technology provided a detailed account of the navigation and 

control system; however, those focusing on data extraction and representation provided 

only a vague explanation of the data collection techniques and the navigation and control 

strategy used. Fully autonomous robotic systems rely on the data from GPS and/or IMU 

units (Ellenberg, et al., 2014; Ellenberg, et al., 2016; Gucunski et al., 2015; Henrickson et 

al., 2016; Khaloo et al., 2018; R. G. Lins & Givigi, 2016), with path planning algorithms 

using these data as input to develop a path for the robots to follow (Gucunski et al., 2015; 

R. G. Lins & Givigi, 2016). VBM and VE algorithms have also been used to implement 

navigation strategies and to control robot’s trajectory (Lins et al., 2018). GPS capability 

was used to create waypoints to define routes for the robots (Henrickson et al., 2016; 

Javadnejad Farid et al., 2017; Merz & Chapman, 2011; Murphy et al., 2011); however, 

constrained indoor, dark and featureless conditions such as penstocks, underground tunnel 

and pipe systems, and underwater environments do not allow for access to such external 

positioning systems (GPS and satellite) (He, Prentice, & Roy, 2008; Özaslan et al., 2016). 

Other navigation technologies can be used for autonomous/manual navigation of the 

robotic systems under such unfavorable conditions. For example, Özaslan et al. (2016) 

used a Proportional Derivative (PD) controller for the navigation and control of an MAV 

in a dam penstock. The operator controlled the robot by defining the waypoints using a 

remote-control interface. Eschmann and Wundsam (Eschmann & Wundsam , 2017) used 
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a miniaturized lidar for navigational purpose. A camera, IMU and 2 lidars were used for 

indoor localization. Navigation sensors such as depth gauges, gyroscopes, magnetometers 

and sonar have been used to navigate a remotely operated underwater vehicle (ROV) for 

nuclear reactor pressure vessel inspection (Dong et al., 2016), and Ékes Csaba et al. (2011) 

and Javadnejad et al. (2017) used an Inertial Navigation System (INS) along with lidar data 

to map the coordinates of an underground pipe. 

In addition to these sensors taking linear and angular measurements, optical sensors 

are used for position estimation and navigation tasks. Protopapadakis et al. (2016) used 

visual images and laser technology for navigating an autonomous mobile vehicle with a 

robotic arm within a tunnel system. The position of a pipeline inspection autonomous 

underwater vehicle (AUV) was estimated using cone laser and fisheye camera technology. 

These images were fed to a position estimation algorithm to calculate the precise position 

of the robot. Moreover, video transmitted through fiber optic cable was used for status 

information and remote operation of an ultrasonic crawler robot for buried pipe inspection. 

However, in some underground applications, the multi-sensor pipe inspection system was 

controlled by an operator pulled through the system using a tethered rope (Ékes, 2016). 

Moreover, in some underground pipeline applications, a skilled operator moves the CCTV 

camera at a relatively constant speed, capturing images of the pipe’s internal surface (Chae 

& Abraham, 2001; Halfawy & Hengmeechai, 2014).  

The robotic systems reviewed in this literature survey were typically tele-operated 

or were able to complete the mission without human intervention although even those 

systems characterized as completely autonomous were monitored by a human operator. 
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Remotely operated inspection systems were controlled using joysticks, remote interfaces, 

remote controllers and other handheld devices such as a mouse and a touchpad, while 

advanced automated technologies used for inspection were capable of completing 

inspection and navigation tasks both autonomously and non-autonomously. For example, 

Gucunski et al. (2015) investigated the implementation of a fully autonomous robotic 

platform for bridge inspection that moved along the path specified by a path planning 

algorithm. However, such robotic systems were additionally controlled using keyboards, 

joysticks and android/iPhone devices in manual mode (Gucunski et al., 2015). An 

autonomous robotic system used for underground cable inspection was capable of carrying 

out operations autonomously with the help of control module. Additionally, an operator 

was able to view the sensor output through a user interface and controlled the operations 

remotely in the event of automation failure (Jiang et al., 2005). Protopapadakis et al. (2016) 

also used a similar strategy to control an autonomous robot inspecting tunnels. Although 

an integrated global system controlled the overall operation and mission execution, the user 

was able to view the inspection information on the user interface and was kept informed of 

the inspection task (Protopapadakis et al., 2016). An oil and gas inspection robot developed 

by Steele et al. (2014) was also capable of completing inspection tasks in both tele-operated 

and completely autonomous modes. In the former, the inspector used a teleoperation 

camera in combination with a joystick, while in the completely autonomous mode, the 

operator provided high level commands to the robot (Steele et al., 2014). The Seekur 

mobile robotic platform used for bridge inspection also had multiple control modes: 

manual, semi-autonomous and completely autonomous, with a GUI displaying the robot 
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data and sensor data for monitoring and control purposes (La et al., 2013a). The underwater 

dam inspection system detailed in Ridao et al. (2010) also involved multiple control modes: 

a tethered remotely operated mode, and an untethered autonomous mode with the 

perception module and the intelligent control module operating the robot under completely 

autonomous operations (Ridao et al., 2010). Tracking Hybrid Rover for Overpassing 

Obstacles (THROO) mobile platform used for general infrastructure inspection was also 

capable of completing the inspection task in both tele-operated and autonomous modes. 

The article explored only teleoperation capability for infrastructure inspection. In tele-

operated mode, the operator received the data collected using the sensors on a tablet for 

understanding the environment.  

A waypoint navigation technique has been used to navigate a remotely operated 

vehicle (ROV) used for harbor inspection. A mission planner module ensured the 

movement of the vehicle along a specified path under autonomous mode, while under 

manual mode, an operator controlled the system with the help of a joystick (Reed et al., 

2010). In addition, control algorithms ensured trajectory control by keeping a structural 

health monitoring (SHM) robot on track (Lins & Givigi, 2016). Ellenberg et al. (2014) used 

a third generation Apple iPod touch to control a UAV for quantitative evaluation of 

infrastructure. The controller was able to view the images and videos sent to the controlling 

device while flying the UAV. Researchers also used an artificial potential field approach 

to control the robot and to keep it on track. An inspection robot followed the attractive 

force created by a virtual robot during a bridge inspection task in La et al. (La et al., 2013b). 

Moreover, microcontrollers and PD controllers were used to control the position of a pipe 
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inspection robot (Painumgal et al., 2013), and MAVs inspecting a dam penstock (Özaslan 

et al., 2016) and a train bridge (Yoder & Scherer, 2016). Further, TIM used for tunnel 

inspection used an encoder fitted to its track to measure the distance travelled and its 

position. Further, a position barcode was sued to avoid cumulative errors (Attard et al., 

2018). 

Automated unmanned aerial systems such as drones and MAVs completed 

inspection task in autopilot mode with takeoff and landing controlled manually 

(Henrickson et al., 2016; Yoder & Scherer, 2016). While performing the inspection task, 

the UAV followed a predetermined path specified by the controller using waypoint 

navigation (Henrickson et al., 2016). In addition, the autonomous helicopter used in the 

remote sensing application was capable of completing inspection tasks autonomously with 

the landing task controlled manually. This helicopter was additionally equipped with 

manual control capability. The controller could operate the helicopter using an RC 

transmitter in the manual mode (Merz & Chapman, 2011). Further, the UAS used for 

railway culvert and tunnel inspection had both autonomous and semi-autonomous mode 

(Vong et al., 2017). The autonomous mode used a commercially available flight controller. 

In the semi-autonomous mode, the flight was controlled using a proportional-integral-

derivative (PID) controller (Vong et al., 2017). However, not all UAV systems surveyed 

in this paper were automated. For example, the UAVs used for quantitative assessment of 

highway bridges (Ellenberg, Kontsos, & Moon, 2016) and curtain wall inspection (Liu et 

al., 2016) were controlled manually by the pilot. The UAV used for remote building 

inspection and monitoring tasks was controlled manually by a pilot although it also had a 
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semi-autonomous mode (under pilot supervision) supported by GPS-guided waypoint 

navigation (Eschmann et al., 2012). The ROV examined by Dong et al. (2016) was 

controlled manually by a remote operator through a user interface displaying camera 

information, joysticks and peripheral buttons or handheld controllers. Finally, the ground 

robot platform used for post-disaster building assessment was controlled by a remote 

operator with the help of a high-resolution camera. However, the data collection and 

transmission were driven by an autonomous algorithm (Torok et al., 2013). 

Algorithms 

Various types of algorithms were used in automation assisted visual infrastructure 

inspection techniques. Table 2.4 lists the algorithms used in the articles reviewed in this 

survey. 

Image recognition: An image recognition algorithm was used in autonomous robotic tunnel 

inspection (Protopapadakis et al., 2016) and an Iterative Closest Point (ICP) algorithm was 

used in the fully autonomous visual inspection of dam penstocks (Özaslan et al., 2016). 

Horn’s method used a 3D coordinate transformation (Yeum et al., 2017). In automated 

systems for overhead power line inspection using an unmanned aerial vehicle, researchers 

used an artificial vision algorithm to locate edges and estimate distances (Larrauri et al., 

2013). In addition, a three dimensional optical bridge-evaluation system (3 DOBS) 

algorithm (close range photogrammetry) was used in service bridge field performance 

remote sensing image recognition (Harris et al., 2016). 

Navigation: Control algorithm (coordinate between sensors and navigation) and Extended 

Kalman Filter (EKF) based navigation were used in robotic bridge deck inspection (La et 
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al., 2013a). In a second example of bridge deck inspection, Gucunski et al. (2015) used a 

path planning algorithm for robotic vehicle navigation. An effective 3D path planning 

algorithm with surface frontier #D surface exploration and incremental path planning 

algorithms were used in the inspection of the infrastructure of a train bridge in conjunction 

with a micro-aerial vehicle (Yoder & Scherer, 2016). In another example of bridge deck 

crack detection, a Robotic Inspection Plan (RIP) Genetic Algorithm (GA) and RIP greedy 

algorithms for path finding were tested (Fujita et al., 2017), with the results indicating that 

the GA performed better than the RPI greedy algorithm for automated pathfinding (Fujita 

et al., 2017). Further, an EKF for navigation with wall detection and tracking algorithms 

was used in autonomous underwater vehicle for dam monitoring (Ridao et al., 2010). 

Several algorithms have been developed for depth detection as it is important in underwater 

conditions. For example, one such algorithm was used for depth detection of a nuclear 

reactor pressure vessel and other water-filled infrastructures (Dong et al., 2016). In 

addition, AUVs used a real-time position estimation algorithm and an offline position 

estimation algorithm for in service pipeline inspection (Painumgal et al., 2013). Centroid 

location algorithm is an example of position control algorithm used to align UAS with the 

centroid of inspection structure (Vong et al., 2017). Lins et al. (2018) used VBM and VE 

to control robot’s trajectory. Rea and Ottaviano (Rea & Ottaviano, 2018) used a control 

algorithm to achieve interoperability of multiple sensors. 

Image processing and detection: Image detection and enhancing algorithms have been used 

to detect an area of interest or to increase the image quality. After capturing images, to 

automatically detect cracks Eschmann and Wundsam (Eschmann & Wundsam, 2017), Lins 
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et al. (2018), and Torok et al. (2013) used a crack detection algorithm. Further, Torok et 

al. (2013) used an aerial direction algorithm with orthonormal axes. In addition, Eschmann 

and Wundsam (Eschmann & Wundsam, 2017) visualized humidity data collected using 

and Long Wavelength Infrared (LWIR) sensors as a superficial layer. Researchers used a 

#D information extraction algorithm to process images and to detect cracks 

(Protopapadakis et al., 2016). Random sample consensus algorithm (RANSAC algorithm) 

was used for extracting pipe features. In addition, images taken underwater have to be 

processed and enhanced to improve their quality. Color restoration, template matching 

(target object detection) and mean shifting (object tracking) algorithms were used for 

underwater infrastructure monitoring (Lee et al., 2012). For bridge-related damage 

detection, a UAV camera calibration algorithm and homograph image flattening were used 

in a crack detection algorithm along with K-means (Ellenberg, et al., 2016). Further, for 

image processing, pattern recognition techniques, a crack detection algorithm and edge 

detection algorithms were used in UAV building inspection and monitoring (Eschmann et 

al., 2012). In addition, to identify important markers such as cracks or tears, a measurement 

algorithm was used in quantitative infrastructure evaluation (Ellenberg, et al., 2014). 

Additionally, images from multiple NDT sources were fused to produce a more accurate 

picture of inspection site using a wavelet transform technique. Various image processing 

techniques were also applied to the images prior and/or after fusing to improve the accuracy 

of bridge condition assessment (Moselhi et al., 2017). 

Defect detection: Defect detection algorithms have been used to identify possible defects 

present in an infrastructure. For example, fuzzy logic based artificial neural network 
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algorithms were used in sewer inspection (Chae & Abraham., 2001). This algorithm 

computed input-preprocessed data and output-attributes of cracks such as number and 

dimensions. Further, for a rust classification model, Support Vector Machine (SVM), 

Back-Propagation Neural Network (BPNN), Decision Tree (J48), Naive Bayes (NB), 

Logistic Regression (LR), and K-Nearest Neighbors (KNN) methods were used (Son et al., 

2014). A control algorithm, vision-based measurement algorithm (relative pose of target) 

and crack detection and crack measurement algorithms were used in an automated 

structural health monitoring robot (Lins & Givigi, 2016). In addition, for corrosion 

detection, a convex hulling algorithm and an iterative closest point algorithm were used to 

calculate the area and perimeter of corrosion (Kwak et al., 2007). Crack detection 

algorithms were also used in a pavement inspection application. For machine learning for 

asphalt crack detection, Hilditch’s algorithm was used to detect centerlines of the cracks in 

conjunction with a pixel level classification F measure for crack detection (Fujita et al., 

2017). 

 
Table 2.4. Algorithms used in the articles reviewed 

Algorithms Articles 

Artificial Neural Network (Chae Myung Jin & Abraham Dulcy M., 2001) 

Tracking Algorithm (Cho et al., 2004; Lee et al., 2012; Ridao et al., 2010) 

Iterative Closest Point Algorithm (Kwak et al., 2007; Özaslan et al., 2016) 

Automatic Target Recognition Algorithms (Reed et al., 2010) 

Kalman Filter (La et al., 2013a; Ridao et al., 2010; Steele et al., 2014; Yoder 
& Scherer, 2016) 
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Color Restoration Algorithm (Lee et al., 2012) 

Pattern Recognition (Eschmann et al., 2012) 

Crack Detection (Ellenberg, et al., 2016; Eschmann & Wundsam, 2017; 
Eschmann et al., 2012; Fujita et al., 2017; R. G. Lins & 
Givigi, 2016; Romulo Gonçalves Lins et al., 2018; 
Protopapadakis et al., 2016; Torok et al., 2013) 

Edge Detection (Attard et al., 2018; Ellenberg et al., 2014; Eschmann et al., 
2012; Larrauri et al., 2013) 

Artificial Vision Algorithm (Larrauri et al., 2013) 

Arial Detection Algorithm (Torok et al., 2013) 

Position Estimating Algorithm (Painumgal et al., 2013) 

Measurement Algorithm (Ellenberg et al., 2014) 

Support Vector Machine (Halfawy & Hengmeechai, 2014; Son et al., 2014) 

Back Propagation Neural Network (Son et al., 2014) 

Decision Tree (Son et al., 2014) 

Naïve Bayes (Son et al., 2014) 

Logistic Regression (Son et al., 2014) 

k-Nearest Neighbors (Ellenberg, Kontsos, & Moon, 2016; Ellenberg, et al., 2016; 
Son et al., 2014) 

Nearest Neighbor (Dabove et al., 2018) 

Monte Carlo (Lim et al., 2014) 

Laplacian of Gaussian (Lim et al., 2014) 

Navigation (Steele et al., 2014; Yoder & Scherer, 2016) 

Path Planning (Gucunski et al., 2015) 

Vision Based Measurement Algorithm (Lins & Givigi, 2016) 

Information Extraction (Protopapadakis et al., 2016; Yeum et al., 2017) 

Hilditch’s Algorithm (Fujita et al., 2017) 

Random Sample Consensus Algorithm (Javadnejad et al., 2017) 

Hidden Markov Model (Moradi & Zayed, 2017) 

Velocity Estimation Algorithm (Lins et al., 2018) 
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DISCUSSION 

Infrastructure inspection is receiving increased research attention because of the 

advancement of automated technologies and smart sensing systems. Conventional 

infrastructure inspection methods are time-consuming and expensive. Moreover, they can 

expose the inspection team to a dangerous inspection environment, putting their lives in 

peril (Lattanzi & Gregory, 2017). Automated inspection systems address these issues by 

minimizing the risk to the inspector and by improving the efficiency of the inspection 

process. In addition, reliance on inspectors’ skills is an inherent issue associated with 

conventional risk inspection techniques (Ellenberg, et al., 2016), and new learning 

algorithms are capable of reducing this subjectivity, thereby improving the accuracy of the 

inspection process. Much research has explored the technological and data analytic aspects 

of automated infrastructure inspection. This article reviewed 53 peer-reviewed research 

and conference articles investigating vision-based automated inspection technologies, 

selected based on a systematic approach. Through this review, we tried to address a number 

of research questions proposed in the introduction section. The key findings are being 

discussed in detail in this section. 

 

Validity of the system/algorithm 

Automation-assisted inspection technologies were extensively used in the 

inspection of highway bridges and roads. Some of these technologies were as good as or 

better than the existing inspection methods in terms of the accuracy of findings (Fujita et 
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al., 2017; Halfawy & Hengmeechai, 2014; Jiang et al., 2005; Khan et al., 2015; Kwak et 

al., 2007; La et al., 2013a; Liu et al., 2016; Moselhi et al., 2017; Wang & Birken, 2015; 

Yoder & Scherer, 2016). Moreover, Cho et al. (Cho et al., 2004) observed that the 

underwater robotic system developed for nuclear reactor inspection was not as time-

consuming as the conventional inspection method. Although these findings are promising, 

more studies are needed to validate the effectiveness of these new methods in relation to 

the existing ones.  Only eight of the 53 articles reviewed conducted a comparative analysis 

of new technology with conventional technology (Ellenberg, Kontsos, & Moon, 2016; 

Ellenberg, Kontsos, & Moon, et al., 2016; Fujita et al., 2017; Halfawy & Hengmeechai, 

2014; Khan et al., 2015; Moselhi et al., 2017; Wang & Birken, 2015; Yoder & Scherer, 

2016). Additionally, Javadnejad Farid et al. (2017) compared two automated methods: one 

based on visual images and one based on lidar scanning. Moreover, the validity and 

feasibility of the proposed systems/algorithms need to be evaluated through field 

deployment of the system. Ten of the 53 studies reported the results of laboratory-scale 

experiments, meaning their systems were not deployed in the field (Dong et al., 2016; 

Ellenberg, et al., 2014; Ellenberg, Kontsos, & Moon, 2016; Ellenberg, et al., 2016; Lee et 

al., 2012; Lins & Givigi, 2016; Romulo Gonçalves Lins et al., 2018; Painumgal et al., 2013; 

Rea & Ottaviano, 2018; Yeum et al., 2017). While Son et al. (2014) collected  data by 

simulating the condition of  a robot taking images of a bridge using a mounted camera and 

Steele et al. (2014) conducted preliminary studies in their mechanical room evaluating the 

operational capability of a refinery inspection robot, neither group of researchers 

completed a field study. Though lab-scale studies can confirm the validity of a proposed 
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system or algorithm, results from field deployments need to be analyzed to ensure 

ecological validity.  

While most of the algorithms focused on analyzing data collected on flat surfaces 

like that of bridge deck or road surfaces, further research needs to be carried out to 

investigate the possibility of using these algorithms to investigate complex components 

such as joints and connections (Koch, Georgieva, Kasireddy, Akinci, & Fieguth, 2015). 

Human factors considerations 

None of the articles reviewed developed or investigated a completely automated 

system. In an automation-assisted system, the technologies remain a subordinate assisting 

humans with the inspection task, with human operators taking control as and when 

required. Most automated systems reviewed in this article have multiple control modes, 

meaning the operator is able to control the level of autonomy of the system. For example, 

the operator controls the system until it reaches the target point and then the automation 

controls and performs the data collection task using sensors with the help of an algorithm 

(Torok et al., 2013), requiring the operator to interact with the automated system. To 

facilitate seamless interaction between the intelligent automated system and the human, the 

operators should be able to provide commands/instructions in natural language (Chen & 

Barnes, 2014). This communication requires the inspector to be skilled at controlling 

complicated intelligent systems. However, none of the studies discussed the challenges or 

constraints posed by these systems on the operators. Understanding the initial learning 

curve associated with learning new technologies might help improving the system design 

and developing training strategies. Furthermore, it is important to investigate the perceived 
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satisfaction of users with the technology and its user interface to understand technology 

acceptance by the users. There is a need to evaluate these systems within the context 

specific needs of the users of these technologies to foster user acceptance and applicability 

(Agnisarman, Madathil, & Stanley, 2018; Agnisarman et al., 2017; Agnisarman et al., 

2017; Narasimha, Agnisarman, Chalil Madathil, Gramopadhye, & McElligott, 2018; 

Narasimha et al., 2017). 

Moreover, the communication between operators and other crew members is an 

important factor involved in automation control. Murphy et al. (2011) discussed the 

importance of having a shared understanding among the members of a team in charge of 

the control and operation of automation. According to them, these team members include 

a pilot, a payload specialist, subject matter experts and safety personnel (Murphy et al., 

2011), each potentially focusing on his/her individual micro-objectives and system 

requirements. In such situations, it is important to have a shared understanding among team 

members to facilitate effective communication to achieve the overall system goal. Thus, 

principles of system thinking need to be considered while designing a multi-agent system 

operated by a team. 

Furthermore, shared understanding of inspection site/workspace also needs to be 

studied from a post-catastrophic inspection perspective. Information overload (too much 

data) is an issue in emergency management scenario. This situation is complicated by 

multiple communication channels activated while addressing an emergency situation. 

However, automated systems can reduce the mental demand and cognitive load on the 

inspectors by sharing workspace with them. However, the automated system should be 
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always under the control of human to prepare him/her for any unpredictable situation 

(which is quite common in emergency management) (Carver & Turoff, 2007). The 

members of disaster management team need to be well connected with proper 

communication channels. System design should facilitate seamless interaction between 

team members working under such high pressure environment. Wearable devices can 

potentially facilitate communication among the team members by tracking each other’s 

travel pattern to develop and update their inspection strategies in a dynamic environment. 

Furthermore, wearable devices tracking human traveling pattern can be used to develop 

adaptive automation systems that learn human behavior (Zhang et al., 2017). Additionally, 

natural language processing (NLP) technique can be employed to understand the mental 

demand and cognitive load on the inspectors to update the task assignment and to improve 

the systems adaptability (Zhang et al., 2017). 

However, it is important to understand the collaborative sense-making strategy of 

the team members and the team SA to design a system facilitating the above mentioned 

interactions without having a conflict between their assigned tasks. Further research needs 

to be carried out to understand the team characteristics such as team cognition, SA and 

sense-making to inform the design of automated systems that assist post-disaster 

inspection. Team sense-making is defined as “the process by which a team manages and 

coordinates its efforts to explain the current situation and to anticipate future situations, 

typically under uncertain or ambiguous conditions” by Klein, Wiggins, & Dominguez 

(2010). A collaborative understanding of the situation is required while working as a team 

to achieve a common goal. The sense-making process and the nature of sense-making 
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depend on the situation and the experience level of the members of the team (Klein et al., 

2010). Team SA is the overall SA possessed by each team member to complete the tasks 

assigned to him/her (Endsley, 1995b). Each of the team members need to have a really 

good understanding of shared elements to ensure seamless working of the system (Endsley, 

1995b). Furthermore, team cognition refers to the shared knowledge or shared mental 

model among team members about the situation. The inspection team can have people with 

different levels of expertise performing a number of disparate functions such as controlling 

the automated system, collecting the data and developing strategies. This shared mental 

model can undergo changes as the team performs the inspection task (O’connor & Johnson, 

2006). Further research needs to be conducted to evaluate team cognition and how it 

contributes to effective team functioning (Cooke, Salas, Kiekel, & Bell, 2004).     

  Another important factor that needs to be considered when implementing 

automated inspection systems is the trust the operators have in such systems (Chen & 

Barnes, 2014). Too much trust can result in biases that affect the overall performance. For 

example, an inspector who does not verify the output from a crack detection algorithm 

might inaccurately report the condition of a structure.  This automation bias needs to be 

studied from an infrastructure inspection perspective to improve the design of automated 

systems as well as the training of the inspectors. While inspectors are subject to automation 

bias, automated systems can reduce the subjectivity associated with the operator. The 

findings from an inspection task depend on the skills of the operator, and various operators 

may come up with disparate conclusions. Though the studies reviewed in this article tried 

to reduce the subjectivity through algorithms that automatically detect cracks or targets, 
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the final decision was made by the human operator, meaning the issue of subjectivity was 

not completely eliminated. Moreover, highly automated systems that conduct inspection 

tasks without any human involvement may not keep the operators in loop, affecting their 

SA.  However, by automating the navigation task, the workload on the operators can be 

reduced, allowing them to focus on the inspection process, which is not automated, thus 

improving their SA.  This division of labor will also keep the operators in the loop and 

facilitate their timely intervention. Further complicating the situation, the sensory 

perceptions of an operator controlling an unmanned system are mediated by the interface 

or control devices, meaning the quality of the SA depends on the system design, sensory 

feedback and data visualization (Riley, Strater, Chappell, Connors, & Endsley, 2010). 

Furthermore, since infrastructure inspection is predominantly visual involving prolonged 

periods of cognitive activity, operators may experience mental fatigue, which can impact 

their ability to concentrate on the inspection task (Boksem, Meijman, & Lorist, 2005). This 

decline in attention in turn affects their signal detection ability and vigilance (Raja 

Parasuraman, Warm, & Dember, 1987). System design needs to consider these factors to 

keep inspectors attentive and vigilant throughout the inspection process.    

While performing infrastructure inspection, the inspector has to process and make 

sense of data from multiple sources. Especially in structural health monitoring, it is 

important to look at both the structural aspect and the qualitative condition of the building. 

While automation can be used to reduce this information overload, it is important to 

understand the sense-making process of the inspectors when developing decision aids that 

could potentially reduce the cognitive demands placed on them. Investigating the sense-
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making strategy of individuals synthesizing this inspection data will help the designers 

understand how users fit the data into frame or seek more data to update the frame. If the 

data from multiple sources don’t converge, the cognitive load and users’ confidence in 

decision making will be negatively affected (Agnisarman, Madathil, & Stanley, 2018; S. 

Agnisarman, Ponathil, Lopes, & Chalil Madathil, 2018a; Madathil & Greenstein, 2018; 

Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). Further studies need to 

be conducted to investigate the needs of the inspectors and the individual differences that 

would lead to variability in the inspection results. 

System design implications 

These human factors considerations can potentially be addressed through Wickens’ 

information processing model, which explains how humans perceive and process 

information, make decisions and execute action (Wickens et al., 2003). His model involves 

sensation, perception, decision making and decision execution. Automated systems can be 

designed to intervene in any stage of this information processing (Parasuraman, Sheridan, 

& Wickens, 2000). Sensing systems in automated systems acquiring information from the 

environment are examples of automation intervening in the sensing stage. High-level 

automation systems can filter these data, presenting only select information. The use of 

such systems by operators is influenced by their reliability: lower reliability results in 

system disuse, while high reliability may bias the operator’s decision making (Parasuraman 

et al., 2000). Further, automated systems assisting in the analysis stage of information 

processing provide extrapolation or prediction information over time (Parasuraman et al., 

2000). Such systems will provide damage forecasts and possible failure modes to facilitate 
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inspector’s decision making. However, this information could prevent the inspectors from 

considering alternative failure modes. Automated systems assisting in the third stage of 

information processing make a decision for the operator, one which he/she may or may not 

have the freedom to override. In the final stage, automation executes the choice of action 

(Parasuraman et al., 2000). However, a typical infrastructure inspection process does not 

involve this final stage as it usually concludes with the inspector making a decision about 

the type of the damage and proposing several strategies for resolving the issue. 

The design of automated systems for infrastructure inspection needs to consider all 

the possible interaction between automation and human inspector at every stage of the 

inspection process. For example, in the data collection or sensing stage, over reliance on 

automation may prevent the inspector from looking for data that it fails to collect. Further, 

in the data analysis phase, the inspector might not be able to make sense of all the 

information collected and presented by the automated systems. None of the articles 

reviewed here investigated an automation system supporting the decision making phase. 

However, there is a potential for developing advanced automation technologies that could 

support inspector’s decision making.     

Environmental conditions and technology limitations 

Though automation assisted systems can address the challenges associated with 

conventional inspection techniques, their application is constrained by environmental 

conditions. For example, use of UAVs poses a challenge to the operator in terms of their 

control and navigation, and UAV and underwater vehicle operation is challenging under 

inclement weather condition. In environments like underwater and indoor conditions where 
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GPS is unavailable, different navigational techniques need to be employed. In addition, the 

use of some of these automated systems is subject to regulations and guidelines set by 

federal agencies. For example, a UAV operator needs to be licensed to operate the system. 

These limitations need to be considered while designing automated systems to assist in 

infrastructure inspection. 

It may not be possible to account for such environmental and weather conditions 

while designing an automation assisted inspection system. For example, if the surface to 

be investigated is wet due to a rain, the reflectance property of the surface will be changed. 

Such uncontrollable factors might result in erroneous inspection outcomes (Humplick, 

1992). There is a need to understand how these influence errors affect inspectors’ trust and 

attitude. Further, sensors used for data collection also suffer from several weaknesses. 

Visual inspection techniques relying on color cameras will not always produce accurate 

results because, their performance depends on the availability of light. Additionally, it is 

not possible to get depth information from such images unless computer vision techniques 

are applied (Máthé & Buşoniu, 2015). Further, poor lighting conditions limit the use of 

RGB cameras in dark environments like that of tunnels and buried infrastructure (Koch et 

al., 2015). In addition, image based inspection systems fail to produce a cross-sectional 

account of the structure. For example, CCTV images don’t create a cross-sectional 

representation of the pipe structure (Kwak et al., 2007). To overcome these drawbacks, 

numerous other techniques ranging from radio waves to laser waves have been used. While 

ultrasonic and radar based technologies can be used to obtain depth information, their 

application is limited to lower depth or certain materials due to signal attenuation. Further, 
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data interpretation can also be challenging when using NDT methods (McCann & Forde, 

2001). Other alternatives such as in-pipe GPR techniques need to be considered for pipe 

inspection application (Ékes et al., 2011). However, one of the recognized disadvantages 

of this technique is the attenuation of radio waves in the transition from air to ground 

(Klotzsche, Jonard, Looms, van der Kruk, & Huisman, 2018). 

Laser scanning techniques can be successfully implemented to obtain more detailed 

information. Kwak et al. (Kwak et al., 2007) used 3D laser scanning techniques to develop 

cross-sectional profile of pipeline structure. Additionally, Khaloo et al, (2018) explored the 

use of lidar technology for the inspection of bridge infrastructure. However, they 

recognized some drawbacks to using lidar for such an application including the inability to 

place the scanner on unlevel terrain preventing them from scanning some regions of the 

bridge and the necessity of taking images from multiple scanning positions to create 3D 

model rendering data collection time consuming. There is a need to further the research in 

the domain of automated inspection to understand how these factors influence the results 

of the inspection as well as operators’ attitude and trust in such systems.  

 

 

A framework for automation enabled infrastructure inspection 

Automation enabled infrastructure inspection systems can be considered as a socio-

technical system involving both human and technology. Socio-technical systems function 

only under the involvement of human agents. Human agents are embedded within the 

system’s architecture (Geels, 2004). Figure 2.2 is an illustration of the system engineering 

https://paperpile.com/c/ZXGwnX/EPwyh
https://paperpile.com/c/ZXGwnX/EPwyh
https://paperpile.com/c/ZXGwnX/EPwyh
https://paperpile.com/c/ZXGwnX/o7v3p
https://paperpile.com/c/ZXGwnX/o7v3p
https://paperpile.com/c/ZXGwnX/Je7SR
https://paperpile.com/c/ZXGwnX/Je7SR
https://paperpile.com/c/ZXGwnX/gecPo
https://paperpile.com/c/ZXGwnX/gecPo
https://paperpile.com/c/ZXGwnX/osSLg
https://paperpile.com/c/ZXGwnX/osSLg
https://paperpile.com/c/ZXGwnX/6hINe
https://paperpile.com/c/ZXGwnX/6hINe


 53 

framework for automation enabled infrastructure inspection. It consists of a social system, 

a technical system, the inspection process and influencing environmental factors. The 

inspection process begins with the navigation of the inspection system through the 

inspection environment and ends with the inspector making decisions. Social system 

factors considered here are the human factors determinants of automation enabled 

infrastructure inspection. As mentioned earlier in this paper, automated systems were 

introduced to address the biases and drawbacks of traditional inspection systems. Though 

automation enabled inspection systems are as good as or superior to traditional inspection 

process, there is a need to consider the challenges introduced by automation as detailed in 

the discussion section. Trust in automation system, SA, automation biases, use of long term 

and working memory, attention, perception, and inspector’s skills or experience level 

(individual differences) with such systems are some of the human factors considerations in 

an automation enabled infrastructure inspection system. Further, the system interface 

displays an abstracted version of the complex events within the system (Degani & 

Heymann, 2002). Understanding users’ mental model of the system events is needed while 

designing a system to assist them (Agnisarman, Khasawneh, Ponathil, Lopes, & Madathil, 

2018).    

The technical system pertains to the technical aspect of automation enabled 

infrastructure inspection including the material technology as well as the dynamic 

knowledge requirement. Various technological system issues include the drawbacks of the 

material technology as detailed in the discussion section, as well as the complexity of the 

system. Operators’ knowledge in operating such advanced system is an important factor 
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and can be an impediment while interacting with the system. In addition, this socio-

technical system dynamically interacts with the external environment. So, the 

environmental factors such as weather condition, feature geometry, GPS reception and site 

regulations also need to be considered while designing complex automated systems. 
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Figure 2.2. A systems engineering framework for automation enabled infrastructure inspection 
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CONCLUSION 

This systematic review of literature investigated articles from multiple domains 

including civil engineering, electrical engineering, computer engineering, mechanical and 

aerospace engineering, remote sensing, agricultural engineering, and industrial and 

systems engineering. The objectives of these articles reviewed ranged from target detection 

to the development of effective navigation and control technology. However, this review 

is not without limitations. Articles were searched using a specific set of keywords identified 

from an initial survey of the literature. These keywords are not comprehensive and, thus, 

may not have successfully retrieved all the relevant articles. In addition, only articles 

investigating visual inspection techniques are included in this research. The 

generalizability of our findings may also be limited as this review included only articles 

written in English. Finally, not all the articles explained the technology and data collection 

techniques in detail. Our understanding of data collection technique, level of autonomy and 

navigation and control devices is also limited to what was explained in the article as 

reflected in the Results section of this review. Categorization of articles into different levels 

of automation was solely based on the qualitative information available in the articles 

reviewed. There was no quantitative means to accurately categorize these articles. 

Notwithstanding these limitations, this review answered the research questions 

proposed in the beginning. It is evident from this review that there is an increased interest 

in the application of automation-assisted technologies to support infrastructure inspection. 

Moreover, these research studies provide evidence that the use of automated systems can 

improve inspector safety and the efficiency of the inspection process. Furthermore, the 
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subjectivity of the inspector can be minimized with the help of algorithms that detect 

targets using the information collected by sensors, and remote or teleoperation and 

autonomous operation reduce the exposure of inspectors to unfavorable or risky inspection 

environments. However, there is a need to investigate the human factors aspects of these 

automation-assisted infrastructure visual inspection systems to better design the 

technology to meet the needs of the inspectors. Researchers need to investigate factors such 

as the inspectors’ skills, workload demand, trust in automation, and SA from an 

infrastructure inspection perspective. Though these factors have received much research 

attention in other domains, not all the results are transferable to the infrastructure inspection 

domain because the maintenance personnel are not necessarily highly skilled at controlling 

complicated inspection systems and interpreting the quantitative data produced by such 

systems. Furthermore, there is a need to extend the research to post-catastrophic inspection 

scenario. It is important to evaluate the sense-making process of the team performing post-

catastrophic inspection to inform system design. Moreover, there is a need to consider the 

limitations such as inclement weather conditions and policy regulations that prevent the 

application of these technologies in real-world conditions. To address these issues, studies 

need to be conducted under real-world conditions to ensure the effectiveness of the 

technology and its external validity. 
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CHAPTER THREE 

SENSEMAKING PERSPECTIVE ON INFRASTRUCTURE RISK-RELATED 

MENTAL MODEL DEVELOPMENT OF WINDSTORM RISK ENGINEERS 

INTRODUCTION 

Infrastructure risk assessment, the process of inspecting civil infrastructures such 

as buildings, bridges and highways, is used to evaluate their current and future states, thus 

ensuring their functioning in the long-term as well as in the event of extreme weather 

conditions (Ariaratnam et al. 2001; Lattanzi David and Miller Gregory 2017).The loss 

prevention survey, a more specific application of infrastructure inspection found in the 

insurance industry, evaluates the property of clients on a regular basis to ensure the safety 

and stability of the structure by reducing the severity of losses (Schlesinger and Venezian 

1986). Insurance companies provide several types of these loss-prevention services, 

including fire protection, windstorm and earthquake surveys based on the type of insurance 

policy.  

Windstorm inspection, a visual risk assessment survey, is conducted to identify the 

factors that might result from severe damage in the event of such extreme weather 

conditions as hurricanes or tornados  (“What is the Windstorm Inspection Program?,” 

1999). This type of inspection is generalized and is not applicable to a specific roofing 

type. This survey requires the inspecting engineer to physically go to the field and collect 

the data needed to conduct a detailed windstorm analysis.  This process is tedious and 

challenging as it requires inspectors to access a rooftop that may not always be easily 

accessible, a situation made more complicated if the client has safety regulations restricting 
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the inspectors from accessing it. In addition, the visual infrastructure inspection process 

depends on the skills of the engineer, meaning it is inherently subjective (Ellenberg et al. 

2016).  Moreover, not all the information needed may be available on the property site. In 

the absence of relevant information, inspectors are required to make engineering 

judgements and inferences based on their guidelines, further increasing the subjectivity of 

the inspection process. Finally, they may find contradictory information.  In the end their 

decision-making depends on the guidelines and assumptions applicable to a particular 

situation at the time of inspection. Past research supports the difficulty of these inspections, 

reporting that the maximum effectiveness achieved by visual inspection is only 80% 

(Newman and Jain 1995). 

In addition, as windstorm inspection is predominantly visual in nature, it can be 

influenced by the expectations generated from the inspectors’ long-term memory (Hartzell 

and Thomas 2017) as well the mental concentration needed to maintain attention, or 

vigilance, for the extended period required to complete the survey.  Past research has 

reported a decrease in the  quality of sustained attention over time, a condition referred to 

as vigilance decrement (Parasuraman et al. 1987), meaning the quality of visual inspection 

over time will be attenuated, potentially impacting the accuracy of the interpretation of 

information. These issues can be addressed to a certain extent through the use of automated 

infrastructure assessment technologies to augment the capabilities of the human inspector 

to improve the accuracy of the inspection.  For example, unmanned aerial vehicles  

(UAVs), one type of such technology that can assist in loss prevention risk inspection, can 

be equipped with sensors such as cameras, lidar, sonar, and radar to collect both 
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quantitative data such as dimensions and moisture content, and qualitative data such as the 

physical appearance and condition (Agrawal et al. 2008; Ekes 2016; Ekes et al. 2011; 

Eschmann et al. 2012; Gucunski et al. 2015). Computer vision algorithms further improve 

the efficiency of the inspection process by automating data collection and analysis 

processes, and  path planning and navigation algorithms for automated inspection 

technologies improve the inspection process by minimizing the risk to the inspector 

(Gucunski et al. 2015; Lim et al. 2014) and by reducing the time required to conduct an 

inspection task (Lattanzi David and Miller Gregory 2017). 

Though use of these automated systems can potentially enhance human capabilities 

by supporting inspectors’ sensemaking process and situational awareness, there are a 

variety of challenges that need to be considered. Controlling and managing complex 

automation systems can be a difficult task for inspectors. In addition, although such 

technologies as non-destructive sensors are capable of collecting and analyzing the data, it 

is the responsibility of the inspectors to interpret this information and ultimately make the 

decision, a process requiring specialized skills. Thus, there is a need to investigate how 

these engineers make sense of the available information in order to develop effective 

technologies and visualization strategies that facilitate their sensemaking process without 

increasing the mental demand (Agnisarman et al. 2018; Agnisarman et al. 2019).  

According to (Klein et al. 2007) sensemaking, the process of making sense of the 

information available, is a closed-loop transition between mental model formation and 

mental simulation. The sensemaking process, as illustrated in Figure 3.1, begins with 

seeking information to find an anchor to establish a useful frame, or a structure accounting 
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for the data. This frame/hypothesis/mental model provides shape to the data. Subsequently, 

more data are collected to elaborate the frame, which is then either questioned or updated 

based on this new information: if it contradicts the existing frame, the frame will be 

questioned; if it is consistent with the existing frame, the frame will be elaborated, and if 

the inspector is satisfied with the current frame, it will be preserved. One of the results of 

questioning an existing frame is reframing, a process which can lead to consideration of up 

to three alternative frames (Klein et al. 2007) to identify  the one that best fits the data. In 

this research, we investigate the sensemaking process of insurance risk engineers. In 

addition, we investigate the challenges faced by the risk engineers while performing field 

inspection tasks. More specifically, we try to determine the needs of risk engineers in the 

design of an automated system that improves the accuracy of the inspection process by 

reducing the bias and inspector subjectivity. More specifically our research questions are: 

• What are the steps involved in a typical windstorm inspection process? 

• How do risk engineers make sense of the information available? 

• What are the cues leading to the generation of initial frames? 

• How do they deal with contradictory information? 

• What are the challenges they encounter while completing a risk inspection task? 
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Figure 3.1. The Data/Frame Theory of Sensemaking (adapted from Klein et al., 2007) 

METHODOLOGY 

Past research suggests that investigating the sensemaking process is more effective 

using a qualitative rather than a quantitative approach. For example, (Malakis and 

Kontogiannis 2013) study investigating the sensemaking process of air traffic controllers 

used an interview-based research methodology to explore the framing and reframing 

process (Malakis and Kontogiannis 2013). This approach allowed the researchers in this 

study to determine the underlying cognitive processes by interacting with the engineers in 

a more immersive manner than provided by a quantitative methodology. An interview 

protocol was adopted to gather data from the risk engineers through an inductive thematic 
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approach (Guest et al. 2012). This method is appropriate if the researcher is trying to 

determine themes that help to design or improve interventions or policies without 

developing a theory. Specific to this study the subsequent analysis involved identification 

of various themes from the coded transcripts (Guest et al. 2012). 

Participants and Sampling Methodology 

This research protocol was approved by Clemson University’s Institutional Review 

Board (IRB). The study population comprised risk engineers with windstorm experience 

who were at least 18 years old as the primary objective of this study was to explore the 

needs of this population. A combination of purposeful sampling, convenience sampling 

and maximum variation strategy was used to recruit participants from one of the leading 

insurance companies that provides property insurance services. A subject matter expert 

(SME) from this company was approached to help with the recruitment and research. In 

addition, the. inclusion and exclusion criteria for participation in this study were discussed 

with the SME. To meet the inclusion criteria, the participants had to be at least 18 years 

old, have completed at least one windstorm risk inspection survey and be employed at the 

time of interview. Individuals not satisfying these criteria were excluded.  

Since the potential purposeful sample size was not large, we adopted a maximum 

variation strategy to identify individuals with maximum variations in terms of work 

experience and age. In total 10 participants (aged 24 – 63, M = 35.4, SD = 14.40) with 

windstorm experience ranging from less than a year to 20 years were interviewed for this 

study. A total of 15 - 20 hours of data was collected through one on one interviews. The 

total number of windstorm surveys they had conducted ranged from one to 1,500. This 
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sample size was decided based on theoretical data saturation, meaning data collection was 

concluded when we began receiving redundant insights (Mack et al. 2005). A similar study 

investigating the sensemaking process of air traffic controllers recruited 11 participants 

(Mack et al. 2005), while a study investigating how people make sense of unfamiliar 

visualization recruited 13 participants (Mack et al. 2005). Further information about the 

participants can be found in Table 3.1.   

Table 3.1. Demographic information of the participants   

Variable (N = 10) Number % 

Gender     

Male 8 80 

Female 2 20 

Education   

Bachelor's degree in college (4-year) 6 60 

Master's degree 4 40 

  

Data Collection 

Data were collected from risk engineers through semi-structured interviews 

following an inductive thematic approach. While the policies of the insurance company 

that we were working with prohibited us from going to the site to observe field inspections, 

a mock inspection survey was conducted on our university campus by the SME, who 

provided a debriefing on the specific details of the inspection process. The interview 
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guideline, which was subsequently designed based on the data/frame theory of 

sensemaking and the insights gained from the mock inspection survey, included general 

topics such as demographic and work experience related details. In addition, it included 

specific questions related to the windstorm inspection process, new technologies in use, 

collaboration, challenges, and the needs of the engineers. Further, a photo elicitation 

method was used to gather comments using visual images obtained from the SME and the 

Internet (Harper 2002). The images selected covered such aspects of windstorm visual 

inspection as roof condition, roof-top equipment and occupancy. Though the questionnaire 

was designed to gather insights about the sensemaking process of risk engineers, we tried 

not to guide our questions toward a theory. Prior to conducting interviews, the first author 

tested the interview guideline with the SME and made necessary changes. Additional 

changes were made to the interview questionnaire after telephone interviews with first few 

participants. Appendix B lists the interview questions used to gather data. The interviewer 

did not strictly follow this guideline. The interviewer had the freedom to change the 

questions or ask additional follow up questions based on the responses. Each of these 

sessions, which lasted between 90 and 120 minutes, was audio recorded. On an average, 

17.5 hours of responses were gathered. The participants were not compensated for their 

participation.  

Prior to the data collection, the participants were informed of the purpose and the 

potential benefits and risks of the study as well as how the data were to be used and 

published. All the interview recordings were de-identified using a participant number and 
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his/her initials. Only the first author had access to the personal and contact information of 

the participants. The consent form used in this study is shown in Appendix C. 

Data Analysis 

The recorded responses were transcribed by an external agency, then checked for 

accuracy by the first author. The transcripts were de-identified and numbers and initials 

were used as a way for the first author to identify the transcripts. Coding and thematic 

development, one of the widely used data analytic techniques in qualitative research, was 

used to analyze the transcripts (Padgett 2011). This method involves identifying and coding 

emergent themes in the data. Unlike the grounded theory method, the end product of the 

coding and thematic technique will not necessarily be a theory. However, this method 

offers a flexible way to look at qualitative data (Mack et al. 2005). A combination of 

inductive and deductive coding strategies was used to code the transcripts.  

The inductive coding process, led by the first author, used (Miles and Huberman 

1994) as a guide for the data analysis. The first step involved the identification of open 

codes from the data through a line-by-line examination of the transcripts (AlMaian et al. 

2015). Four researchers were assigned 3 transcripts each to identify initial descriptive codes 

without any preconception but keeping our research objectives in mind. The researchers 

identified 106 descriptive codes pertaining to risk inspection such as wind speed, roof type, 

guidelines, dimension and fasteners, and six attribute codes including age, gender, location, 

education, occupation and experience. While these  codes did not have any inferential 

meaning beyond the respective data segment, they helped us advance to the next coding 

step (Punch and Oancea 2014), the development of a coding schema including the 

https://paperpile.com/c/xtU526/uyQu
https://paperpile.com/c/xtU526/uyQu
https://paperpile.com/c/xtU526/eStP
https://paperpile.com/c/xtU526/eStP
https://paperpile.com/c/xtU526/w6Sx
https://paperpile.com/c/xtU526/w6Sx
https://paperpile.com/c/xtU526/w6Sx
https://paperpile.com/c/xtU526/w6Sx
https://paperpile.com/c/xtU526/KnWc
https://paperpile.com/c/xtU526/KnWc
https://paperpile.com/c/xtU526/KnWc
https://paperpile.com/c/xtU526/KnWc
https://paperpile.com/c/xtU526/YIOz
https://paperpile.com/c/xtU526/YIOz
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definition of each code and a set of code rules to be followed while coding to ensure 

consistency.  

Upon identifying the initial codes, the team members participated in an initial 

training exercise in which each person coded approximately 25% of one of the transcripts. 

The researchers were asked to label small segments using one or more codes that best 

explained the data. This training transcript was first individually coded, then coded as a 

group to facilitate discussion of individual codes in order to reach consensus. In the next 

step, the same procedure was used by the same researchers to code the transcript in its 

entirety, including recoding the section used for training.  Each transcript was coded 

individually by two researchers, and the percentage of agreement was calculated to be 

38.4% across all transcripts. However, the coders reached complete consensus after 

discussion. The codebook was updated to include any new codes and to combine or remove 

redundant or unused codes, resulting in 51 codes. During this process, the sensemaking 

framework was used as a guideline, meaning these new codes reflected the processes 

involved in the sensemaking theory such as initial cues, questioning frames and confirming 

frames. The new codes were then grouped into 17 family/group codes. Appendix D lists 

the final coding schema used for the analysis. The researchers individually coded the 

transcript again and reconvened to discuss their codes. Though percentage agreement 

across all transcripts was only 54%, 100% consensus was reached after discussion. The 

first author then reviewed sections at the request of the other researchers, and some sections 

were recoded based on the research objectives. These final coded transcripts were used for 

data analysis.  
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Each transcript was imported to ATLAS.ti qualitative data analysis software. The 

final consensus coding schema was used to code transcripts in ATLAS.ti. While coding 

the transcript, the researchers observed certain patterns among the codes, patterns that were 

used as the basis for applying the querying capability available in the software to identify 

the themes discussed in the Results Section emerging from the 51 codes. The relationship 

between codes and other moderating factors were also identified. For example, we 

investigated the relationship between experience and contradicting information to explore 

how experienced engineers make sense of contradictory data. While doing so, we also 

looked at the code cognitive skills to explore the various cognitive skills used to make 

sense of this contradicting information. Alternate relationships were considered among the 

codes and code groups to minimize the chance of not capturing possible relationships. 

Upon completing the report, the SME reviewed it to ensure and validate the correctness of 

the final conclusions. This process is illustrated in Figure 3.2.    

RESULTS 

 
Using the interview responses, a cognitive task analysis was conducted to analyze 

the steps involved in windstorm risk inspection survey, the results being reported in Table 

3.2. Then the authors applied the data/frame theory of sensemaking to determine the 

sensemaking process of risk engineers while conducting the risk inspection task, 

subsequently finding the themes of decision making based on contradicting information, 

role played by the experience level of the engineers while making judgement calls, factors 

influencing decision making, challenges faced by risk engineers and potential technology 

interventions. Though the results are mainly explained using roof inspection examples, the 
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windstorm risk inspection process is not just limited to roof inspection. Table 3.2 illustrates 

the detailed list of tasks involved in windstorm risk inspection survey. 
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Figure 3.2. Data analysis process 
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Table 3.2. Cognitive Task Analysis 

Task Task 

knowledge/requi

rement 

Potential problem Potential risk Cognitive process 

1.0 Wind 

velocity 

    

1.1 Obtain wind 

velocity from 

wind data sheet 

 Do not know how to interpret 

wind data 

Missile impact Judgement 

Analysis 

2.0 

Landscaping/en

vironment 

    

2.1 Look for 

possible 

missiles 

Relate wind 

speed and 

missile impact 

(working 

memory) 

Failed to relate wind speed 

and missiles 

Not assessed properly 

Missile impact 

Flood 

Inference 

Judgement  

3.0 Identify 

building 

envelop 

construction 

   Judgement 

3.1 Roof Identify roof 

type (from long 

term memory) 

Identify potential 

damage based on 

Misidentification of the roof 

Failed to recall the potential 

damage from long term 

memory 

Roof 

Membrane/Type 

Damage 

Judgement 
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the type (from 

long term 

memory) 

Observe positive 

and negative 

factors (cracks, 

bubbles, 

parapets) 

Type of material not 

available  

Wrong call based on positive 

and negative features 

Failure to obtain necessary 

information (attachment, 

details, etc.) 

3.2 Attachment  Observe how the 

roof is attached 

to the structure 

Use building 

drawings (if 

information is 

not available on 

site) 

Recall from 

long-term 

memory based 

on past-

experience 

Assume based on 

past-experience 

Impossible to see the 

attachment 

Failed to judge if it is 

properly attached 

Information not available 

Poor judgment in the absence 

of data 

Availability heuristic (bias) 

Roof Tear off 

Roof Tear over  

Deck tear off 

Deck tear over 

Judgement  

Assumption 

 

3.3 Walls Observe general 

condition of the 

wall (attention) 

Attachment not seen 

Lack of information 

Missile impact 

Puncturing  

Judgement 

Inference 
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Type of the wall 

(recall from long 

term memory) 

Attachment 

(properly 

attached to the 

structure)_type 

of attachment if 

seen properly, 

else building 

drawings or 

assume 

Take 

measurement  

Calculate 

pressure 

resistance 

(decision making 

based on 

guideline and 

past knowledge) 

Use guidelines 

Poor judgment in the absence 

of data 

Overlooking wall condition 

(inattentional blindness)  

 

3.4 Windows Observe general 

condition 

(attention) 

Overlooking wall condition 

(inattentional blindness) 

Missile impact 

Potential to be 

destroyed 

(pressure, seals) 

Judgement  

Prediction 
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Read the 

manufacture 

label (not 

available—

drawing or 

assume) 

Predict the risk 

based on the 

wind velocity, 

dimensions and 

property of 

material 

(working and 

long-term 

memory) 

Take dimensions 

Poor decision making (Not 

utilizing assumptions 

correctly) 

 

allowing water to 

enter 

3.5 Dock 

doors/large 

doors 

Observe general 

condition 

(attention) 

Read the 

manufacture 

label (not 

available—

drawing or 

assume) 

Overlooking wall condition 

(inattentional blindness) 

Poor decision making 

 

Missile impact 

Potential to tear/be 

destroyed allowing 

water to enter 

Judgement  

Prediction 
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Predict the risk 

based on the 

wind velocity, 

dimensions and 

property of 

material 

(working and 

long-term 

memory) 

Take dimensions 

3.6 Rooftop 

equipment 

Observe general 

condition of the 

roof equipment 

(attention) 

How is it 

attached to the 

roof (predict the 

risk based on the 

attachment 

method) 

 

Overlooking the equipment 

condition (inattentional 

blindness) 

Poor judgement in the 

absence of adequate data 

Potential missiles 

Potential to rip the 

roof membrane and 

deck allowing 

water to enter 

Judgement 

Inference 

3.7 Occupancy 

& construction 

    

3.7.1 

Occupancy 

Observe the 

machinery, stock 

Poor decision making based 

on the occupancy 

Water/wind 

damage 

Judgement  

Inference 
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and supplies and 

finished storage 

Decide high 

hazard or light 

hazard based on 

occupancy  

Unable to assess the value of 

the items/items description 

unavailable - poor judgement 

Based on 

occupancy, storage, 

equipment, etc., 

damage could be 

higher or lower 

3.7.2 

construction 

  Water or wind 

damage 

 

3.8 Emergency 

response plan 

Observe pre and 

post storm 

activities 

Relate it to other 

existing 

information to 

evaluate its 

effectiveness  

Pay attention to 

negative factors 

such as island 

and remote 

locations 

Failed to factor in other 

negative factors 

Potential damage 

in the absence of 

emergency 

preparedness plans 

 

4.0 Post survey 

activities 

    

4.1 Analyze 

building 

construction 

Calculate 

pressure 

resistance (Is it 

Poor judgement 

Do not know how to use the 

guideline 

  

Analysis 
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actually pressure 

resistance?) 

Make inferences 

based on the 

information 

available in the 

guideline and 

long term 

memory (long 

term and 

working 

memory) 

Expectancy 

(know where to 

find information 

in the guideline) 

Knows how to 

use the 

guidelines 

Do not know the 

calculation/do not know 

where to plug in data in the 

software 

Do not know how to interpret 

the results 

4.2 Develop 

recommendatio

ns 

Check the 

feasibility of 

recommendation

s 

Analytical skill 

Proposed infeasible 

recommendations (cost wise) 

Poor judgment 

Poor decision making  

Unnecessary cost Analysis 

Judgement 
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4.3 Loss 

expectancy 

development 

Assess wind loss 

expectancy now  

Assess wind loss 

expectancy if 

recommendation

s addressed 

Analytic skills 

Math skills 

Not calculated properly, not 

using guidelines properly 

Under or over 

calculate the loss 

expectancies 

Analysis 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Sensemaking Process of Risk Engineers 

As in any sensemaking process, the windstorm risk inspection process begins with 

seeking information to find an anchor for developing useful frames. This process begins 

before the engineers physically go to the site to collect data. Building codes and ASTM 

standards concerning wind specific information are used to identify the wind zone 

requirements and wind speeds for the specific location being inspected. In addition, the 

clients are contacted to obtain general information about the site such as the type of the 

facility, its operations and its occupancy. Below are some of the comments by the engineers 

about the pre-survey process: 

 “Let's see, it [inspection process] is partly done by researching ahead of 

time, one of the things we do well is obviously before we go out there is 

simply just try to understand what we are actually looking at, what is the 

occupancy but also what is [sic], how many buildings there are, and where 

does it change between a day's of construction as such.”  
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A Google map is used to obtain the building dimensions, site condition and surface 

roughness. One of the participants pointed out how they use Google to support the pre-

survey activities: 

“Google App might just be like the starting point, to just give an idea of what 

to expect.” 

The objective of this pre-survey activity is both to obtain a general understanding 

of the site being inspected to form the initial anchor or perception and to aid the engineers 

in planning the risk inspection strategy. For example, based on the information collected 

from Google images on the type of the roof, they decide the initial type and number of 

dimensions need to collect.   

 This anchor or initial frame is elaborated based on the new information collected 

during the site visit. The inspection involves a visual inspection for collecting both 

quantitative and qualitative information as well as reviewing documentations such as 

building drawings and manufacturing information, which they access when they visit the 

site. The quantitative information obtained includes the physical dimensions of the roof, 

the building envelope (windows and doors) and the fasteners to verify the information 

obtained from Google and building drawings. The physical dimensions of the roof and 

envelop are parameters affecting wind resistance, a quantitative measure of interest to risk 

engineers. A safety factor, a measure of wind resistance based on the dimensions, is 

calculated, as one engineer explained:  
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“I’ll go through and make measurements to follow up on that and to verify 

what they have on the blueprint is the same thing that is actually finding at 

the building itself” 

As another participant commented on collecting more information to elaborate their 

initial frames:  

“It's kind of on the fly because when you are out on the field, there are 

instances where you are unable to determine ahead of time which means 

you'd be looking at whether you have to do the analysis or you're just 

handling something differently.” 

And a third emphasized the importance of this step in the process: 

“You have to get as much information as you possibly can on what is there 

to keep from making a biased decision like that and just running past real 

quick, moving on with something else. You need to find out for sure what's 

there as possible.” 

In addition, various non-visual techniques such as knocking on materials, jumping 

on the roof, applying force on structures by pushing and pulling, and dragging a foot across 

the rooftop are also used to elaborate the frames. As one participant explained: 

 “When I'm checking flashing, I will actually pull on it to see how well it's 

secured, if it's sealed. I'll push my foot along, if I'm not sure if it's a PTO roof 

and it's mechanically fastened or fully adhered, I'll rub my foot along there 

to see how the material reacts to that. There's some little things like that that 

can be done that I will use.” 
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The new information gathered during the site visit either corroborates or contradicts 

their expectations or mental model. For example, if the physical dimension contradicts the 

Google map or the building drawings, or the fasteners are not well secured, the data are 

challenged, and the questioning process begins.   To continue using our example of roof 

dimensions, if the roof dimensions such as fastener spacings and envelope dimensions are 

acceptable, the questioning process is initiated by the detection of damage on rooftop. 

While questioning the frame, the engineers gather qualitative information about the site to 

further challenge the frame. This process of questioning and reframing is a recursive one 

involving continuous data collection. When the engineers encounter an anomaly such as 

stagnant water on rooftop that could be caused by various factors such as an incorrect slope, 

a clogged drain or a leaking pipe, they begin comparing these new alternative frames: 

“[Ponding could be due to] drain but also the slope of the roof so that is just 

from installation. You have to see that [sic] the edge of the roof and not just 

the middle. I don't know. It could also be a leaky pipe or a leaking AC unit.” 

This process of considering alternative causes for pooling on rooftop is further exemplified 

by a second engineer who comments that 

“Well, mostly from experience. I would say that I've seen a lot of ponding 

and most of the time, it's because of there's a blocked drain. There's grass, 

there's weeds. And then some other times, it's just because basically that the 

roof's slope is just bad but there's -- the drainage is not existent. There's 

really no drainage at all.” 
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Though in these two comments, the process of elaboration and questioning of the frames 

appears to be linear, these two processes can happen simultaneously as well. During the 

elaborating process the engineers may encounter contradictory information that results in 

questioning the information and reframing. Based on the information collected, the frame 

will be either preserved or rejected, leading to the process of reframing. Though we 

explained the entire framing and reframing process using the scenario pertaining to roof, 

the engineers evaluate other aspects of the site using the same approach. The sensemaking 

process involved during various stages of windstorm risk inspection task is illustrated in 

Figure 3.3. 

 

Figure 3.3. Sensemaking process involved in windstorm risk inspection survey  
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Making Decisions Based on Contradicting Information      

When making sense of the information, engineers often encounter situations in 

which various pieces of information contradict one another.  Risk engineers referred to 

these contradictory pieces of information as positive and negative factors. When making 

sense of these factors, they consider other factors in their guidelines such as wind 

information, building occupancy and location, and wind exposure. When the interviewer 

asked them how they made sense of positive and negative factors using the example of a 

safety factor calculated based on roof dimensions contradicting the qualitative appearance 

of the roof, we observed a difference in the sensemaking process of the engineers. Some 

participants seemed to be conservative, basing their frames on the negative factors, 

ultimately preserving their frame that the roof condition was bad without questioning or 

elaborating it: 

“The fact that we get on this roof and it looks bad, it looks poor. That would 

override our safety factor said it's adequate.” 

This conservative is supported by a second participant’s assessment: 

“I tend to be more conservative. I would lean towards the one that's showing 

that it's inadequate and have them--” 

The observation about making conservative decisions is again supported by the following 

comment:  

“The fact that we get on this roof and it looks bad, it looks poor. That would 

override our wind tool said it's adequate. Going to seeing how it's in poor 

condition, that would nullify the other part of information we would have for 
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the right-- I would-- even on paper it said it was adequate, the roof was 

sound. We even look it up here with all these issues with the water and the 

delamination. I will still make a recommendation.” 

However, some participants tried to gather more data to further analyze the situation, thus 

questioning their initial frame to identify if one factor outweighs the other. The process of 

weighing quantitative safety factors with a qualitative roof condition is exemplified in the 

comment below: 

 “In certain cases, depending on what is positive and what is negative, one 

will outweigh the other but that just depends.” 

Their process of outweighing one factor over the other is further explained in this comment: 

“The [acceptable safety factor] is 1.3 so let's say if I do my calculations 

based on the quantitative information and I make -- and the safety factor is 

something like four or something like that, then the quality of the roof is 

really not that much of a factor. And so if 1.31 or it's just barely passing 

something like that but I know it is a bad roof, then I would lower it down 

and then make a recommendation” 

Some engineers even recommended further testing to determine the condition of the roof 

before confirming their frames: 

“I think, let's just say if 20% of the roof needs to be damaged in order to 

justify replacing the entire roof and so I would do some type of uplift testing 

or recommend a moisture barrier test. If the client says, "No, our roof is 
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completely fine," but I did see signs of damage, I would say, "You need to 

reevaluate that and get that approved by a certified roof inspector.”” 

Another example of a situation in which the engineers may have to make sense of 

contradicting information is the resurvey. When engineers return to a site for a resurvey, 

they have access to the previous inspection report. If the information in the report supports 

the current site condition, their anchor frame based on the past report will be elaborated 

and the frame will then be confirmed. One engineer explained this situation, saying 

“Yeah, yeah. You always look at everything and you are just trying to 

confirm that all the rest of the report is fine. 

In the comment below, another engineer more fully explains the process of conducting a 

resurvey to confirm the recommendations in the past report: 

I would go in and ask first of all, has anything changed since I was here last. 

If they say 'yes', we focus more on those areas, if they say 'no', then it’s a 

much general quicker walkthrough and focusing on the recommendations 

that were made in the past to see if a compliance was made. 

As these comments suggest, this engineer focuses on changes that were made since the 

previous inspection. 

However, if the pre-survey report contradicts the current site condition, the questioning 

process initiates and the engineers investigate the reason behind this disparity. Based on 

the information collected from the site, the frame is updated or a new frame is developed. 

The following comment explains the engineers’ questioning process if there have been any 

changes since the last inspection: 
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“You could have 10% of the roof from some outer edge that was 

compromised and we can check the old report and say, "Okay, yes. The 

corner of the east-most building safety factors were not adequate. But that 

was not actually the one that failed so let's figure out what's going on with 

the tool. Is this just a fluke? What's going on?"” 

In this situation, the engineers investigate the site again to detect any further damages or 

information that is not mentioned in the previous inspection report: 

“Yeah, yeah. You always look at everything and you are just trying to 

confirm that all the rest of the report is fine. If something looks different or 

anything like that [sic] but yeah you just want to confirm that everything is 

okay and then the other thing, we look at the roof if it's [worse] than last 

year, it’s getting deteriorated and things like that. But yeah it's more like a 

confirming [sic] and putting it again in the report.” 

Without further questioning and elaborating the initial frame, there is a chance 

engineers may make biased decisions when faced with contradicting information. To avoid 

this situation, they use their judgement skills while elaborating, questioning, reframing and 

confirming the frames as they weigh various factors associated with contradicting pieces 

of information.   

Effect of Engineers’ Experience Level while Making Judgement Calls 

Though the engineers complete the inspection process following a standard protocol, their 

sensemaking process varies depending on their experience level. The experience level of 

the engineers interviewed in this study ranged from under a year to 27 years, with a few of 



 87 

them having completed hundreds of risk inspection surveys. Since each inspection site is 

unique, no two buildings probably have the same roof or structural features, meaning even 

experienced engineers sometimes encounter unexpected situations as the participant 

comment below indicates:  

“That's one of the issues with wind there's a lot of variables and so I think I'm 

really comfortable like I am with certain roofs, and they might be very 

common roofs as well, but then I could still look at a site and have no idea 

what I'm looking at possibly.” 

Though this engineer is experienced and comfortable with a variety of roof types and 

structural features, he/she still encounters unfamiliar structures; however, experienced 

engineers are better equipped to deal with such situations.  

When dealing with an unfamiliar or even a familiar situation, engineers have to make 

judgement calls based on the experience they have gained through their work on previous 

sites.  For example, according to  an experienced engineer, there is no set rule in the 

guidelines that helps the engineers assign relative weights to various positive and negative 

factors in this process. He concluded saying:  

“At the end of the day, it’s a judgment call but all those factors should weigh 

into the engineer’s mind as to how much credit to give something. Like I said, 

it’s never a perfect science but the more you can narrow that distribution 

curve, the better your assessment is going to be.” 

A second experienced engineer explained this process of assigning weights to positive and 

negative factors this way:  
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“With our guidelines we get some that are lifted out, which ones you should 

consider positive or negative factors. But there's no real science in terms of 

how much credit you might give them. That comes down to as we want to go 

through with engineering judgment whereas you have to make a judgment 

call yourself.” 

Although as this engineer indicates the process is not a perfect science, it becomes easier 

as the judgement calls become more accurate with the experience:  

“But the biggest thing is experience over time, giving different weights to 

different things and knowing the values of some. And learning how -- from 

loss lessons how to make those judgments.”  

As a result, the experienced engineers can consider multiple alternate frames before 

finalizing one and coming to a conclusion that incorporates information both from the 

guidelines and their experience level. As one engineer explains, their judgement is the most 

important skill when trying to make a fuller frame based on limited information: 

“We need to have certain engineering judgment and just the cause in 

determining what should we assume for this type of situation because you 

don't have any information otherwise to go to.” 

“Being able to know the picture of something that honestly, you're probably 

not going to get clear-cut data for so just inferring the data from what you 

can see and what you've learned from the client. You really got to build your 

own image and piece together the puzzle from very limited known data and 
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you've got to make a lot of decisions without knowing exactly what the 

answer truly is.” 

As these responses suggest, experienced engineers develop a mental 

model/hypothesis as accurately as they can based on their experience and their 

observations. Then before arriving at a conclusion, they consider alternative frames to 

identify potential causes for any damages they observe. Thus, they are more likely to avoid 

confirmation bias, the tendency to seek evidence supporting a preconceived belief or one 

based on limited information, than an inexperienced inspector who may not be able to 

question the frame or consider alternative ones. 

To investigate the importance of experience further, we asked our participants 

about the different reasons for stagnant water on a rooftop. One of the responses is below: 

 “I would say that I've seen a lot of ponding and most of the time, it's because 

of there's a blocked drain. There's grass, there's weeds. And then some other 

times, it's just because basically that the roof's slope is just bad but there's -

- the drainage is not existent.”  

This experienced engineer can come up with three possible reasons for stagnant 

water on a rooftop based on observation.  However, novice engineers may not always be 

able to come up with alternative frames and think through the various consequences of 

their decisions. One engineer explained the difference between the ability of a novice and 

an experienced inspector in questioning a frame, saying 

“That's where it kind of separates the experts and the amateurs, because you 

have to really think about what are all the consequences of this. You have to 
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think through the whole thing and be able to defend your argument, because 

you can't fall back to a code or guideline to back you up in your decision 

making because it's all you.” 

When thinking through various alternatives, the engineers have to defend their conclusion 

by thinking of the possible consequences of their decision. This assessment of experienced 

engineers is potentially more accurate than that of a novice even in the absence of 

information: 

“There are times that I have to make assumptions based off of my experience 

level. There’s times that I cannot make measurements, and I don’t have 

blueprints. Just from experience I'm able to make a good estimate of what 

something-- how far apart joints are, or how far apart, the panels are 

mechanically bad. There are ways to use my past experience level in 

recognizing what I'm seeing and making a very good estimate off of that.” 

This engineer can make reasonable estimates of joint spacing and dimensions even 

when if he is unable to take the measurements or cannot consult blueprints. 

While the diversity in site conditions, the lack of information and the tendency for 

confirmation bias make it difficult to complete the risk inspection process with highest 

accuracy, the engineers can rely on their experience level to arrive at accurate assessments. 

Each inspection brings a unique opportunity for risk engineers to enhance their ability to 

make sound judgement calls, a skill that, developed over time, plays an important role in 

risk engineers’ sensemaking. The importance of experience was best explained by a novice 

engineer: 
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 “The more experienced guys like [name] and [name], they are going to be 

able to make more hypothesis, more than them-- they probably know more 

or less when something looks wrong. It's probably wrong, or when the maths 

wrong. Me, on the other hand, I don't really have a lot of experience yet, 

though I always have to go back and double check my numbers”   

Factors Affecting Engineers’ Decision Making 

While engineering judgment and experience level play a role in the domain of risk 

inspection, the decision making process of risk engineers also depends on various internal 

and external factors. We divided the most important factors influencing this process into 2 

categories, internal biases and external biases; the former are those biases inherent in the 

risk inspection process such as the ones introduced by the use of checklists or past 

inspection reports, while external biases result from external factors such as weather 

conditions, building codes or individual differences. All of these factors impact the mental 

models of the engineers and, hence, their perception of information. 

Both experienced and novice engineers are affected by internal biases as they are 

inherent to the inspection process. For example, the availability of past inspection reports 

for the site for they are to resurvey can influence their decision making, especially if they 

do not complete a full inspection because of they do not have this access or they cannot 

confirm the past report. One participant explained how the lack of a past inspection report 

can bias decision making: 

“That's one thing that could bias your report definitely. If you're really 

reliant on your previous information and you don't go through the process 
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of visiting all the roofs and checking that everything looks good then, yes, 

you could overlook something for sure.” 

Moreover, the experience level of the engineer who conducted the past inspection 

can influence the resurvey process. If the report was written by an experienced engineer, 

subsequent engineers may place a high trust in the information, a situation that could 

influence the thoroughness of their inspection process. However, if the engineer was a 

novice, the engineer conducting the resurvey would not have complete trust in the 

information. As one participant explained 

 “One thing, you need to look who did the report. If it says a specialist did 

the report, I will have a bias and say that the report is good. If I knew a guy 

with 3 months of experience did the report, I'm going to say the report, maybe 

is not as good. Maybe it is good, maybe it is not” 

Even if the experienced engineer who conducted the past inspection made several errors, 

the engineer conducting the resurvey may not always question the earlier report, resulting 

in errors in the new one as well.  

In addition, internal bias can also be introduced through the checklist used to ensure 

a complete and methodical survey as it lists all the steps required and the dimensions 

needed. However, our participants expressed mixed opinions about the use of checklist 

when asked if it biased their inspection process, with various engineers commenting on the 

advantages of using a checklist:  

“No, nine out of 10 times you want to say no [they don’t bias it]” 
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“No, I would say that they usually help. They don't really affect my decisions, 

they affect my level of collection -- data collection. I don't think they bias it, 

I think they improve it.” 

“No, not really. It just helps me stay on track and systematically ask 

questions, rather than sporadically skipping around and potentially 

forgetting to ask something.” 

“No, I don't think it would bias me to miss something, or change anything. 

It's pretty generic. I don't think it would negatively affect the survey.” 

However, not all participants agreed that using a checklist improves their inspection 

process, indicating that they believed it biased their process and decision making: 

“Checklist can be good or can be bad, because if you give me a checklist, 

you can miss something that is not on the checklist” 

As one participant further explained:  

“It could if you're solely looking for the information that you listed and not 

trying to find anything else, then, yes, it could.” 

As these comments suggest, the inspection process can be constrained by the use of a 

checklist.  

In addition to internal biases, the engineers are affected by biases introduced by 

external factors or inspecting engineers, for example the use of manufacturer information 

and building drawings. If the engineers rely on building sketches and manufacturer labels 

for required information rather than taking actual measurements, they may arrive at biased 

conclusions. Just because a manufacturer label is approved by building codes does not 
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mean that the structure is going to withstand extreme weather conditions as its structure 

under such conditions depends on various other factors discussed in this article. As one 

participant explained: 

 “You may have building plans that say this roof is built to survive a category 

four hurricane here in Orlando, but then it's installed improperly.” 

Furthermore, engineers in this study discussed common misconceptions about such 

manufacturing labels: 

“The biggest thing is that people get the common misconception about wind 

rated windows. That just, because you may be in Tampa or you may be in 

New York or you may be in South Carolina, you can get Miami-Dade County 

windows. They're approved, because Miami-Dade County is one of the best 

windows you can buy. That's a common misconception.”  

These two comments emphasize the bias resulting from basing decisions on manufacturer 

labels. 

Other external factors influencing the decision making process are the 

hypotheses/assumptions the engineers develop based on their mental models. A key factor 

affecting this model is the critical cues they perceive that generate their hypotheses. For 

example, wind speed is critical information:  if the property is located in a high wind speed 

region, the engineers may arrive at conservative conclusions and recommendations. One 

participant discussed how the inspection strategy and framing process is influenced by the 

wind speed value: 
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“We have internal guidelines depending on what the wind speed is on what 

exposures we have, whether it be small missile, or large missile exposure. 

Depending on the values of the building, will determine whether or not a 

basic level or an advanced level wind survey is complete.” 

An additional participant explained how the wind speed value affects the recommendation 

concerning fastening a structure on the rooftop: 

“It looks like there are some bolts going into the base of the structure on top 

of the building for this sand and bit. I would likely say yes, but it does depend 

on if it is at higher wind speed area. I may recommend that they have guy-

wires, secured down to the structure member underneath the bed.” 

Structures in higher wind speed areas require additional securement as the wind can lift 

them from the rooftop, causing additional damage to both the rooftop and the neighboring 

buildings. 

However, a number of other factors also need to be considered when making 

decisions based on wind speed to avoid bias. Though wind speed is pivotal in deciding 

missile exposure, engineers, especially the experienced ones, tend to consider other factors 

such as surface roughness, proximity to other loose structures, landscape and land type 

(whether inland or coast) as explained in the following comment: 

“When I get into where I figure out what the wind speed is, in my head I'll 

kind of have an idea of if it's going to be a really big exposure to this site or 

it may not be. I went to a facility, last week actually they had a 105 mile an 

hour wind speed and there are really no small missile impact exposure, there 
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were no storm surge though it was that hint of a exposure. Compare it if you 

go to do Miami or Key West.”  

As this engineer explained, other factors such as exposure and the possibility of storm surge 

also need to be considered.   The comment below further explains how exposure affects 

the decision making: 

“We have surface roughness. If you have wind speed-- for example, if you're 

in a coastal location and you're right on the beach and you have a hurricane 

coming, you don't have anything to block its pressure. “ 

As these engineers indicated, they are required to investigate many different factors 

before coming to a conclusion, these key factors helping them develop a mental model 

about the current site condition. This mental model will help them analyze the data and 

propose recommendations to improve the resilience of the structure in the event of extreme 

weather conditions. Since this mental model is highly subjective, the interpretation of the 

data based on it and engineering judgement could vary from person to person. These 

individual differences may result in different interpretations of the same site, impacting the 

consistency of the inspection and the subsequent recommendations, especially because the 

skills of the individual inspectors depend on their experience level. This subjectivity affects 

the accuracy of their findings, making it difficult to compare reports across inspection sites: 

“Everybody interprets everything differently, so I think if five people went 

out there, or 10 people went out there, you'd get 10 different viewpoints, and 

probably most of them would be very similar, but the fact is, you would have 

ten different viewpoints” 
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As with any manual inspection task, the issues introduced by internal or external factors 

make the windstorm risk inspection process a subjective one. 

When asked about how they would address the biases introduced by factors 

including, but not limited to, their expectations, manufacturer labels, building codes, 

guidelines and past inspection reports, the participants emphasized they try to complete the 

inspection process in its entirety.  In addition, they are they are trained to avoid the biases 

introduced by these factors as they complete their inspection process, offering such 

strategies as: 

 “I'm not sure if those approvals [wind ratings] are enough as it is. Those 

approvals should be-- I don’t know where I’m going with that, but I will try 

to get more information to see how it's attached, to see if it winds up with 

what the navigation tool is how it should be attached.” 

Another participant advocated for the need to double check the information collected, 

saying 

“That's why we are there to double check and why we've got a review team. 

Because it's only designed as good as it's installed. That's why these placard, 

they may look good on paper, but at the end of the day, it's going to be 

completely wrong.” 

In addition to collecting further information and checking the safety of the structure even 

if it meets the building codes, engineers also address the biases introduced by the past 

inspection reports: 
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 “Of course, it's not that we doubt our own employees, but as engineers, it's 

always just good judgement to, you could actually try to verify everything 

yourself. If you verify everything, then of course you can-- that's great, 

because you can just pretty much go with what the old report because you've 

verified it.” 

A second engineer echoes this comment: 

“But I would say biasing, you probably either got to be a lazy engineer or 

naive engineer because I don't really think engineers are going to be biased 

based on the information they're given. Because at the end of the day, that's 

your entire job, writers, to write a report that's as accurate as you can” 

Though the engineers are subject to various internal and external biases, experienced 

engineers are better equipped to address them by confirming the information gathered with 

alternative frames and critically analyzing the consequences of their decision.  

Difficulty developing the mental model of the future state 

Difficulty in developing a mental model for the future state of an infrastructure can 

be attributed to two primary factors. The first factor is the information overload caused by 

the large amount of data collected as it is difficult to analyze all of this information to arrive 

at a meaningful conclusion. The second reason is that the risk inspection process involves 

predicting what is going to happen to the infrastructure in the future without any reference; 

as with all humans, the ability of engineers to foresee the future is limited.   

When the inspection is completed, the engineers may have obtained a large amount 

of complex data from the site through images and notes, information potentially relevant 
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as well as irrelevant.  First, the engineers have to sort through both the quantitative and 

qualitative data they collected from the site, followed by analyzing the information and 

writing the report.  They use an internally developed proprietary tool referred to as wind 

tool to analyze the quantitative information collected to determine the load the building can 

safely handle. This calculation is based on such important factors as building location and 

age, wind information, and missile exposure, as well as several other characteristics. These 

various factors are triangulated to derive meaningful conclusions from the data, a 

challenging task for the engineers. This step requires them to apply their experience and 

engineering judgement to complete the mental model. Even experienced engineers agree 

that analyzing these data can be challenging: 

“There was just so much information they had there to look at, to evaluate 

for, you know, that was a 10 hour long survey” 

Novice engineers find it especially overwhelming to analyze the data and write an 

inspection report as seen in the following comment discussing the challenges they face: 

“I had a really rough time writing this report. It was six different roofs and 

I'd only ever done two of those roofing systems then it was all new, it was my 

fourth written report ever. It was a lot of analysis, it was pretty complicated. 

My experience level is very low and so I found it very difficult. It was like 

drinking water from a fire hydrant, it was a lot of information.” 

In addition, according to a second novice engineer, they do not get any training on writing 

this report, meaning they have to learn it on the job: 
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“I never went through any training, aside from following along with people. 

So sitting down and trying to figure out how to write all of that for the first 

time was challenging without help from somebody that could actually sit 

there right next to me, and be like, “Hey, this is how you do this””. 

One of the important components of this report is the recommendations the 

engineers propose for the deficiencies they observed based on a feasibility criterion of 1:10 

cost-benefit ratio. To compute this ratio, the engineers need to project the loss in the event 

of an extreme weather condition and compare it against the savings the client could realize 

by implementing the recommendations the engineers propose. Therefore, essentially this 

report is their future mental model. However, predicting the status of the infrastructure in 

the near future can be a challenging task for risk engineers because they seldom receive 

feedback on the results of their conclusions and recommendations. In addition, it is not 

guaranteed that the clients follow through with the recommendations the engineers make. 

They can check the accuracy of their report only when they conduct a post-catastrophic 

loss investigation process, comparing their future mental model with the actual result from 

an event and, based on this comparison, updating the inspection process and guidelines as 

needed. However, they rarely are able to make this comparison because neither hurricanes 

nor tornadoes are frequent occurrences. Moreover, for novice engineers with limited risk 

inspection experience, developing this future mental model is challenging as the ability to 

predict the future of the system, an important skill for risk engineers, requires being able 

to critically analyze the current status and to propose recommendations. 

Potential technology interventions  
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One potential way to achieve an accurate prediction without a catastrophe is to 

incorporate technical visualization strategies to help the engineers predict the future of the 

infrastructure. Currently, although risk engineers do not use a technological interventions 

extensively, one potential strategy is the use of 3D immersive simulations to help with 

these predictions. Such virtual technologies have been used in various civil engineering 

applications to visualize site information (Atherinis et al. 2017). For example, Jáuregui et 

al. (2005) explored the possibility of virtual reality in a  bridge inspection application,  

using a QuickTime Virtual Reality system to aid inspectors in reviewing the condition of  

the bridge  as if they were at the site. The potential of such systems in the domain of risk 

inspection could be explored. Although it would be impossible to physically feel, knock 

on, or pull the structure, engineers could observe things more closely and safely in a 3-D 

environment. 

In addition, such virtual environments avoid the need for physically accessing the 

roof, a difficulty all of our participants reported facing.  When asked about using 

technologies to address this issue, they responded 

“Now, we have the drone capabilities, so even if it's not safe for us to 

physically get on the roof, if you're drone certified and not in a restricted 

airspace, you could always fly the drone up and get pictures that way as 

well.” 

The ability of drones to supply these pictures was supported by another participant: 

“Some people have been trained in flying drones. We're able to take pictures 

that way.” 

https://paperpile.com/c/gYXuvN/ooTyf
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https://paperpile.com/c/gYXuvN/AIXBw
https://paperpile.com/c/gYXuvN/AIXBw
https://paperpile.com/c/gYXuvN/AIXBw
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A third participant focused on the fuller perspective that this technology makes possible: 

“Well, it can give us different viewpoint, and that's probably the biggest 

needs, different viewpoint and allows you to-- I mean, in theory, it could 

potentially-- if we could get like drones in particular, to the point where we 

wouldn't go up on roofs, it could save the time of going up there yourselves. 

I know they have very high-quality cameras on them but you have to be 

careful about how you observe things through the drone and make sure to 

get all the correct information.”  

As these comments suggest, our participants viewed unmanned aerial vehicles (UAVs) or 

drones as a convenient tool that can be used in windstorm risk inspection, one that enhanced 

the safety of as well as the information obtained during the process.    

Although promising, several factors limit the use of drones in risk inspection 

including unfavorable weather conditions, air space restrictions and the lack of skilled 

operators. In addition, it is difficult to obtain accurate dimensions when using a drone for 

data collection. Currently, image stitching algorithms are used to obtain dimensions from 

the images taken by UAVs. However, the results of this method may not be as accurate as 

taking physical dimensions. The engineers hope to augment drones with infrared and 

thermal imaging techniques in the future to collect detailed information about the 

inspection site. These techniques would help the engineers detect the presence of moisture 

on rooftop and observe different layers of the roof. Moreover, various computer vision 

techniques can be used to accurately predict the state of the current system by potentially 

minimizing the subjectivity associated with the manual inspection procedures. 
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DISCUSSION 

The results of this qualitative research have demonstrated that the sensemaking process of 

the risk engineers is complex due to a variety of factors ranging from the experience level 

of the engineers to the environmental conditions. Humans tend to generalize data gathered 

from non-representative sample (Khasawneh & Ponathil, 2018; Ponathil et al., 2017). 

Experience is an important factor that prompts engineers question their data to ensure they 

are addressing any biases. Each inspection survey has been a learning experience for them, 

serving as an opportunity to expand their knowledge of roof types, occupancy and missile 

exposure. The risk inspection process requires the generation of hypotheses and 

questioning to test their accuracy of their information and knowledge.  The very nature of 

this job makes any technological interventions that provide the users with several 

alternative hypotheses futile (Klein, Moon, & Hoffman, 2006a) because such technologies 

would inhibit risk engineers from elaborating and questioning their frames. However, it 

would be beneficial to develop systems that assist framing and reframing by making data 

collection easier. For example, for inspecting inaccessible areas of a property, a mixed 

reality system could be developed to simulate the real-world condition. Such a system 

would help engineers by guiding their sensemaking process and by avoiding the need for 

drawing conclusions solely based on guidelines. Furthermore, such intelligent systems 

could assist novices by guiding their sensemaking process.  

When elaborating frames, comparing alternative ones is an important skill for a risk 

engineer. However, novice engineers may not always consider all potential alternative 

frames because of issues in developing accurate mental models. For example, water 

https://paperpile.com/c/Khb32o/qjlfm+qFnm
https://paperpile.com/c/Khb32o/qjlfm+qFnm
https://paperpile.com/c/Khb32o/4Uf5
https://paperpile.com/c/Khb32o/4Uf5
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pooling on the rooftop could be caused by a variety of reasons ranging from rain to an 

improper slope. However, a novice engineer may fail to consider all reasons when critically 

analyzing the situation.  An automated system could help such engineers by guiding them 

through the sensemaking process. Furthermore, such systems could help address biases and 

errors by assisting engineers in critically analyzing each of the reasons and factors 

impacting a certain condition. Although such systems can equip engineers with the 

assistance to improve their sensemaking process, their own skills for engaging the 

sensemaking process are critical.   Training scenarios need to be developed to improve the 

overall sensemaking skills of risk engineers for critically analyzing a situation.    

Klein, Moon, & Hoffman (2006b) asserted that intelligent systems would help 

people make sense of information rather than merely assisting them as such systems can 

synthesize data in meaningful ways to provide insights to the users. Risk engineers can 

benefit from these systems by making use of those succinct and meaningful insights while 

performing inspection surveys. It is not uncommon for these engineers to feel overwhelmed 

by the amount of information available to them when conducting a risk inspection; thus, it 

is possible that they could overlook important data because of a high signal to noise ratio. 

This bias could be minimized by the introduction of intelligent systems. According to Klein 

et al. Klein et al. (2006b), reasoning bias rather than confirmation bias could lead to 

inaccurate decision making. Intelligent systems can help users address such biases by 

encouraging them to consider alternative hypotheses when the existing hypotheses may be 

inaccurate (Klein et al., 2006a). Such systems can assist risk engineers by giving them 

confidence in their decision, whether it is to keep their existing frame or to reject it to 

https://paperpile.com/c/Khb32o/h07n
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consider alternative frames. However, novice engineers need to be trained to avoid bias 

resulting from the inaccurate predictions made by intelligent systems (Klein et al., 2006a).   

Although these automated systems can assist the risk engineers or any infrastructure 

inspectors when conducting inspection tasks, such systems, according to Endsley & Kiris 

(1995b), have the potential to eliminate the inspector from the loop. As some of the tasks 

will be conducted by automation without human intervention, the SA of the operator will 

be degraded, affecting his/her performance (Cummings, 2004b). SA involves the 

perception of elements in the environment (level 1), the comprehension of these elements 

(level 2) and the projection of the current system of these elements and the environment 

into the near future (level 3) (Endsley, 1995b). This concept of SA is important in the 

context of risk inspection or civil infrastructure inspection in general. In the domain of 

infrastructure inspection, level 1 SA involves perceiving various elements in the 

environment such as ponding on a rooftop, a cracked or bubbled roof, elements in the 

surroundings and various objects inside the building. Level 2 SA involves comprehending 

these elements and understanding their status and that of the system. As it involves 

understanding the reason for the collection of water on the rooftop or the bubbled roof, for 

example, Level 2 SA is crucial for diagnosing issues and proposing possible 

recommendations to fix them.  Level 3 SA involves predicting how these issues affect the 

functioning of the infrastructure in the future or in the event of an extreme weather 

condition (Endsley & Robertson, 2000). 

Predicting the effect of various issues in the near future can be a challenging task 

for infrastructure engineers, especially for novice engineers, because they lack the 

https://paperpile.com/c/Khb32o/4Uf5
https://paperpile.com/c/Khb32o/Un94
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https://paperpile.com/c/Khb32o/eH2l
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https://paperpile.com/c/Khb32o/KX3m
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experience to be able to see what could happen to the infrastructure in the future or in the 

event of an extreme weather condition. Other reasons affecting the ability to achieve SA 

include forgetting to collect the required information, skipping important steps, 

overlooking critical cues, and neglecting to consider alternative frames (confirmation bias) 

(Endsley & Robertson, 2000). These factors need to be considered when designing 

intelligent systems to support infrastructure inspection. By considering these factors, 

visualization strategies can be developed to help support engineers achieve sufficient SA 

to complete the inspection task successfully. Furthermore, training programs can be 

developed, especially for novice engineers, to help them avoid various biases while 

achieving SA. 

To support the SA requirements, it is important to make critical cues salient and to 

provide Level 1 and 2 SA information directly (Endsley, 2016). In order to cue engineers 

to perform the necessary tasks and to support their SA requirements, the authors developed 

a checklist based on the findings from this study (Appendix E). As explained in the Result 

section, one of the reasons for the inconsistency in the risk inspection process is the lack 

of a standard protocol. This checklist includes step by step instruction for carrying out 

windstorm risk inspection process. Upon developing this checklist, it was reviewed by the 

SME. The checklist was then updated to include the suggestions proposed by the SME. 

Additional field testing is required to validate the checklist by risk engineers while carrying 

out windstorm risk inspection survey. 

Though this research studied and identified the sensemaking process of risk 

engineers, this research is not without limitations. The authors interviewed engineers from 

https://paperpile.com/c/Khb32o/KX3m
https://paperpile.com/c/Khb32o/KX3m
https://paperpile.com/c/Khb32o/vLJB
https://paperpile.com/c/Khb32o/vLJB
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only one organization. So, the generalizability of the findings from this research is limited. 

In addition, only 10 engineers were interviewed. Though the authors achieved data 

saturation with 10 participants, more engineers from multiple organizations need to be 

interviewed to improve the generalizability of the findings. Additionally, conclusions were 

drawn solely based on the interview responses. Observational studies need to be carried 

out to investigate how risk engineers carry out the risk inspection task in the real-world. 

Furthermore, the checklist developed needs to be field tested to ensure the validity of its 

content. 

CONCLUSION 

The objective of this interview-based exploratory qualitative research was to 

explore the sensemaking process of windstorm risk engineers. More specifically, our goals 

were to examine the various steps involved in windstorm risk inspection, the sensemaking 

and mental model development process of the engineers, the factors influencing or biasing 

this process, the difference between novice and expert engineers while making sense of the 

information, the challenges faced by windstorm engineers and the potential for technology 

intervention. The findings from the detailed qualitative research protocol based on an 

inductive thematic method used in this study to address these goals suggest the need for 

automating the risk inspection process to minimize biases and subjectivity. Furthermore, 

these results can be used to develop training modules to help engineers, especially the 

novices, achieve SA while conducting risk inspection activities. 

The findings from this research can inform the design of training programs and 

technological interventions. The fuller understanding of the risk engineers’ sensemaking 



 108 

strategy in the physical world obtained through this study will help design immersive 

systems assisting them during the inspection process. Our next step will be to develop 

immersive automated systems assisting the sensemaking process by providing engineers 

the SA required. Furthermore, it is important to investigate how new technologies like 

drones, infrared imageries and virtual reality are perceived by the engineers as aids to assist 

them in their risk inspection process. There is a need to conduct further empirical research 

evaluating the effectiveness of using these and other technologies in the windstorm risk 

inspection process. In addition, more studies need to be conducted investigating the 

possibility of converting the qualitative information collected during the risk inspection 

process to quantitative information to develop predictive models that facilitate informed 

decision making. 
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CHAPTER FOUR 

AN EMPIRICAL STUDY TO INVESTIGATE THE EFFECTIVENESS OF CONTEST-

BASED VISUAL DECISION AIDS TO IMPROVE THE SITUATION AWARENESS 

OF WINDSTORM RISK ENGINEERS 

INTRODUCTION 

Over the past ten years, an average of 170 wind-related fatalities were reported in 

the United States annually every year (“NWS Analyze, Forecast and Support Office,” 

2018). Such wind-related natural disasters as hurricanes, tornado and thunderstorm affect 

individuals and society as well as the economy (Tokgoz, 2012). The effect of these 

disasters range from direct damages such as physical destruction and damages to assets and 

capital to the resulting indirect damages (Khazai, Merz, Schulz, & Borst, 2013). Property 

damage is one of the most important consequences of natural disasters, costing billions of 

dollars in losses (Fernández, 2001). In 2017 only such weather events resulted in a 

cumulative cost of $306.2 billion (“Hurricane Costs,” 2019). To limit the extent of these 

damages, wind vulnerability assessments are conducted to identify and mitigate damage 

and to minimize disruption (Smith, 2011), and insurance companies conduct  routine 

inspection tasks or loss prevention surveys in their clients’ facility to reduce the frequency 

and severity of such damages (Schlesinger & Venezian, 1986). Though this process, known 

as a windstorm loss prevention survey or risk inspection (What is the Windstorm Inspection 

Program?, 1999), can benefit both the clients and insurance company, the accuracy of the 

findings depends on the skillsets of the engineers conducting the inspection (Agnisarman, 

Khasawneh, Ponathil, Lopes, & Madathil, 2018).    
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Previous research investigating the sensemaking process and situation awareness 

of windstorm risk engineers identified the lack of a standardized survey protocol as one 

reason for the disparity in their findings. Furthermore, individual differences in the ability 

and experience level of these engineers contribute to this subjectivity (Agnisarman et al., 

2018), with the latter being one of the most important factors contributing to the accuracy 

of the inspection report. Experienced engineers can develop a more  accurate mental model 

about the current state and the future state of the infrastructure than their novice 

counterparts who, due to their lack of experience,  may find it challenging to perceive and 

comprehend information to develop an accurate mental model of the infrastructure system 

(Agnisarman et al., 2018).  

Automation-assisted technologies and Artificial Intelligence (AI) have been used 

by researchers and practitioners to improve the accuracy of the infrastructure inspection 

process (Agnisarman, Lopes, Chalil Madathil, Piratla, & Gramopadhye, 2019). AI 

algorithms can facilitate decision making by reducing the mental demand on the risk 

engineers by assisting them with the preliminary data analysis and cue the engineers to 

look for relevant information when completing the risk inspection task. However, such 

technologies are not without limitations. These technologies can assist in conducting 

infrastructure inspection, the engineers’ ability to interpret and make sense of the data is 

important (Agnisarman et al., 2018), especially since operator performance in such systems 

is mediated by vigilance decrements, complacency and loss of situation awareness (M. 

Endsley, 1999; M. Endsley & Kiris, 1995).  
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Artificial intelligence based algorithms have been used extensively in the domain 

of infrastructure inspection (Lu, Chen, & Zheng, 2012; Naser & Kodur, 2018; Sousa, 

Matos, & Matias, 2014), for example  in expert systems, knowledge base systems, 

intelligent database systems, and intelligent robot systems (Lu et al., 2012). Traditional 

intelligent systems are siloed and confined to one specific domain. However, in this era of 

distributed intelligence, there is a need for the individual systems to interact with one 

another and operate across multiple domains (Pentland, 2017). In addition, various issues 

such as poor performance and lack of transparency may result in distrust in intelligent 

systems (Pentland, 2017). However, over reliance and complacency can result in misuse 

of the system. More specifically, in highly automated systems, handoffs between human 

users and automation can be challenging (Guszcza, 2018), an issue that can be mitigated  by 

using a human-centered  design process to ensure  this transition process is smooth and 

seamless. 

In the risk inspection domain, AI is not expected to completely automate the risk 

inspection process. Instead, it can augment the risk engineers’ decision making with the 

help of predictive algorithms, which generally outperform expert judgement as risk 

engineers’ ability to predict what will happen in the event of an extreme weather condition 

is limited. However, human involvement is required to make decisions about 

unusual  situations that are not accurately modeled using historical data (Guszcza, 2018). 

Such situations require intelligent systems to generate anchor points for the experts to 

augment human decision making (Guszcza, 2018). To support this effort, there is a need to 

develop algorithms meeting contextual needs. The human-centered design should highlight 
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the needs and requirements of the specific context under consideration to facilitate the 

optimal use of AI algorithms, emphasizing the importance of considering situation 

awareness  in designing decision aids based on AI for risk engineers (Agnisarman et al., 

2018).      

Situation Awareness 

Situation awareness is the perception of the elements/cues in the environment 

(Level 1), comprehension of the current situation of the elements (Level 2) and the 

projection of the status of the elements and environment in the future (Level 3) (Endsley, 

1995). Any of these levels can be affected by automated systems that keep humans out-of-

the-loop, a consequence of automation analyzed in early studies on human-automation 

interaction (Endsley & Kiris, 1995). This SA theory proposed by  Endsley (1995) has been 

widely used in such domains as aviation, aircraft maintenance and surgery in an effort to 

improve operator performance (Endsley & Robertson, 2000; Fioratou, Flin, Glavin, & 

Patey, 2010; Jones & Endsley, 1996). However, our systematic literature search did not 

retrieve any articles in the domain of loss prevention inspection or infrastructure inspection 

investigating the situation awareness (SA) requirements of inspectors/engineers. To 

address this lack of research, this study focuses on designing context-based visualization 

strategies to improve the SA of infrastructure/risk engineers.   

Relevance of SA in infrastructure risk inspection 

Infrastructure risk inspection process involves identifying wind vulnerabilities 

associated with a building to reduce the extent of damage in the event of extreme weather 

conditions.  Though SA has been used extensively in the context of dynamic systems, this 
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concept is relevant to the inspection and maintenance domain as well (Endsley & 

Robertson, 2000). Though the infrastructure inspection process does not involve a dynamic 

environment, risk engineers need to develop a mental model of the future state of an 

infrastructure based on its current state. However, there are a number of unknown factors 

such as wind speed and direction, the overall condition of the infrastructure, and other 

interdependencies such as the distance between missiles and infrastructure system and 

locations of other objects that make predicting the future state of the infrastructure a 

challenging task. More importantly, the dynamic events and behavior patterns of the 

components of an infrastructure following a higher category hurricane pose a real challenge 

for the risk engineers.  

The Level 1 SA requirements of risk inspection involve perceiving cues including, 

but not limited to, the type of roof, type of rooftop equipment, age of the roof, surface 

roughness and missile exposure. In Level 2 SA, the engineers comprehend the information 

perceived, creating a mental model of the current state of the infrastructure. During this 

process, engineers may face a number of challenges, the most important one being the lack 

of information available. Level 3 SA requirements involve predicting the future state of the 

infrastructure in the event of extreme weather conditions based on its current state. The 

sensemaking process of infrastructure risk engineers during this process has been discussed 

in detail in another article (Agnisarman et al., 2018). While AI-based automated systems 

are used to support the windstorm risk inspection process, there is a need to understand 

how engineer’s SA is impacted. In this research we will develop information visualization 

strategies to support the SA requirements of the windstorm risk engineers.  
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Risk assessment 

There are 2 primary methods currently being  used  for assessing hurricane 

structural damages: the subjective method and the analytical method (Mehta, Smith, & 

McDonald, 1981). The subjective method involves windstorm engineers going to a site to 

obtain information about the roofing system, envelope, connections, drawings and 

specifications, while the analytical method is based on the principles of structural 

mechanics and  an understanding of material properties to predict wind speed and potential 

damages (Mehta et al., 1981). The subjective windstorm visual inspection method detailed 

in Chapter 3 formed the basis for identifying the information needed in the visualizations. 

In addition, analytical hurricane damage prediction models were also explored to identify 

the elements that need to be included in the contextual visualization. 

Risk involves both the probability of risk realization and the effect of threat 

realization (Väisänen, Noponen, Latvala, & Kuusijärvi, 2018). Though human visual 

perception is capable of detecting anomalies and patterns, the ability of the risk engineers 

to predict the future state of an infrastructure is limited. Information visualization uses 

external aids such as computers to strengthen the cognitive capabilities of users/decision 

makers (Kapler & Wright, 2005). Risk visualization, which involves visualizing potential 

risks to enhance cognition to facilitate decision making, will potentially augment the 

inspector’s cognition and enhance his/her situation awareness. However, presenting the 

specific data needed to meet the demands of the end user can be challenging since it 

involves identifying the visualization requirements of that user group (Kasireddy, Ergan, 

Akinci, & Gulgec, 2015).   
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Related works 

The design of technologies to support SA has been investigated extensively in 

aviation and healthcare. Additionally, the SA theory proposed by Endsley (1995) has been 

used to investigate the effect of various  types of display strategies, specifically tactical vs. 

waterfall, for submarine track management in a simulated environment (Loft et al., 2015). 

This study investigated the relationship between various SA measures such as Situation 

Present Assessment Method (SPAM) and Situation Awareness Global Assessment 

Technique (SAGAT) and performance, identifying a correlation among them. Further 

research investigated the effect of the amount of information presented in the display on 

performance, trust and SA (Marusich et al., 2016), reporting a reduction in self-reported 

SA as a result of an increased amount of task relevant information, meaning increased task-

relevant information, despite being accurate, might not help with decision making 

(Marusich et al., 2016). Researchers also have investigated the effect of the type of 

information presented on the SA of mobile crane operators; they identified a general trend 

in improvement in operator performance and SA with the use of a virtually reconstructed 

visualization of a lift scene (assistance system) over traditional systems (Fang, Cho, Durso, 

& Seo, 2018). In addition to mobile crane monitoring and operations, studies have been 

conducted investigating  the effect of situation-augmented displays for UAV monitoring 

(Lu, Horng, & Chao, 2013), the findings suggesting that situation-augmented displays may 

provide sufficient situation awareness to improve user performance (Lu et al., 2013).  

The application of an SA framework to investigate various information presentation 

strategies can be seen in defense research as well. A recent study  investigated the effect of 
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presentation modality, auditory vs. visual and message presentation rate on the SA and the 

cognitive load of soldiers (Hollands, Spivak, & Kramkowski, 2019). The findings revealed 

that visual messages and higher message presentation rate resulted in higher cognitive load 

and reduced SA. Similar studies have been conducted in the healthcare domain as well, for 

example, a study investigating the effect of head-worn display (HWD) providing 

continuous patient information on the SA of nursing students while responding to patient 

alarm. The researchers observed that the participants’ responses to SA questions were more 

accurate when using HWD compared to the alarm only condition (Pascale et al., 2019). 

Researchers have also investigated the effect of other decision aids such as a checklist on 

SA. For example, one such study investigated if the use of a checklist improves SA during 

physician handoffs in a pediatric emergency department. Participants in this study reported 

an improvement in their SA following the use of a standardized checklist (Mullan, Macias, 

Hsu, Alam, & Patel, 2015).  

However, no research has investigated the effect of decision aids on the SA, 

performance and workload of infrastructure inspectors. More specifically, to date, no 

studies have been conducted with windstorm risk engineers. While researchers have 

investigated the potential of using Augmented Reality (AR)-based systems for flood 

visualization (Haynes, Hehl-Lange, & Lange, 2018), none has looked at the situation 

awareness requirements and performance of inspectors. In the study reported here, the 

researchers investigated how various visualization techniques can be designed to improve 

the situation awareness of risk engineers. The checklist and predictive display based 

context-enabled visual decision aids used here were designed based on the findings from a 
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qualitative study investigating  the sensemaking process and SA requirements of risk 

engineers (Agnisarman et al., 2018). In addition, the principles proposed by Endsley for 

designing for situation awareness were also incorporated in the decision aids (Endsley, 

2016). More specifically, this study designed and tested a checklist-based and predictive 

display-based decision aids. While risk engineers currently use a high-level checklist, it is 

not standardized. The checklist used in this study was reviewed by the SME, and the 

predictive display used in this research is a novel idea which has not yet been used for this 

application. To investigate the effectiveness of these decision aids, the researchers asked 

the following questions: 

Research questions 

RQ1: What is the effect of various context-based visual decision aids on the SA of the 

participants? 

RQ2: What is the effect of various context-based visual decision aids on the performance 

of the participants? 

RQ3: How does the type of context-based visual decision aid affect the cognitive load 

imposed on the participants? 

Hypotheses 

These research questions led to the following hypotheses:  

H1: SA will increase when the type of visualization changes from no visual aid to 

predictive display based visual aid. 

H2: Performance will increase when the type of visualization changes from no visual aid 

to predictive display based visual aid. 
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H3: Cognitive load will decrease when the type of visualization changes from no visual 

aid to predictive display based visual aid 

METHOD 

Study sample 

Junior/Senior or graduate level civil engineering or construction science and 

management students were recruited for the study. This study sample was chosen to 

simulate the technical skills of actual windstorm risk engineers. Since it focused on a 

specific sample of civil/construction engineering students, recruiting 90 participants as 

suggested by power analysis was not feasible. Thus, only 65 participants, ranging from 20 

to 41 years old (M = 23.35, SD = 3.37) were recruited for this study. More demographic 

information can be found in Table 4.1.  

Table 4.1. Demographic characteristics of the participants 

Variable (N = 65) N % 

Gender   

Female 13 20 

Male 52 80 

Race   

White 39 60 

Asian 18 28 

Black/African 

American 

5 8 

Other 3 4 

Major   

Civil Engineering 55 85 
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Construction 

Science 

10 15 

Degree Pursuing   

Undergraduate 37 57 

Graduate 17 26 

Doctorate 11 17 

 

Apparatus 

This study used a Dell desktop computer with an Intel(R) Xeon(R) CPU E5-1620 

v4 processor and a Quadro FX 5800 GPU to run the simulations of a windstorm risk survey. 

An LG ultralight monitor with a diagonal dimension of 38.8 inches was used as the display. 

The simulations were developed using Unity game engine (Unity, 2005). A laptop 

computer was used to administer the questionnaires prior to, during and after the study 

through Qualtrics Research Suite (Qualtrics, 2005). The experiment set up can be seen in 

Figure 4.1. Appendix F shows the consent form used in the study. 
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Figure 4.1. Experimental setup 

Simulation 

The participants completed this study in a simulated environment. An academic 

building located within a 10-miles radius of the Atlantic Coast was used as the simulated 

scenario. The exposure category used in this study was Category C with generally open 

terrain with limited obstructions (“Windexpo,” 2019).  The location has only two buildings. 

The front yard of the main academic building had a pond and the backyard had a lake. The 

building had a number of pieces of rooftop equipment ranging from antennas to duct work. 

The rooftop also had certain issues including ponding, missing fasteners, a flashing issue, 

a membrane fissure and clogged drains. Figure 4.2 illustrates four example images of the 

simulation used in this study. 
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Figure 4.2. A few screenshots from the simulation 
 

Visualization stimuli development 

Contextual visual aids can be developed following SA design principles (Endsley, 

2016) to improve the situation awareness of novice as well as experienced users. The 

requirements supporting SA in this domain were identified from qualitative research 

investigating the sensemaking process (Agnisarman et al., 2018). The following design 

guidelines proposed by Endsley (2016) to design for SA were used as the guidelines while 

developing visualization techniques: (1) organize information around goals, (2) present 

Level 2 information directly, (3) provide assistance for Level 3 SA projections, (4) support 

global SA, (5) support trade-offs between goal driven and data-driven processing, (6) make 

critical cues for schema activation salient, (7) take advantage of parallel processing 
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capabilities, and (8) use information processing carefully. The information presented in 

this study was decided based on the results of the previous research (Agnisarman et al., 

2018). The context based visual aids developed here were expected to support the situation 

awareness requirements of windstorm risk engineers. 

Scenarios and tasks completed 

To develop the study scenarios, we considered the various components of a building 

as defined by Unanwa (1997):  the roof covering, the roof sheathing and roof frame, the 

building envelope, the building occupancy and the structural system. These building 

components were then used to develop the simulation for this study. The tasks that needed 

to be completed in the risk assessment of the building were designed based on the findings 

from the qualitative research (Agnisarman et al., 2018). The participants completed the 

following tasks validated by the SME: 

• Investigating the surroundings to understand missile and flood exposure 

• Observing roof underdeck, roof condition, flashing, roof deck, and attachments and 

obtaining building dimensions 

• Investigating rooftop equipment to verify the sufficiency of the securing method 

• Investigating building envelop (windows, dock doors, External Insulation Finishing 

System (EIFS)) 

Independent variables 

This study included the following independent variables: 

Type of context-based visual aids presented (3 levels): The context-based visual aids 

supporting SA functioned as the between-subjects variable in the simulation at three levels: 
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• No visual aid/control condition -- In this condition, the participants were not 

provided any visual decision aids. They had to walk through the simulation and 

perform various inspection activities. They were given a sheet of paper listing the 

tasks they needed to complete. 

• Visualizations aiding users to perceive and gather information in the environment 

-- This type of visual aid that helps users perceive and gather information in the 

environment are shown in Figure 4.3. This text-based visual aid used here prompts 

participants to perceive relevant cues in the environment and comprehend them to 

make sense of the information. Achieving even Level 1 SA can be challenging, 

especially for novice engineers. 

• Predictive visualization -- This type of visualization includes the elements of 

checklist-based visualization in addition to an interactive display of the behavior of 

the components of the building in the event of a hurricane causing severe damage 

(Damage State 4 as defined in HAZUZ) as illustrated in Figure 4.4. Severe damage 

involves major window damage or roof sheathing loss, major roof cover loss, 

and/or extensive damage to the interior from water (Hazus Hurricane Model User 

Guidance, 2018; Liao, 2007). However, this visualization shows only some 

possibilities of what could happen if there is a severe weather condition. What could 

actually happen will depend on several uncertain factors such as age of the 

infrastructure system, wind speed, location and materials. This visualization type is 

expected to help the participants form a more accurate mental model of the future 
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state of the building infrastructure. The participants were not able to access both 

the predictive display and the checklist at the same time. 

 

Figure 4.3. Examples of the checklist used in the study 
 

 

Figure 4.4. Examples of the predictive display used in the study 
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Dependent variables 

Situation awareness: An adaptation of the Situation Awareness Global Assessment 

Technique (SAGAT) was used to assess the SA of the participants.  Developed to assess 

the SA requirements of operators across all of its elements in the aviation domain (Endsley, 

1995). SAGAT is a global measure based on the 3-level theory of SA proposed by Endsley 

(1995), this technique objectively measures the SA requirements of operators at three 

different levels of SA using a freeze probe protocol. A higher level of accuracy in the 

operator’s answer is attributed to higher levels of SA. The method requires the simulation 

to freeze at randomly selected times to probe the operators about their perceptions of the 

situation at that time. The simulation screens are blanked during the freezes.  

As no SAGAT queries exist for infrastructure risk inspection domain, the queries 

used in this research were developed based on the results of qualitative research 

(Agnisarman et al., 2018). In addition, in this study, these queries were not administered at 

randomly selected times; rather they were administered at predefined times as was done in 

a previous study investigating the SA of medical trainees (Gardner, Kosemund, & 

Martinez, 2017). The questions were presented at five pre-selected intervals during the 

simulation. Each set was administered following the completion of each task except for the 

second task (inspection of roof underdeck, roof condition, flashing, roof deck, attachments 

and obtaining building dimensions). As this task involved more steps than the other tasks, 

the simulation froze once during the task and after task completion. Appendix G illustrates 

the SAGAT questionnaires used. 
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Workload: Uncertainty or ambiguity in information leads to increased cognitive load while 

making sense of such information (Block, 2013; Zuk & Carpendale, 2006). Visualizing 

these uncertainties will facilitate decision making. However, adding additional elements 

about uncertainties in the visualization can, in turn, increase the cognitive load on users 

(Block, 2013). Ideally, the integrated visualization design proposed in this study should 

result in decreased cognitive load. Though measuring cognitive load directly can be 

challenging, this study used workload as an indirect measure of it (Block, 2013). The 

workload was subjectively measured using The National Aeronautics and Space 

Administration Task Load Index (NASA-TLX) questionnaire, a multidimensional 

instrument used to measure the workload experienced to evaluate a task, technology or 

system (Hart, 2006; Hart & Staveland, 1988). 

Performance: Higher SA does not guarantee improved performance. According to Endsley 

and Garland (Mica R. Endsley & Garland, 2000), there is only a probabilistic relationship 

between SA and performance. Higher situation awareness increases the probability of good 

decisions and good performance (Endsley & Garland, 2000), meaning a direct correlation 

between SA and performance may be absent. In this research, the performance of 

participants was measured to study the improvement, if any, as a result of using context-

based visual decision aids using a multidimensional approach. A performance 

questionnaire was designed using the format of a typical school exam, with each correct 

response contributing to the overall score determined as the net sum of correct and wrong 

responses. This performance test was designed based on the tasks assigned to the 

participants, and the survey asked questions about the tasks completed in the simulation. 
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Though the difference between the SAGAT questionnaire and the performance 

questionnaire is subtle, the former does not include procedural questions. The performance 

test was validated by the SME. This questionnaire can be found in Appendix H. 

Additionally, performance was objectively tracked as the area covered by the participants 

and the time taken to complete the assigned tasks.  

Procedure 

To examine the context-based visual decision aids, the entire inspection scenario 

was simulated using Unity game engine. The complexity of the inspection tasks was 

simplified significantly for novice participants. This study used a between-subjects 

experimental design, with one participant being exposed to only one study condition. The 

study condition was randomly assigned to the participants. The study began with the 

researcher greeting the participant and briefing each on the study procedure. This step was 

followed by the participants signing the consent form and then completing a demographic 

questionnaire. Participants then watched the training video explaining the windstorm risk 

inspection process and the various steps involved in it. More specifically, the video 

explained and exemplified the types of issues observed in the real-world as well as the 

tasks the participants were expected to complete. Next, the participants were randomly 

assigned to one of the study conditions, followed by the completion of a training scenario 

in a simulated environment, which used the simulation of a warehouse building with 

various pieces of rooftop equipment. Through this simulation, participants became familiar 
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with the navigation controls and decision aids (only for the participants in the decision aid 

condition).  

 The participants were then introduced to the study condition and the tasks they were 

assigned to complete in the simulation. They were able to take notes during the inspection 

process using the pen and paper provided. After each task, the participants were asked to 

complete the SAGAT questions; however, they were not allowed to consult their notes 

while completing the questionnaire. Upon completion of all four tasks, they completed the 

performance and NASA-TLX questionnaires; while completing the performance 

questionnaire, participants were able to use their notes. They then participated in a 

retrospective think aloud session where they were asked to reflect on their performance. 

This procedure is illustrated in Figure 4.5. 
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Figure 4.5. Flow chart outlining experiment procedure 
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Data analysis 

R language for statistical computing (R Core Team, 2019) was used for data 

analysis. Outliers were identified and eliminated using standardized deviance residuals, 

standardized residuals and Cook’s Distance. The SAGAT responses were analyzed using 

multilevel binary logistic regression with a logit link function. For this variable, an 

additional independent variable indicating the SA level was also considered in the analysis. 

The SAGAT questions were categorized into three levels based on the SA level each 

represented. Questions related to the first level of SA (the perception phase) were 

categorized under Level 1 SA, questions related to the second level of SA (the 

comprehension phase) were categorized under Level 2 SA and questions related to the third 

level of SA (the prediction phase) were categorized under Level 3 SA. This variable was 

included in the analysis to identify the specific effects of the decision aids on the different 

levels of SA of the participants. Following are the equations for the multilevel binary 

logistic regression (Tabachnick, Fidell, & Ullman, 2007). Random slopes were not 

considered in the analysis. 

 𝑙𝑙𝑙𝑙 �
𝑝𝑝𝑖𝑖𝑖𝑖

1 − 𝑝𝑝𝑝𝑝𝑝𝑝
� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

(4.1) 

 𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01𝑍𝑍𝑖𝑖 +  𝑢𝑢0𝑖𝑖 (4.2) 

In this equation:  

• pij=the conditional probability that the event Yij occurs or p(Yij=1).  

• β0j=intercept that varies 

• β1j=slope 

• Xij=level 1 predictor 

https://paperpile.com/c/nMGRdI/O3MFd
https://paperpile.com/c/nMGRdI/O3MFd
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• eij=the deviation of an individual from his or her group mean 

• γ00=average intercept when all the predictors are zero (fixed effect) 

• γ01=slope for the relationship between the DV Yij and level 2 IV Z 

• u0j=deviation from average intercept for group j (random effect) 

• Wj=level 2 predictor 

Outliers were identified using Cook’s Distance and standardized deviance. Plots were also 

investigated to identify influential cases.  

Workload data collected using the NASA-TLX and the performance data were 

analyzed using one-way between-subjects ANOVA. These dependent variables were tested 

for normality using the Shapiro-Wilk test, and extreme outliers were assessed by an 

examination of the standardized residuals for values greater than +/- 3; there was 

homogeneity of variances, as assessed by Levene's test of homogeneity of variances. In 

addition, Cook’s Distance was used to identify any influential cases. 

RESULTS 

SAGAT 

SAGAT responses were coded as 1 (if the response is correct) and 0 (if the response 

is wrong). Each SAGAT query was analyzed individually to allow for comparisons to be 

made among the different conditions (Stanton, Hedge, Brookhuis, Salas, & Hendrick, 

2004). Separate multilevel logistic regression analyses were conducted to analyze the five 

sets of SAGAT responses recorded following the simulation freeze. The lme4 package 

available in R was used for analyzing SAGT responses (Bates, Mächler, Bolker, & Walker, 

2015). The multilevel logistic regression model for the SAGAT queries was built 

https://paperpile.com/c/M0nrIM/NnSo8
https://paperpile.com/c/M0nrIM/NnSo8
https://paperpile.com/c/M0nrIM/NnSo8
https://paperpile.com/c/M0nrIM/NnSo8
https://paperpile.com/c/M0nrIM/4OLmK
https://paperpile.com/c/M0nrIM/4OLmK
https://paperpile.com/c/M0nrIM/4OLmK
https://paperpile.com/c/M0nrIM/4OLmK
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iteratively, with the intercept only model being used as the baseline and the final model 

including the types of context based visual aids presented and the SA levels and/or the 

interaction between the types of visual aids and the SA level. No extreme data points were 

identified as assessed by deviance residuals and Cook’s Distance. 

Inspection of surroundings (SAGAT 1): The first set of SAGAT responses was recorded 

following the completion of the first task, which involved the inspection of building 

surroundings to identify the exposure level and to evaluate missile impact to the building. 

Following this task, the first SAGAT questionnaire containing 10 questions was 

administered. The multilevel model was built iteratively. Table 2 illustrates the details of 

the iterative model building. 

A test of the full  model with 2 independent variable and one 2-way interaction 

effect against an intercept only model was significant, χ2 (9, N=65) = 111.87, p <0.001, 

R2L = 0.13, indicating that the predictors as a whole reliably distinguished participants who 

correctly answered the SAGAT questionnaire and those who did not. The main effects of 

type of visual decision aid (Δχ2 = 37.53, p <0.001) and SA level are significant (Δχ2 = 

36.66, p<0.001). The interaction between these 2 factor variables is significant with Δχ2 = 

17.42, p = 0.002. Further analysis was conducted to investigate the nature of this 

interaction. Table 3 shows the mean values of the variables, and Figure 4.6 illustrates this 

interaction effect. 

As illustrated in Figure 4.6, participants exposed to the checklist and predictive 

display condition had higher SA compared to participants exposed to the control condition. 

However, this difference is moderated by the SA level. More specifically, there was no 
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significant difference in the SA among participants exposed to the control, checklist and 

predictive conditions when they were questioned on their Level 1 SA. Participants in the 

checklist condition (b = 1.625, p = 0.02, OR = 5.08, (95% CI: 1.10, 23.36)) and predictive 

display condition (b = 2.98, p = 0.0001, OR = 19.59, (95% CI [2.71, 141.35])) had 

significantly higher SA than participants in the control condition when they were 

questioned on their Level 2 SA. There was no significant difference between the SA of 

participants exposed to the checklist condition and the predictive display condition when 

questioned on their Level 2 SA (b = 1.35, p = 0.47, OR = 3.86, (095% CI: 0.53, 28.11)). 

Similarly, participants in the checklist condition (b = 3.43, p = 0.03, OR = 30.97, (95% CI: 

1.12, 850.39)) and the predictive display condition (b = 2.71, p = 0.02, OR = 15.11, (95% 

CI [1.25, 182.24])) had significantly higher SA than participants in the control condition 

when they were probed on their Level 3 SA. However, there is no significant difference 

between the SA of participants exposed to the predictive display condition and the checklist 

condition when probed on their Level 3 SA (b = - 0.49, p = 0.57, OR = 0.49, (95% CI [0.01, 

23.46])).  
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Table 4.2. Model summary for multilevel logistic regression analysis for inspection of surroundings (SAGAT 1) 

Variable Model1 Model2 (Δχ2 = 139.00, df =1, 
p<0.001), R2

L = 0.14 
Model3 (Δχ2 = 37.70, df = 2, 
p<0.001), ΔR2

L=0.05, 
R2

L=0.08   

Model4 (Δχ2 = 82.96, df = 2, 
p<0.001), ΔR2

L = 0.02, R2
L = 

0.10   

Model5 (Δχ2 = 9.78, df = 4, p = 
0.04), ΔR2

L = 0.03, R2
L = 0.13 

 
B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

Constant 1.25 
(0.09) 

3.49 2.90 4.20 1.42 
(0.15) 

4.14 3.13 5.79 0.41 
(0.16) 

1.51 1.10 2.11 0.48 
(0.18) 

1.62 1.13 2.37 0.79 
(0.21) 

2.21 1.46 3.44 

Experimental Condition (type of visualization) 
Checklist 

        
1.25 
(0.25) 

3.49 2.14 5.94 1.29 
(0.26) 

3.63 2.19 6.29 0.81 
(0.33) 

2.26 1.20 4.39 

Predictive 
Display 

        
1.68 
(0.28) 

5.36 3.16 9.61 1.73 
(0.29) 

5.62 3.27 10.27 1.05 
(0.34) 

2.85 1.48 5.73 

SA level 
Level 2             -0.70 

(0.24) 
0.49 0.31 0.79 -1.40 

(0.38) 
0.25 0.11 0.51 

Level 3             0.42 
(0.29) 

1.53 0.88 2.74 -0.39 
(0.37) 

0.68 0.32 1.42 

Interaction between Condition and SA Level 

Checklist: 
SALevel2 

                0.81 
(0.56) 

2.25 0.76 6.94 

Predictive 
display: 
SALevel2 

                1.93 
(0.70) 

6.88 1.87 30.20 

Checklist: 
SALevel3 

                2.62 
(1.10) 

13.73 2.26 267.11 

Predictive 
display: 
SALevel3 

                1.67 
(0.85) 

5.31 1.17 38.49 
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Figure 4.6. Interaction effect of type of SA level on the relationship between SA and 
types of visualization presented (inspection of surroundings — SAGAT 1) 

 

Table 4.3. Mean probability of correctly answering SAGAT questions for inspection of surroundings task (SAGAT 
1) 

SA level 
  Level 1 Level 2 Level 3 

Control 0.69 0.35 0.60 
Type of 

visualization 
Checklist 0.83 0.73 0.98 
Predictive display 0.86 0.91 0.96 

 

Inspection of underdeck and rooftop (SAGAT 2): The second set of SAGAT responses was 

recorded during the second task, which involved underdeck inspection and rooftop 

inspection. More specifically, the participants measured the underdeck and rooftop fastener 

spacing and the distance between joist welded connections and inspected the general 

condition of the roof deck. In the middle of this task, the second SAGAT questionnaire 

containing 8 questions was administered, and the multilevel model was again built 

iteratively. Table 4 illustrates the details of iterative model building. 
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Table 4.4. Model summary for multilevel logistic regression analysis for inspection of underdeck and rooftop (SAGAT 2) 

Variable Model1 Model2 (Δχ2 = 139.00, df = 1, 
p<0.001), R2

L = 0.06 
Model3 (Δχ2 = 37.70, df = 2, 
p<0.001), ΔR2

L = 0.06, R2
L = 

0.11  

Model4 (Δχ2 = 82.96, df = 2, 
p<0.001), ΔR2

L = 0.14, R2
L = 

0.23 

Model5 (Δχ2 = 9.78, df = 4, 
p=0.04), ΔR2

L = 0.02, R2
L = 0.25 

 
B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

Constant 0.63 
(0.09) 

1.87 1.57 2.25 0.79 
(0.17) 

2.19 1.58 3.16 -0.31 
(0.20) 

0.74 0.48 1.10 1.05 
(0.31) 

2.86 1.58 5.43 1.33 
(0.37) 

3.80 1.89 8.24 

Experimental Condition (type of visualization) 
Checklist 

        
1.06 
(0.30) 

2.88 1.62 5.36 1.35 
(0.38) 

3.86 1.86 8.47 0.88 
(0.58) 

2.41 0.79 7.86 

Predictive 
Display 

        
2.10 
(0.32) 

8.17 4.43 16.26 2.59 
(0.41) 

13.31 6.21 31.65 1.79 
(0.68) 

5.97 1.67 25.51 

Situation awareness level 
Level 2             -2.23 

(0.29) 
0.11 0.06 0.19 -2.67 

(0.44) 
0.07 0.03 0.16 

Level 3             -2.36 
(0.39) 

0.09 0.04 0.20 -2.98 
(0.68) 

0.05 0.01 0.18 

Interaction between Condition and SA Level 

Checklist: 
SALevel2 

                2.52 
(1.15) 

12.45 1.42 143.51 

Predictive 
display: 
SALevel2 

                0.85 
(0.63) 

2.35 0.67 8.06 

Checklist: 
SALevel3 

                0.83 
(0.73) 

2.28 0.50 9.09 

Predictive 
display: 
SALevel3 

                0.19 
(0.92) 

1.21 0.20 7.78 
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A test of the full model with 2 independent variables and one 2-way interaction 

effect against an intercept only model was significant, χ2 (9, N=65) = 237.02, p <0.001, 

R2L = 0.25, indicating that the predictors as a whole reliably distinguished participants 

who correctly answered the SAGAT questionnaire and those who did not. The main effects 

of type of visual decision aid (Δχ2 = 17.42, p = 0.002) and SA level are significant (Δχ2 = 

82.96, p<0.001). The interaction between these 2 factor variables is significant with Δχ2 = 

9.78, p = 0.04. Further analysis was conducted to examine the nature of this interaction. 

Table 3 shows the mean values of the variables, and Figure 4.7 illustrates this interaction 

effect.   

As illustrated in Figure 4.7, participants exposed to the checklist and the predictive 

display condition had higher situation awareness compared to participants exposed to the 

control condition. However, this difference is moderated by the SA level. More 

specifically, there was no significant difference in the SA among participants exposed to 

the control, checklist and predictive conditions when they were probed on their Level 1 

SA. However, participants in the checklist condition (b = 1.73, p = 0.005, OR = 5.66, (95% 

CI, 1.36 to 23.62)) and predictive display condition (b = 2.61, p <0.001, OR = 13.62, (95% 

CI [3.11, 59.68])) had significantly higher SA than participants in the control condition 

when they were probed on their Level 2 SA. There was no significant difference between 

the SA of participants exposed to the checklist condition and the predictive display 

condition when probed on their Level 2 SA (b = 0.88, p = 0.56, OR = 2.41, (95% CI, 0.61 

9.57)). Similarly, participants in the predictive display condition had significantly higher 

SA than participants in the control condition (b = 4.31, p <0.001, OR = 74.31, (95% CI 
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[3.17, 1740.11])) and participants in the checklist condition (b = 3.24, p = 0.002, OR = 

25.41, (95% CI: 1.30, 496.28)) when they were probed on their Level 3 SA. However, there 

was no significant difference between the SA of participants exposed to the checklist 

condition and the control condition (b = 1.07, p = 0.92, OR = 2.92, (095% CI [0.24, 36.07])) 

when probed on their Level 3 SA. 

 

Figure 4.7.  Interaction effect of type of SA level on the relationship between SA and 
types of visualization presented (inspection of underdeck and rooftop — SAGAT 2) 

 
Table 4.5. Mean probability of correctly answering SAGAT questions for underdeck and rooftop inspection task 
(SAGAT 2) 

SA level 
  Level 1 Level 2 Level 3 

Control 0.78 0.22 0.18 
Type of 

visualization 
Checklist  0.88 0.59 0.37 
Predictive display 0.95 0.76 0.92 

 

Inspection of underdeck and rooftop continuation (SAGAT 3): The third set of SAGAT 

responses was recorded following the completion of the second task. This questionnaire 



 139 

contained 8 questions, and the multilevel model was built iteratively. Table 6 illustrates the 

details of this iterative model building. As this table shows, the model containing the main 

effect of SA level and the model containing the main effect of SA level and types of 

visualization and the interaction effect of these two variables are not significantly different 

from the model containing only the main effect of type of visualization. Thus, the main 

effect of SA level and the interaction effect between the type of visualization and SA level 

were removed from the model. Model 3 is used as the final model. 

A test of the model with type of visualization against the baseline model is significant χ2 

(3, N=65) = 127.62, p <0.001, R2L = 0.09, indicating that the predictor reliably 

distinguished participants who correctly answered the SAGAT questionnaire and those 

who did not. As illustrated in Figure 4.8, participants exposed to the checklist (b = 1.24, p 

= 0.0001, OR = 3.45, (95% CI [1.70, 6.98])) and the predictive display (b = 1.85, p <0.001, 

OR = 6.33, (95% CI [2.95, 13.59])) conditions had higher SA than participants in the 

control condition. However, there was no significant difference between the SA of 

participants assigned to the predictive display condition and the checklist condition (b = 

0.61, p = 0.16, OR = 1.83, (95% CI [0.84, 4.02]). The mean probability values can be found 

in Table 4.7. 
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Table 4.6. Model summary for multilevel logistic regression analysis for the second part of inspection of underdeck and rooftop (SAGAT 3) 

Variable Model1 Model2 (Δχ2 = 143.61, df = 1, 
p<0.001), R2

L = 0.05 
Model3 (Δχ2 = 30.22, df = 2, 
p<0.001), ΔR2

L = 0.04, R2
L = 

0.09 

Model4 (Δχ2 = 3.11, df = 2, p 
= 0.211), ΔR2

L = 0.004, R2
L = 

0.10 

Model5 (Δχ2 = 2.81, df = 4, p 
= 0.59), ΔR2

L<0.001, R2
L = 

0.10  
B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

Constant 1.06 
(0.09) 

2.89 2.43 3.46 1.30 
(0.17) 

3.68 2.66 5.37 0.23 
(0.20) 

1.26 0.85 1.92 0.40 
(0.24) 

1.49 0.94 2.37 0.32 
(0.27) 

1.38 0.81 2.35 

Experimental Condition (type of visualization) 
Checklist 

        
1.24 
(0.30) 

3.45 1.92 6.46 1.25 
(0.30) 

3.48 1.92 11.60 1.58 
(0.44) 

4.83 2.06 11.33 

Predictive 
Display 

        
1.85 
(0.33) 

6.33 3.40 12.63 1.86 
(0.33) 

6.41 3.37 12.18 1.79 
(0.45) 

5.97 2.46 14.48 

Situation awareness level 
Level 2             -0.41 

(0.23) 
0.66 0.42 1.05 -0.42 

(0.35) 
0.66 0.33 1.31 

Level 3             -0.13 
(0.24) 

0.88 0.55 1.40 0.14 
(0.35) 

1.15 0.58 2.30 

Interaction between Condition and SA Level 

Checklist: 
SALevel2 

                -0.32 
(0.54) 

0.73 0.25 2.13 

Predictive 
display: 
SALevel2 

                0.45 
(0.61) 

1.58 0.48 5.24 

Checklist: 
SALevel3 

                -0.71 
(0.55) 

0.49 0.17 1.47 

Predictive 
display: 
SALevel3 

                -0.25 
(0.60) 

0.78 0.24 2.55 



141 

 

Figure 4.8. Main effect of the type of visualization presented (inspection of underdeck 
and rooftop continuation — SAGAT 3) 

 
Table 4.7. Mean probability of correctly answering SAGAT questions 
for the second part of underdeck and rooftop inspection task (SAGAT 
3) 
Type of visualization 
Control 0.55 
Checklist  0.80 
Predictive display 0.88 

 

Inspection of rooftop equipment (SAGAT 4): The fourth set of SAGAT responses was 

recorded following the completion of the third task, which involved the inspection of 

rooftop equipment. Participants had to inspect how the equipment on rooftop is fastened to 

the roof in addition to how equipment and other components on the roof will be affected 

in the event of extreme weather conditions. The SAGAT questionnaire contained 8 

questions, and the multilevel model was built iteratively. Table 4.8 illustrates the details of 

the iterative model building. As shown in this table, the model containing the interaction 
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effect of the type of visualization and the SA level is not significantly different from the 

model containing only the main effects of these variables. Thus, the interaction effect 

between the type of visualization and the SA level was removed from the model. Model 4 

is used as the final model. 

A test of the model with the main effect of type of visualization and SA level against 

the baseline model is significant χ2 (5, N=65) = 135.06, p <0.001, R2L = 0.15, indicating 

that the predictors reliably distinguished participants who correctly answered the SAGAT 

questionnaire and those who did not. The main effects of type of visual decision aid (Δχ2 

= 37.75, p<0.001) and SA level are significant (Δχ2 = 33.53, p<0.001). s illustrated in 

Figure 4.9, participants assigned to the predictive display conditions had higher SA than 

participants in the checklist condition (b = 1.45, p = 0.001, OR = 4.26, (95% CI [1.43, 

12.75])) and the control condition (b = 2.23, p <0.001, OR = 9.26, (95% CI [3.04, 28.21])). 

However, there was no significant difference between the SA of participants exposed to 

the control condition and the checklist condition (b = 0.78, p = 0.18, OR = 2.17, (95% CI 

[0.86, 5.47])). The mean probability value can be found in Table 4.9.  

As illustrated in Figure 4.10, the participants’ Level 2 SA was significantly lower 

than their Level 1 SA (b = -1.56, p< 0.001, OR = 0.21, (95% CI [0.09, 0.50])) and Level 3 

SA (b = -1.04, p = 0.003, OR = 0.353, (95% CI [0.15, 0.81])). However, no significant 

difference was observed between Level 1 and Level 3 SA (b = 0.53, p = 0.51, OR = 1.70, 

(95% CI [0.76, 3.79])). The mean probability value can be found in Table 4.9.
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Table 4.8. Model summary for multilevel logistic regression analysis for inspection of rooftop equipment (SAGAT 4) 

Variable Model1 Model2 (Δχ2 = 109.76, df = 1, 
p<0.001), R2

L = 0.04 
Model3 (Δχ2 = 37.73 df = 2, 
p<0.001), ΔR2

L = 0.06, R2
L = 

0.09    

Model4 (Δχ2 = 33.53, df = 2, 
p<0.001), ΔR2

L = 0.06, R2
L = 

0.15   

Model5 (Δχ2 = 4.91, df = 4, p 
= 0.30), ΔR2

L<0.001, R2
L = 

0.16  
B (SE) OR CI 

Lower 
CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

Constant 0.85 
(0.09) 

2.33 1.94 2.82 1.00 
(0.16) 

2.74 2.02 3.90 0.10 
(0.19) 

1.10 0.76 1.61 0.69 
(0.25) 

1.99 1.21 3.35 0.66 
(0.30) 

1.93 1.08 3.58 

Experimental Condition (type of visualization) 
Checklist 

        
0.70 
(0.27) 

2.02 1.19 3.54 0.78 
(0.30) 

2.17 1.21 4.05 0.85 
(0.46) 

2.33 0.97 5.91 

Predictive 
Display 

        
2.04 
(0.33) 

7.69 4.16 15.47 2.22 
(0.36) 

9.26 4.73 20.04 2.24 
(0.62) 

9.38 3.04 36.85 

Situation awareness level 
Level 2             -1.56 

(0.28) 
0.21 0.12 0.36 -1.40 

(0.44) 
0.25 0.10 0.57 

Level 3             -0.53 
(0.26) 

0.59 0.35 0.98 -0.56 
(0.38) 

0.57 0.27 1.19 

Interaction between Condition and SA Level 
Checklist: 
SALevel2 

                -0.01 
(0.62) 

0.99 0.29 3.37 

Predictive 
display: 
SALevel2 

                -0.56 
(0.76) 

0.57 0.12 2.43 

Checklist: 
SALevel3 

                -0.20 
(0.56) 

0.82 0.27 2.47 

Predictive 
display: 
SALevel3 

                0.87 
(0.87) 

2.39 0.43 14.68 
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Figure 4.9. Main effect of the type of visualization presented (inspection of rooftop 
equipment — SAGAT 4) 

 

Figure 4.10. Main effect of situation awareness level (inspection of rooftop equipment — 
SAGAT 4) 
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Table 4.9. Mean probability of correctly answering SAGAT questions for inspection of 
rooftop equipment (SAGAT 4) 
Types of visualization SA level 
Control 0.52 Level 1 0.81 
Checklist  0.69 Level 2 0.52 
Predictive display 0.89 Level 3 0.72 

 

Inspection of envelope (SAGAT 5): The fifth set of SAGAT responses was recorded 

following the completion of the fourth and final task, which involved the inspection of the 

envelope. The envelope included windows, doors/dock doors, and exterior insulation and 

finish system (EIFS). To make the inspection task less complex, the participants were asked 

to inspect only the envelope of the rooms on the rooftop. The SAGAT questionnaire 

contained 8 questions, and the multilevel model was built iteratively. Table 4.10 illustrates 

the details of the iterative model building. As shown in the table, the model containing the 

interaction effect of the type of visualization and SA level is not significantly different from 

the model containing only the main effects of these variables. Thus, the interaction effect 

between the type of visualization and SA level was removed from the model. Model 4 is 

used as the final model. 
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Table 4.10. Model summary for multilevel logistic regression analysis for inspection of envelope (SAGAT 5) 

Variable Model1 Model2 (Δχ2 = 141.82, df = 1, 
p<0.001), R2

L = 0.06 
Model3 (Δχ2 = 28.08, df = 2, 
p<0.001), ΔR2

L = 0.05, R2
L = 

0.10 

Model4 (Δχ2 = 85.93, df = 2, 
p<0.001), ΔR2

L = 0.15, R2
L = 

0.23 

Model5 (Δχ2 = 2.12, df = 4, p 
= 0.71), ΔR2

L = 0.004, R2
L = 

0.24  
B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

B 
(SE) 

OR CI 
Lower 

CI 
Upper 

Constant 0.75 
(0.09) 

2.11 1.76 2.55 0.94 
(0.18) 

2.55 1.82 3.72  -0.08 
(0.23) 

0.92 0.58 1.45 0.89 
(0.34) 

2.45 1.26 4.92 0.94 
(0.38) 

2.56 1.22 5.61 

Experimental Condition (type of visualization)         
Checklist 

        
1.02 
(0.34) 

2.78 1.44 5.35 1.31 
(0.43) 

3.71 1.60 9.04 1.42 
(0.61) 

4.12 1.29 14.33 

Predictive 
Display 

        
2.00 
(0.37) 

7.42 3.40 15.32 2.55 
(0.48) 

12.79 5.22 35.37 2.11 
(0.69) 

8.21 2.28 35.58 

Situation awareness level     
Level 2             -2.39 

(0.31) 
0.09 0.05 0.16 -2.36 

(0.46) 
0.09 0.04 0.23 

Level 3             -0.51 
(0.33) 

0.60 0.32 1.14 -0.70 
(0.46) 

0.49 0.20 1.21 

Interaction between Condition and SA Level 
Predictive 
display: 
SALevel2 

                -0.23 
(0.67) 

0.79 0.21 2.93 

Predictive 
display: 
SALevel2 

                0.35 
(0.74) 

1.42 0.31 5.91 

Checklist: 
SALevel3 

                -0.01 
(0.73) 

0.99 0.24 4.16 

Predictive 
display: 
SALevel3 

                1.31 
(1.02) 

3.70 0.55 33.84 



147 

A test of the model with the main effect of type of visualization and SA level against 

the baseline model is significant χ2 (5, N=65) = 240.04, p <0.001, R2L = 0.23, indicating 

that the predictors reliably distinguished participants who correctly answered the SAGAT 

questionnaire and those who did not. The main effect of type of visual decision aid (Δχ2 = 

28.33, p<0.001) and SA level is significant (Δχ2 = 85.93, p<0.001). As illustrated in Figure 

4.11, participants in the predictive display condition had significantly higher SA than 

participants in the control condition (b = 2.55, p <0.001, OR = 12.80, (95% CI [2.90, 

56.38])). Participants exposed to the checklist conditions had marginally significantly 

higher SA than participants in the control condition (b = 1.31, p = 0.06, OR = 3.71, (95% 

CI [0.98, 14.06])). However, there was no significant difference between the SA of 

participants exposed to the predictive display condition and the checklist condition (b = 

1.24, p = 0.15, OR = 3.45, (95% CI [0.82, 14.49])). The mean probability value can be 

found in Table 4.11. 

As illustrated in Figure 4.12, the participants’ Level 2 SA was significantly lower 

than their Level 1 SA (b = -2.39, p< 0.001, OR = 0.09, (95% CI [0.035, 0.24])) and Level 

3 SA (b = -1.88, p<0.001, OR = 0.152, (95% CI [0.057, 0.41])). However, no significant 

difference was observed between Level 1 and Level 3 SA (b = 0.51, p = 0.82, OR = 1.66, 

(95% CI [0.61, 4.56])). The mean probability value can be found in Table 4.11. As 

illustrated in Figure 4.12, the participants’ Level 2 SA was significantly lower than their 

Level 1 SA (b = -2.39, p< 0.001, OR = 0.09, (95% CI [0.035, 0.24])) and Level 3 SA (b = 

-1.88, p<0.001, OR = 0.152, (95% CI [0.057, 0.41])). However, no significant difference 
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was observed between Level 1 and Level 3 SA (b = 0.51, p = 0.82, OR = 1.66, (95% CI 

[0.61, 4.56])). The mean probability value can be found in Table 4.11. 

 

Figure 4.11. Main effect of the type of visualization presented (inspection of envelope — 
SAGAT 5) 

 

Figure 4.12. Main effect of situation awareness level (inspection of envelope — SAGAT 
5) 
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Table 4.11. Mean probability of correctly answering SAGAT questions for inspection of envelope 
(SAGAT 5) 
Types of visualization SA level 
Control 0.48 Level 1 0.84 
Checklist  0.70 Level 2 0.46 
Predictive display 0.86 Level 3 0.78 

 

Performance 

The participants’ responses to the performance questionnaire was graded and the 

cumulative score calculated. The maximum possible score was 56, and the individual 

scores were converted to percentages. The performance score for one participant was 

missing completely at random (MCAR). Thus, this data point was imputed using the MICE 

package available in R (Buuren & Groothuis-Oudshoorn, 2011). There was only one 

standardized residual (3.09) value not within +/-3. No data points were removed for further 

analysis. In addition, no influential cases were identified using the Cook’s Distance 

method. 

A between-subjects ANOVA was conducted to investigate the effect of type of 

visualization on the performance of the participants. A significant difference in 

performance was observed among participants exposed to different conditions (F(2, 62) = 

17.47, p<0.001, ω2 = 0.34). The performance score increased from the control condition 

(M = 54.38, SD = 12.35) to the checklist condition (M = 65.83, SD = 14.80) to the 

predictive display condition (M = 76.70, SD = 9.38). A post-hoc analysis with Bonferroni 

correction revealed that the mean increase in performance from the control condition to the 

checklist condition (11.45, 95% CI [2.16, 20.7]) was statistically significant (p = 0.011). 

https://paperpile.com/c/M0nrIM/QalIh
https://paperpile.com/c/M0nrIM/QalIh
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Additionally, a statistically significant difference in performance was observed between 

the control condition and the predictive display condition (22.32, 95% CI [13.03, 31.6], 

p<0.001), and the checklist condition and the predictive display condition (10.87, 95% CI 

[1.69, 20.1], p = 0.015). This effect of type of visualization is illustrated in Figure 4.13. 

 

Figure 4.13. Effect of the type of visualization presented on performance 
 

Time 

 The simulation tracked the time taken to complete the inspection task. One missing 

data point was imputed using the MICE package. The time data were normally distributed 

for the control, checklist and predictive display groups. A between-subjects ANOVA was 

conducted to investigate the effect of type of visualization on the time taken to complete 

the assigned tasks. A significant difference in time taken was observed among participants 
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exposed to the different conditions (F(2, 62) = 34.40, p<0.001, ω2 = 0.51). As illustrated in 

Figure 4.14, time taken in seconds to complete the inspection tasks increased from the 

control condition (M = 961.64, SD = 47.03) to the checklist condition (M = 1623.24, SD = 

64.22) and the predictive display condition (M = 1713.61, SD = 88.26). A post-hoc analysis 

with Bonferroni correction revealed that the mean increase in time taken from the control 

to the checklist condition (661.60, 95% CI [419, 904], p<0.001]) and predictive display 

condition (752.00, 95% CI [509, 995], p<0.001]) is statistically significant. However, no 

statistically significant difference was observed between the time taken to complete the 

inspection tasks in the checklist condition and the predictive display condition (90.4, 95% 

CI [-149, 330], p = 0.99]). 

 

Figure 4.14. Effect of the type of visualization presented on time taken to complete 
inspection tasks  

 
Workload 



 152 

Total workload: The total workload experienced by the participants while completing the 

inspection tasks was measured subjectively using the NASA TLX tool. Total workload was 

normally distributed for the control, checklist and predictive display groups. A between-

subjects ANOVA was conducted to investigate the effect of type of visualization on the 

subjective total workload experienced by the participants. As illustrated in Figure 4.15, 

total workload decreased from the control condition (M = 52.51, SD = 16.81) to the 

checklist condition (M = 49.56, SD = 17.46) to the predictive display condition (M = 45.92, 

SD = 13.74). However, no significant difference in the total workload experienced was 

observed among participants exposed to the different conditions (F(2, 62) = 0.906, p = 

0.41, ω2 = -0.003). 

Mental demand: The perceived mental demand experienced by the participants while 

completing the inspection tasks was measured subjectively using the NASA TLX tool. 

Mental demand data was normally distributed for the checklist and predictive display 

groups. A between-subjects ANOVA was conducted to investigate the effect of type of 

visualization on the subjective mental demand experienced by the participants. As 

illustrated in Figure 4.15, perceived mental demand decreased from the control condition 

(M = 18.23, SD = 9.29) to the checklist condition (M = 17.42, SD = 8.91) to the predictive 

display condition (M = 15.61, SD = 6.54). However, no significant difference in the mental 

demand experienced was observed among participants exposed to the different conditions 

(F(2, 62) = 0.567, p = 0.57, ω2 = -0.013). 

Temporal demand: The perceived temporal demand experienced by the participants while 

completing the inspection tasks was measured subjectively using the NASA TLX tool. The 
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data were tested for normality using the Shapiro-Wilk test. The test was significant for the 

control condition, the checklist condition and the predictive display condition (p<.05). 

However, the skewness and kurtosis values were within +/-3, so normality was assumed 

for the data. A between-subjects ANOVA was conducted to investigate the effect of type 

of visualization on the perceived temporal demand reported by the participants. As 

illustrated in Figure 4.15, perceived temporal demand increased from the control condition 

(M = 8.19, SD = 6.57) to the checklist condition (M = 8.39, SD = 7.99) to the predictive 

display condition (M = 8.73, SD = 9.70). However, no significant difference in the temporal 

demand experienced was observed among participants exposed to the different conditions 

(F(2, 62) = 0.024, p = 0.98, ω2 = -0.031). 

Performance: The subjective performance perceived by the participants while completing 

the inspection tasks was measured using the NASA TLX tool. Higher values of 

performance rating indicate lower perceived performance, and lower values of 

performance rating indicate higher perceived performance. The perceived performance 

rating was normally distributed for both the control condition and the checklist condition. 

However, the test was significant for the predictive display group (p = 0.004). As the 

skewness and kurtosis values were within +/-3, normality was assumed for the data.  

A between-subjects ANOVA was conducted to investigate the effect of type of 

visualization on the perceived temporal demand reported by the participants. A significant 

difference in perceived performance was observed among the participants exposed to the 

different conditions (F(2, 62) = 4.71, p = 0.01, ω2 = 0.102). As illustrated in Figure 4.15, 

the perceived performance rating increased from the control condition (M = 11.65, SD = 
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6.19) to the predictive display condition (M = 8.64, SD = 5.40) to the checklist condition 

(M = 6.91, SD = 3.40). A post-hoc analysis with Bonferroni correction revealed that the 

mean increase in perceived performance from the control to the checklist condition (-4.74, 

95% CI [-8.58, -0.899, p = 0.01]) was statistically significant. However, no statistically 

significant difference was observed between the mean perceived performance in the 

predictive display condition and the control condition (-3.01, 95% CI [-6.86, 0.828, p = 

0.17]), and the checklist condition and the predictive display condition (-1.73, 95% CI [-

5.53, 2.07, p = 0.80]). 

Effort: The subjective effort perceived by the participants while completing the inspection 

tasks was measured subjectively using the NASA TLX tool. Perceived effort was normally 

distributed for the control, checklist and predictive display groups. A between-subjects 

ANOVA was conducted to investigate the effect of type of visualization on the perceived 

effort reported by the participants. As illustrated in Figure 4.15, perceived effort increased 

from the predictive display condition (M = 10.35, SD = 6.36) to the control condition (M 

= 10.59, SD = 6.89) to the checklist condition (M = 11.80, SD = 6.81). However, no 

significant difference in the perceived effort reported was observed among the participants 

exposed to the different conditions (F(2, 62) = 0.299, p = 0.74, ω2 = -0.022). 

Frustration: The subjective frustration perceived by the participants while completing the 

inspection tasks was measured subjectively using the NASA TLX tool. Shapiro-Wilk’s test 

was significant for the control condition, the checklist condition and the predictive display 

condition (p>0.05). However, as the skewness and kurtosis values were within +/-3, 

normality was assumed for the data. The homogeneity of variance assumption was violated 
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as assessed by Levene’s test (p = 0.03); as a result, Welch’s F test was used to test the 

hypothesis.  

A one-way analysis of means not assuming equal variances using Welch’s test was 

conducted to investigate the effect of type of visualization on the perceived frustration rate 

reported by the participants. As illustrated in Figure 4.15, perceived frustration increased 

from the predictive display condition (M = 2.17, SD = 2.57) to the control condition (M = 

2.06, SD = 2.27) to the checklist condition (M = 4.76, SD = 5.52). However, no significant 

difference in the perceived effort reported was observed among participants exposed to 

different conditions (F(2, 38.91) = 2.28, p = 0.12).  

 

Figure 4.15. Effect of the type of visualization presented on NASA TLX subscales  
 

DISCUSSION 

This study investigated the effect of context-based visual decision aids on 

improving the SA as well as the performance of windstorm risk engineers using a 
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convenient sample of 65 civil engineering and construction science and management 

students. The outcome variables of interest were SAGAT, performance, NASA TLX and 

time taken to complete the inspection task.  

The visual decision aids used in this study were designed based on the user-centered 

design approach proposed by Endsley (2016). A checklist based decision aid and a 

predictive display based visual aid were tested in this study. In general, the SA of 

participants exposed to the predictive display condition and the checklist condition was 

higher than those who completed the tasks in the control condition, suggesting that the 

context-based decision aids were effective in supporting the SA requirements of the 

participants.  Additionally, participants had higher Level 1 and Level 3 SA, a result that 

appears counterintuitive as the latter is more complex and difficult to achieve. However, 

the participants in this study were able to predict the future state of the infrastructure system 

leading to significantly higher Level 3 SA than Level 2 SA. 

For tasks requiring the participants to inspect the building surroundings and assess 

potential missile impact water damage, those in the checklist condition and the predictive 

display condition exhibited a higher Level 2 SA. Past studies have suggested that using 

procedural checklists could improve the SA of participants. For example, a longitudinal 

descriptive study investigating the effectiveness of a checklist in  improving SA during 

physician handoffs in a pediatric emergency department reported that the users experienced 

improved SA with the help of a standardized checklist (Mullan et al., 2015). For the same 

task in this study, participants in the predictive display condition achieved a higher Level 

3 SA compared to other participants. Interactive predictive visualizations showed 

https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/iga2v
https://paperpile.com/c/M0nrIM/iga2v
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participants what if scenarios in the event of a Category 4 hurricane. This knowledge may 

have contributed to the significantly higher Level 3 SA for those participants as the 

predictive display may have helped the participants gain a better understanding of the 

future state of the infrastructure system. The information displayed in the predictive 

visualization situated around their SA requirements and translated the captured data into a 

meaningful  prediction, resulting in higher SA (Endsley & Connors, 2008). A study 

investigating the effect of a situation-augmented display on an unmanned aerial vehicle 

monitoring task suggested that use of such displays may improve the SA of participants. 

However, this study used time to detect abnormalities as a measure of SA (Lu et al., 2013). 

Use of measures like SAGAT or SART may be more useful in identifying the actual effect 

of such visualizations on SA.   

A similar trend was observed for tasks requiring the participants to inspect the 

general condition of a roof underdeck and a rooftop. Participants in the control condition 

as well as the experimental condition had the same Level 1 SA. Both experienced as well 

as novice personnel can have the same Level 1 SA. However, integrating this information 

to comprehend the situation can be challenging for novice engineers (Endsley, 2016). 

Though we recruited novice participants for this study, those exposed to the experimental 

condition achieved higher Level 2 and Level 3 SA. Participants also had to take several 

measurements including fastener spacing and parapet height. A previous study 

investigating the sensemaking process of windstorm risk engineers revealed that taking 

dimensions is one of the tasks they frequently forget (Agnisarman et al., 2018). Thus, 

providing context-based decision aids to support this SA requirement through a checklist 

https://paperpile.com/c/M0nrIM/PmT5Y
https://paperpile.com/c/M0nrIM/PmT5Y
https://paperpile.com/c/M0nrIM/7wYlK
https://paperpile.com/c/M0nrIM/7wYlK
https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/vyXya
https://paperpile.com/c/M0nrIM/vyXya
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resulted in improved SA. Endsley (2016) suggested that providing assistance for Level 2 

SA and Level 3 SA will positively influence SA. The checklist helped participants 

thoroughly investigate the surroundings through cues and reminders. Additionally, the 

predictive display processed the Level 1 information and presented details supporting their 

Level 2 SA and assistance to project the future state of the infrastructure, leading to higher 

Level 2 and Level 3 SA. For example, the participants had to identify the areas 

experiencing higher wind pressure based on the presence of parapet and fastener spacing. 

The predictive display used a heat map to directly show this information as illustrated in 

Figure 4.4c, leading to higher SA.  

The second task additionally required the participants to inspect other roof issues 

including roof drainage, parapet and the general condition of the roof membrane. Most of 

the tasks they were asked to complete were related to such obvious issues as the 

identification of a clogged drain, stagnant water on the rooftop and a membrane tear. 

However, participants in the checklist condition and the predictive display condition 

exhibited higher SA. The checklist explicitly asked them to look for these issues, leading 

to higher probability in correctly answering the SAGAT questions. The predictive display 

did not have any additional value compared to the checklist condition. Though the checklist 

showed the participants the future state of the infrastructure in the event of an extreme 

weather condition, participants found it easier to predict the consequence of some obvious 

issues like a clogged drain and discontinuous parapet. 

For tasks requiring the inspection of the condition of rooftop equipment, 

participants in the predictive display condition had higher SA compared to participants in 

https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/gsSQE
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the control condition and the checklist condition. The rooftop housed several improperly 

attached pieces of equipment. Predicting the specific behavior of some of them and some 

of their potential impacts was not a straightforward task. For this reason, the checklist alone 

was not useful enough to complete this task. However, participants in the checklist 

condition were able to develop a better mental model of the interaction among different 

components in the event of an extreme weather condition. For example, as illustrated in 

Figure 4.4d, the dislodged exhaust fan could impact the dock door and damage it. 

Additionally, the dock door was not impact rated or pressure rated, both of   which could 

exacerbate the damage. Participants in the predictive display were given sufficient 

information to integrate the available cues to create an accurate mental model, leading to 

higher SA.   

The final task required the participants to inspect the building envelope. For 

simplicity, participants had to inspect only the envelope of the rooms on the rooftop. 

Participants in the checklist condition and predictive display condition had higher SA 

compared to participants in the control condition. Participants in the control condition 

failed to identify if the windows and dock doors in the rooftop were impact rated or pressure 

rated. Additionally, they failed to inspect the condition of the EIFS. As participants in the 

checklist condition and predictive condition were explicitly asked to look for these details, 

they achieved a higher SA.  The SA of participants in the predictive display condition, 

nonetheless, was not better than that of those in the checklist condition. As some 

participants suggested, predicting what could happen to a dock door that was not impact 
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rated is pretty straightforward, suggesting that predictive visualization did not add any 

additional value beyond the value of checklist.  

Though higher SA does not guarantee higher performance, there is only a 

probabilistic relationship between SA and performance (Endsley & Garland, 2000), 

meaning participants with higher SA might perform better than participants with lower 

SA.  In this study, participants in the checklist condition performed better than the 

participants in the control condition. Participants mentioned that the checklist helped them 

keep track of all the tasks they had to complete. Additionally, it avoided the need to 

remember the inspection steps in their working memory. Checklists have been used 

extensively in commercial aviation, research suggesting they provide retrieval cues that 

help pilots activate the sequence of activities they must perform (Degani & Wiener, 1990; 

Reason, 1990; Wickens, Hollands, Banbury, & Parasuraman, 2015). Though in the domain 

of infrastructure risk inspection, errors of omission may not always result in a catastrophe, 

it could lead to building owners having to pay for a loss that could have been avoided if 

the inspector had detected the issue in advance. Use of  a checklist reduces the chance of 

an omission error by limiting the reliance on  memory (Rosenfield & Chang, 

2009),  resulting in higher performance. There is sufficient evidence in the literature 

suggesting improved performance with the use of checklists. For instance, a past study 

investigating the effectiveness of a checklist for the management of severe local anesthetic 

systemic toxicity reported improved performance for the group exposed to the checklist in 

a simulated environment (Neal et al., 2012). In addition to the healthcare domain, checklists 

are considered  one of the simplest tools for reducing human error across different 

https://paperpile.com/c/M0nrIM/D0nLW
https://paperpile.com/c/M0nrIM/D0nLW
https://paperpile.com/c/M0nrIM/5C5DR+5kl16+5C7Jp
https://paperpile.com/c/M0nrIM/5C5DR+5kl16+5C7Jp
https://paperpile.com/c/M0nrIM/5C5DR+5kl16+5C7Jp
https://paperpile.com/c/M0nrIM/5C5DR+5kl16+5C7Jp
https://paperpile.com/c/M0nrIM/vdbvV
https://paperpile.com/c/M0nrIM/vdbvV
https://paperpile.com/c/M0nrIM/vdbvV
https://paperpile.com/c/M0nrIM/vdbvV
https://paperpile.com/c/M0nrIM/cunjS
https://paperpile.com/c/M0nrIM/cunjS
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disciplines including  aviation and product manufacturing (Hales & Pronovost, 2006). 

However, their effectiveness in infrastructure inspection still needs to be investigated more 

fully. 

The participants in the predictive display condition performed significantly better 

than the participants in the control condition and checklist only condition. For tasks 

involving the assessment of complex interactions like the one illustrated in Figure 4.4d, the 

predictive display was particularly useful. Participants exposed to this condition was aware 

of various direct as well as indirect consequences of a loosely attached exhaust hood. They 

saw how the fan hood could damage the non-impact rated and the EIFS. However, for 

much less complicated tasks, checklists alone are sufficient. The predictive display can 

train novice engineers to probe the scene thoroughly to identify various interactions among 

different components in the building. Thus, providing an option to activate the predictive 

display if necessary, will help the novice engineers. Most participants appreciated the 

predictive display; nonetheless, they suggested that its usefulness is limited to the training 

phase. However, the significant benefit on expert engineers may be limited as their 

experience helps them develop an accurate mental model of the future state of the 

infrastructure system. 

Though SAGAT and performance values were found to be higher for participants 

in the checklist and predictive display condition, the NASA TLX workload measure was 

not affected by context-based decision aids. Despite the lack of significance in the 

workload score, the score was lower for the checklist and lowest for the predictive display 

condition in the sample. Though the use of the checklist did not result in significant 

https://paperpile.com/c/M0nrIM/ehhnM
https://paperpile.com/c/M0nrIM/ehhnM
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reduction in workload, this finding is promising as it did not place any additional workload 

on participants. This research is in agreement with the findings from past studies 

investigating the use of a checklist for pediatric trauma resuscitation (Parsons et al., 2014). 

Higher workload can have a negative effect on SA as a result of users’ inability to integrate 

and comprehend the cues available in the environment and by requiring the use of  already 

limited working memory (Endsley, 2016; Mahadevan, 2009). Decision aids that reduce the 

demands on working memory can, in turn, eliminate excessive workload and improve SA. 

One example of such a decision aid is automation, which has been found to reduce mental 

demand and thereby improve SA (Endsley, 2016). The predictive display reduced users’ 

mental demand by providing additional support for analyzing and interpreting the data 

available. It helped the participants integrate seemingly disparate cues and comprehend the 

data. 

Furthermore, the checklist and the predictive display did not have any effect on the 

time taken to complete the inspection task, indicating that these decision aids did not 

require participants to spend additional time compared to the control condition. This 

finding is promising in that using them does not appear to impact the efficiency of the risk 

engineers. Though the difference in time taken was not significant, participants in the 

checklist and the predictive display conditions spent more time in the field completing the 

inspection task, a finding that was not unexpected as those participants completed more 

required steps than the participants in the control condition.  

Though the use of the checklist and predictive display had significant positive 

effects on performance and SA, it is important to discuss some of the behaviors observed 

https://paperpile.com/c/M0nrIM/y38hm
https://paperpile.com/c/M0nrIM/y38hm
https://paperpile.com/c/M0nrIM/gsSQE+ljYtz
https://paperpile.com/c/M0nrIM/gsSQE+ljYtz
https://paperpile.com/c/M0nrIM/gsSQE
https://paperpile.com/c/M0nrIM/gsSQE
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during the study. Some participants failed to use the checklist effectively. They forgot to 

open it and had to be reminded to use it from time to time. Participants activated the 

checklist whenever they wanted. However, keeping them static in the device would 

eliminate the need for them to remember to activate the checklist. Further, using the 

checklist can lead to errors of omission it is not comprehensive.  The checklist used in this 

study was designed specifically for the building used in the simulation. In the real world, 

risk engineers encounter facilities with different roof systems, components and occupancy. 

Thus, there is a need to develop checklists that can be adapted to the specific condition the 

engineers will be investigating.  It can also be augmented with representative images from 

real-world situations to improve cue saliency. In addition, using a predictive display can 

have several  consequences as a result of an increased reliability on the system, leading to 

automation complacency (Wickens et al., 2015); because of increased clue reliance, 

participants failed to observe other areas despite the fact they may have issues the 

predictive display failed to highlight.  

This phenomenon associated with automation complacency is known as attentional 

narrowing or tunneling (Wickens et al., 2015). For example, the predictive display showed 

the potential damage for building flashing in the event of an extreme weather condition. 

Subsequently, the participants based their conclusion about the flashing solely on the 

predictive visualization, failing to look for flashing issues in the other locations. Though 

these did not create any significant issues for the participants’ SA or performance for the 

simplified inspection task used in this study, in a real-world application with complicated 

inspection tasks, these issues might affect inspectors' performance. Thus, it is important to 

https://paperpile.com/c/M0nrIM/5C5DR
https://paperpile.com/c/M0nrIM/5C5DR
https://paperpile.com/c/M0nrIM/5C5DR
https://paperpile.com/c/M0nrIM/5C5DR
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study attentional tunneling in detail when designing AI-based decision aids for risk 

engineers. Multimodal cues based on AI based algorithms can be developed to provide 

different types of cues such as visual, auditory and haptic to reduce the information 

processing demands on users (Burke, Prewett, Gray, & Yang, 2006). Multimodal displays 

exemplify the framework of multiple resources theory by utilizing our capability to process 

compatible resources at the same time (Burke et al., 2006; Wickens, 2008). Additional 

studies need to be conducted to investigate the performance of risk engineers while 

controlling automation assisted technologies such as drones to collect inspection data. 

Multimodal displays can be used to provide feedback on inspection tasks as well as 

controlling tasks.  

Furthermore, this cross-sectional study investigated the effect of decision aids on 

the SA and performance immediately after watching the training video and completing the 

training scenario. The retention effect or the training value of these decision aids is still 

unknown. Further follow-up studies need to be conducted without these decision aids to 

investigate the retention effect of these aids on user performance and SA. 

This study is not without limitations. One of the limitations of this study is the use 

of convenient sampling. This study recruited civil engineering and construction science 

and management junior/senior/graduate students. Furthermore, the performance 

questionnaire used in this study is not a validated questionnaire. It was developed based on 

the inspection tasks and validated by the subject matter expert.  

 

 

https://paperpile.com/c/M0nrIM/OELcO
https://paperpile.com/c/M0nrIM/OELcO
https://paperpile.com/c/M0nrIM/UPGf9+OELcO
https://paperpile.com/c/M0nrIM/UPGf9+OELcO
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CONCLUSION 

This study investigated the effect of various context-based visualization strategies 

on the performance and situation awareness of participants using a simulated environment 

and a convenient sample of civil engineering and construction science and management 

students. The findings suggest that the participants in the checklist and predictive display 

condition had higher performance and SA compared to the participants in the control 

condition. The use of context-based decision aids had a positive effect by reducing the 

reliance on memory. Additionally, the decision aids helped users integrate the cues 

available to make sense of the environment. More specifically, the checklist alone was 

sufficient for some tasks including the inspection of obvious issues like roof ponding, 

cracking and clogged drainage. However, for other tasks involving the identification of the 

interaction among different components in the building, the predictive display provided 

additional benefits. This finding is important to consider when selecting decision aids for 

infrastructure inspection. By providing predictive visualization for only complicated tasks, 

the computational demands may also be reduced. Additionally, as suggested by some 

participants, the digital checklist can be augmented with pictures of issues to help users 

identify them in the building.  

The results suggest that the use of checklist and predictive display might result in 

reduced workload. However, the study needs to be conducted with more participants to 

identify the effect of these decision aids on the SA and performance of risk engineers. 

Additionally, the decision aids need to be tested with the actual users in real inspection 

scenarios to investigate the effect of these aids on the SA and performance in a real-world 
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situation.  In addition, we noticed that use of these decision aids can lead to attentional 

tunneling. The potential of using additional decision aids such as haptic cues based on AI 

algorithms need to be investigated in detail in future research endeavors. Finally, the 

potential of these decision aids on training risk engineers needs to be investigated further 

to learn how they can be used to impart procedural knowledge as well as to improve SA. 

Follow-up studies need to be conducted to investigate if the decision aids have any long-

term effect on the SA requirements of participants.  
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CHAPTER FIVE 

THE TRANSFER OF THE TRAINING EFFECT OF CONTEXT-BASED VISUAL 

DECISION AIDS ON THE SITUATION AWARENESS OF WINDSTORM RISK 

ENGINEERS  

INTRODUCTION 

A windstorm risk inspection survey, the process of assessing the wind vulnerability 

of a building to limit damages in the event of extreme weather conditions (Smith, 2011), 

benefits both the owners as well as the insurance companies who use the findings from 

these surveys to improve their underwriting process. However, the accuracy of this process 

depends on the skillset of the engineer conducting the inspection (Agnisarman et al., 2018).  

This situation is further impacted by the lack of a standard protocol combined with 

individual differences, resulting in disparities in reports produced by different field 

engineers (Agnisarman et al., 2018).  One approach for addressing this situation is through 

appropriate training.  Necessary for ensuring the adequate performance of any employee 

(Olaniyan & Ojo, 2008), training is especially important for windstorm risk engineers as 

this process involves developing a mental model of the future state of infrastructure 

(Agnisarman et al., 2018). 

The windstorm risk inspection process requires risk engineers to assess the current 

state of the infrastructure as well as develop a mental model for its future state in the event 

of extreme weather conditions. However, this task can be challenging for novice engineers 

as experience is an important factor directly predicting the accuracy of the risk inspection 

task. Previous qualitative research investigating the sensemaking process of windstorm risk 

https://paperpile.com/c/N0NQlT/alUTI
https://paperpile.com/c/N0NQlT/alUTI
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/KipcR
https://paperpile.com/c/N0NQlT/KipcR
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
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engineers observed a difference in the sensemaking process of novice and expert engineers. 

Experienced engineers tend to critically evaluate the information before making a decision, 

evaluating multiple potential reasons for any issues they observe before proposing a 

recommendation. However, novice engineers might overlook some of the important 

information and make decisions without thoroughly evaluating the environment 

(Agnisarman et al., 2018). Automation assisted technologies and Artificial Intelligence 

(AI) have been used by researchers and practitioners, both novice and experienced 

engineers, to improve the accuracy of the infrastructure inspection process (Agnisarman et 

al., 2019). However, operator performance in such systems is mediated by vigilance 

decrements, complacency and loss of situation awareness (Endsley & Kiris, 1995; Endsley, 

1999).  

Situation awareness (SA) is the perception of cues in the environments (Level 1), 

comprehension of the current state of the system (Level 2) and projection of the future state 

of the system (Level 3) (Endsley, 1995b). A previous study exploring the possibility of 

using context-based visual decision aids to support the SA of windstorm risk engineers 

(Chapter 4) investigated the use of a standardized checklist as well as an AI based 

predictive visualization on the SA and the performance of windstorm risk engineers, 

However, only limited research exists investigating the long-term effect of such visual 

decision aids in their absence, or their retention effect.   Pugh, Wickens, Herdener, Clegg, 

and Smith (2018) identified the limitations of this existing research as the lack of evidence 

on the transfer of the training effect of such visual decision aids. In fact, past research has 

found that  visualizations offering support to the users did not have any effect when they  

https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/Zgqzk
https://paperpile.com/c/N0NQlT/Zgqzk
https://paperpile.com/c/N0NQlT/Zgqzk
https://paperpile.com/c/N0NQlT/Zgqzk
https://paperpile.com/c/N0NQlT/NQr6N+1VbEg
https://paperpile.com/c/N0NQlT/NQr6N+1VbEg
https://paperpile.com/c/N0NQlT/NQr6N+1VbEg
https://paperpile.com/c/N0NQlT/NQr6N+1VbEg
https://paperpile.com/c/N0NQlT/JGYMp
https://paperpile.com/c/N0NQlT/JGYMp
https://paperpile.com/c/N0NQlT/kOuFJ
https://paperpile.com/c/N0NQlT/kOuFJ
https://paperpile.com/c/N0NQlT/kOuFJ
https://paperpile.com/c/N0NQlT/kOuFJ
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were removed (Pugh et al., 2018; Wickens, Merwin, & Lin, 1994). However, only limited 

research exists in the context of windstorm infrastructure inspection investigating the 

transfer of training effect of visual decision aids.  

A continuation of a previous study investigating the impact of checklist based and 

predictive display based decision aids on the SA and performance during windstorm risk 

inspection tasks (Chapter 4), this study investigated the transfer of training effect of these 

aids.  A past study investigating the use of a checklist for emergency department shift 

handoffs reported an improved perceived quality of care and team communication (Mullan, 

Macias, Hsu, Alam, & Patel, 2015). However, thus far no research has extended this 

investigation into study the effectiveness of checklist-based training materials for 

infrastructure inspection.  

In the civil and construction engineering domain, researchers have recently begun 

using Virtual Reality (VR) based training methods (Vahdatikhaki et al., 2019). For 

example, one study investigated the effectiveness of VR based and 360-degree panoramic 

view based training methods for hazard identification in construction sites (Eiris, Gheisari, 

& Esmaeili, 2020). Researchers have also investigated the possibility of integrating an 

affective human-machine interface in VR based crane training simulator, the results 

indicating a higher perceived performance with the affective interface (Rezazadeh, Wang, 

Firoozabadi, & Hashemi Golpayegani, 2011). Another study investigated the use of real-

time location tracking based immersive data visualization technologies for construction 

worker training and education (Teizer, Cheng, & Fang, 2013). However, none of the 

https://paperpile.com/c/N0NQlT/kOuFJ+GvxPO
https://paperpile.com/c/N0NQlT/kOuFJ+GvxPO
https://paperpile.com/c/N0NQlT/rDrbh
https://paperpile.com/c/N0NQlT/rDrbh
https://paperpile.com/c/N0NQlT/rDrbh
https://paperpile.com/c/N0NQlT/rDrbh
https://paperpile.com/c/Khb32o/Mi5E
https://paperpile.com/c/Khb32o/Mi5E
https://paperpile.com/c/2w1V4X/YCC7
https://paperpile.com/c/2w1V4X/YCC7
https://paperpile.com/c/2w1V4X/YCC7
https://paperpile.com/c/2w1V4X/YCC7
https://paperpile.com/c/N0NQlT/sOzzu
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https://paperpile.com/c/N0NQlT/bBY6q
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studies has investigated the effectiveness of such immersive visualization technologies for 

training infrastructure inspectors.  

In this research we investigated the transfer of training effect of checklist based 

and predictive display based visual decision aids on SA and performance, asking the 

following questions: 

Research questions 

• How do context-based decision aids help with knowledge retention? 

• How does the SA of participants change over time when the context-based decision 

aids are removed? 

• How does the performance of participants change over time when the context-based 

decision aids are removed? 

• How does the workload change over time when the context-based decision aids are 

removed? 

To answer these research questions, following hypotheses were tested: 

Hypotheses 

• Participants exposed to the context-based decision aids in the first trial will have 

higher SA when the decision aids are removed in the second trial. 

• Participants exposed to the context-based decision aids in the first trial will perform 

better when the decision aids are removed in the second trial. 

• The absence of decision aids will not have any effect on the workload experienced 

by the participants. 
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METHOD 

Study sample 

This study recruited 65 junior/senior and graduate level students with civil 

engineering or construction backgrounds as a proxy for novice risk engineers with minimal 

experience in risk inspection.  However, two participants were removed from the analysis 

as they did not complete the follow-up session, meaning analysis used only 63 participants, 

ranging from 20 to 41 years old (M=23.32, SD=3.36). More demographic information 

about the participants can be found in Table 5.1. 

Table 5.1. Demographic characteristics of the participants 

Variable (N = 63) N % 

Gender   

Female 13 21 

Male 50  79 

Race   

White 38 60 

Asian 17 27 

Black/African 

American 

5 8 

Other 3 5 

Major   

Civil Engineering 53 84 

Construction 

Science 

10 16 

Degree Pursuing   

Undergraduate 37 59 
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Graduate 15 24 

Doctorate 11 17 

Apparatus 

A desktop computer with an Intel(R) Xeon(R) CPU E5-1620 v4 processor and a 

Quadro FX 5800 GPU was used to run the simulations of the windstorm risk survey. The 

display used was an LG ultralight monitor with a diagonal dimension of 38.8”.  A Unity 

game engine was used to develop the simulations for this study (Unity, 2005). The 

demographic survey, SAGAT questionnaire and post surveys were administered through 

Qualitrics research suite using a laptop computer (Qualtrics, 2005).   

Simulation 

The details of the simulation used in the first study can be found in Chapter 4. The 

follow-up study used a simulation of a hotel building located on the Atlantic Coast. The 

exposure category used in this study was Exposure D with a flat unobstructed area exposed 

to wind flowing over open water (“Windexpo,” 2019). Figure 5.1 shows four screenshots 

from the simulation used in the follow-up study.  This building also had equipment that 

could be potential missiles on the rooftop. 

Stimuli 

 The decision aids used in the first study are explained in Chapter 4. Participants 

completed the inspection tasks in the follow-up study without decision aids. 

Independent variables 

https://paperpile.com/c/nMGRdI/NxvE1
https://paperpile.com/c/nMGRdI/NxvE1
https://paperpile.com/c/nMGRdI/ZjilI
https://paperpile.com/c/nMGRdI/ZjilI
https://paperpile.com/c/N0NQlT/Pl7bR
https://paperpile.com/c/N0NQlT/Pl7bR
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Figure 5.1. The hotel simulation used in the follow up study 
 
Type of context-based visual aids presented (3 levels): This variable was presented in 3 

levels: 1) predictive display condition, 2) checklist condition and 3) control condition. In 

the first study, only participants in the control condition did not have any context-based 

decision aids; in this follow-up study, all participants completed the inspection tasks 

without decision aids. 

Trial (2 levels): Participants completed the inspection task twice. 1) Trial 1 and 2) Trial 2. 

The follow-up inspection task was completed a week after the first study without any 

decision aids. 

Dependent variables 

Situation awareness: Situation awareness was measured using the Situation Awareness 

Global Assessment (SAGAT) technique (Endsley, 1995b). This objective method freezes 

https://paperpile.com/c/N0NQlT/JGYMp
https://paperpile.com/c/N0NQlT/JGYMp
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the simulation at random times to administer the questionnaire. In this study the simulation 

was frozen at five predefined time points as the simulated environment was not highly 

dynamic. A similar approach was adopted by researchers investigating the SA of medical 

trainees (Gardner et al., 2017). All but one set of SAGAT queries were administered 

following the completion of each inspection task. One set was administered during one of 

the tasks. The SA requirements of windstorm risk engineers were identified through 

detailed one-on-one interviews. The SAGAT queries were then developed to match these 

SA requirements. Each trial included 5 sets of SAGAT queries. The SAGAT questions 

used in this study can be found in Appendix I. 

Workload: The workload experienced by the participants was measured using The National 

Aeronautics and Space Administration Task Load Index (NASA-TLX). This is a 

multidimensional instrument used to measure the workload experienced (Hart, 2006; Hart 

& Staveland, 1988). 

Performance: Participant performance was assessed using a performance questionnaire. 

The performance questionnaire was developed based on the tasks used in the study. The 

questionnaire was then validated by the SME. This questionnaire can be found in Appendix 

J. The time taken to complete the inspection task was not considered because the simulation 

used was different in both studies. 

Procedure  

First study (Trial 1): The procedure for the first study can be found in Chapter 4. 

Follow up study (Trial 2): Participants were asked to return after a week for a follow-up 

session. They completed the inspection task using the hotel simulation (Figure 5.1) with   

https://paperpile.com/c/N0NQlT/0Dv6X
https://paperpile.com/c/N0NQlT/0Dv6X
https://paperpile.com/c/N0NQlT/ZiaFh+cjuPM
https://paperpile.com/c/N0NQlT/ZiaFh+cjuPM
https://paperpile.com/c/N0NQlT/ZiaFh+cjuPM
https://paperpile.com/c/N0NQlT/ZiaFh+cjuPM
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no context based decision aids for both conditions, the control and the experimental. The 

simulation froze at five preselected time points to administer the SAGAT questionnaire. 

Upon completing the inspection task, participants answered performance as well as NASA 

TLX questionnaires, followed by a retrospective think-aloud session in which they 

discussed their experiences completing the inspection tasks in the simulation. Those 

exposed to the checklist or predictive display condition in the initial study were also asked 

how these decision aids helped them with the inspection task. Further, the participants were 

asked to compare their first and follow-up study experiences.  

Data analysis 

R language for statistical computing was used for the data analysis (R Core Team, 

2019). The multilevel modeling technique was used to analyze the data collected using a 

mixed design. The study condition was the between subjects variable and the trial was the 

within subjects variable. The SAGAT responses were coded as 0 (for incorrect answer) 

and 1 (for correct answers). Since there were some differences in the SAGAT questions 

used in the first and second studies, the data were not analyzed using logistic regression 

model. SAGAT responses for each freeze were consolidated, and a percentage score for 

each condition per each freeze was calculated. Outliers were identified using standardized 

residuals. Below are the equations used for the multilevel modeling. 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 (5.1) 

 𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝛾𝛾01𝑍𝑍𝑖𝑖 + 𝑢𝑢1𝑖𝑖 (5.2) 

 

where 

https://paperpile.com/c/N0NQlT/Q7roC
https://paperpile.com/c/N0NQlT/Q7roC
https://paperpile.com/c/N0NQlT/Q7roC
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• β0j=intercept that varies 

• β1j=slope 

• eij=deviation from group 

• γ00=fixed effect 

• γ01=slope for the relationship between the DV Yij and level 2 IV Z 

• Z=level 2 IV 

• uij=random effect 

 

RESULTS 

SAGAT 

The SAGAT responses were coded as zeros (incorrect answers) and ones (correct 

answers) and then summed to obtain a cumulative SAGAT score for each freeze. The 

percentage of correct responses was calculated for each freeze and used as the dependent 

variable in the data analysis. No extreme data points were identified as assessed by the 

deviance value. The following sections detail the analysis of each of the SAGAT freezes 

separately.  

Inspection of surroundings (SAGAT 1): This task involves inspecting the surroundings of 

the building to identify any flood exposure or potential missiles. This task required the 

participants to walk around the building to identify any issues; they had the opportunity to 

use a drone to identify the wind exposure level of the building. Table 5.2 illustrates the 

details of the iterative modeling.  
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In the final model, the main effect of the type of visualization was significant with Δχ2 = 

28.72 and p<0.001. However, the main effect of trial was not significant (Δχ2 = 3.17, p = 

0.07). The interaction between the type of visualization and the study trial was significant 

(Δχ2 = 15.75, p = 0.0004). Further analysis was conducted to investigate the nature of this 

interaction. As illustrated in Figure 5.2, the SA was significantly higher in Trial 2 compared 

to Trial 1 for the control condition (b = 19.04, SE = 4.38, 95%CI [5.66, 32.43]), p<0.001). 

However, no significant difference in SA was observed between the first and second trials 

for participants in the checklist condition (b = -1.99, SE = 4.27, 95%CI [-15.05, 11.07], p 

= 0.99) and the predictive display condition (b = -2.27, SE = 4.17, 95%CI [-15.03, 10.49], 

p = 0.99). The mean values can be found in Table 5.3. 
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Table 5.2. Model summary for iterative model building for inspection of surroundings (SAGAT 1) 

Variable Model1 Model2, R2 = 0.02, p = 0.10 Model3, R2 = 0.22, 
p<0.001   

Model4, R2 = 0.32, p = 0.0004  
 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 80.39 
(1.50) 

77.41 83.37 78.09 
(2.05) 

74.03 82.16 67.73 
(2.65) 

62.51 72.95 60.50 
(3.10) 

54.46 66.54 

Trial 
Trial 2 

   
4.59 
(2.78) 

-0.93 10.11 4.59 
(2.60) 

-0.53 9.71 19.05 
(4.38) 

10.50 27.59 

Experimental condition (type of visualization) 
Checklist       12.79 

(3.23) 
6.44 19.15 23.31 

(4.32) 
14.87 31.75 

Predictive display       17.48 
(3.19) 

11.19 23.76 28.14 
(4.28) 

19.79 36.48 

Interaction between condition and trial 

Checklist: trial 2          -21.04 
(6.11) 

-32.98 -9.10 

Predictive display: 
trial 2 

         -21.32 
(6.05) 

-33.12 -9.51 
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Figure 5.2. Interaction effect of trial and type of visualization (inspection of surroundings 

— SAGAT 1) 
 

Table 5.3. Mean and SD of percentage of correct SAGAT responses for inspection of surroundings task (SAGAT 1) 
Type of visualization 

  Control Checklist Predictive display 
Trial 1 60.50 (16.38) 83.81 (13.22) 88.64 (12.07) 

Trial Trial 2 79.55 (15.57) 81.82 (16.00) 86.36 (8.76) 
 

 
Inspection of underdeck and rooftop (SAGAT 2): This step involved the inspection of 

underdeck and rooftop. More specifically, the participants were asked to inspect the 

condition of underdeck including if the fastener rows were parallel or perpendicular to the 

roof rib, the fastener dimensions, the weld spacing and the fastener dimensions on the 

rooftop. The simulation was frozen after completing these tasks. Table 5.4 illustrates the 

details of the iterative modeling.  
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Table 5.4. Model summary for iterative model building for inspection of underdeck and rooftop (SAGAT 2) 

Variable Model1 Model2, R2 = 0.05, p = 0.0001 Model3, R2 = 0.36, p<0.001  Model4, R2 = 0.39, p = 0.01   
 

B 
(SE) 

CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 60.80 
(2.65) 

55.53 66.07 66.27 
(2.98) 

60.35 72.19 48.82 
(3.91) 

41.13 56.51 43.13 
(4.34) 

34.66 51.59 

Trial 
Trial 2 

   
-10.94 
(2.71) 

-16.32 -5.56 -10.94 
(2.73) 

-16.32 -5.56 0.45 
(4.55) 

-8.44 9.33 

Experimental condition (type of visualization) 
Checklist       18.05 

(5.12) 
7.97 28.11 25.92 

(6.06) 
14.09 37.75 

Predictive display       32.75 
(5.06) 

22.79 42.71 41.53 
(5.99) 

29.83 53.23 

Interaction between condition and trial 

Checklist: trial 2          -15.75 
(6.36) 

-28.17 -3.33 

Predictive display: 
trial 2 

         -17.57 
(6.29) 

-29.85 -5.29 
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In the final model, the main effect of the type of visualization was significant with 

Δχ2 = 32.96 and p<0.001. The main effect of trial was also significant (Δχ2 = 14.69, 

p<0.001), and the interaction between the type of visualization and the study trial was 

significant (Δχ2 = 9.03, p = 0.01). Further analysis was conducted to study the nature of 

this interaction. As illustrated in Figure 5.3, no significant difference in SA was observed 

between the first and second trials for participants in the control condition (b = 0.45, SE = 

4.55, 95%CI [-13.47, 14.37], p = 0.99). However, the SA was significantly lower for Trial 

2 for participants in the checklist condition (b = -15.31, SE = 4.44, 95%CI [-28.89, -1.72], 

p = 0.01) and the predictive display condition (b = -17.13, SE = 4.34, 95%CI [-30.40, -

3.86], p = 0.003). The mean values can be found in Table 5.5. 

 

Figure 5.3. Interaction effect of trial and type of visualization (inspection of underdeck 
and rooftop — SAGAT 2) 

 
 



 181 

Table 5.5. Mean and SD of percentage of correct SAGAT responses for inspection of underdeck and rooftop 
(SAGAT 2) 

Type of visualization 
  Control Checklist Predictive display 

Trial 1 43.13 (18.79) 69.05 (20.77) 84.66 (16.78) 
Trial Trial 2 43.57 (14.27) 53.74 (23.43) 67.53 (20.76) 

 

Inspection of underdeck and rooftop continuation (SAGAT 3): This continuation of the 

inspection of underdeck and rooftop involved inspecting the general condition of the 

rooftop including identifying any tears, ponding and blocked drains. Additionally, the 

participants had to measure the height of the parapet wall and inspect its general condition.  

The simulation was frozen at the end of this task to administer the third set of the SAGAT 

questions. Table 5.6 illustrates the iterative model summary. 

In the final model, the main effect of the type of visualization was significant with 

Δχ2 = 23.30 and p<0.001. The main effect of trial was also significant (Δχ2 = 4.49, p = 

0.03), and the interaction between the type of visualization and the study trial was 

significant (Δχ2 = 10.57, p = 0.005). Further analysis was conducted to investigate the 

nature of this interaction. As illustrated in Figure 5.4, no significant difference in SA was 

observed between the first and second trials for participants in the control condition (b = 

7.18, SE = 5.03, 95%CI [-8.21, 22.57], p = 0.99), the checklist condition (b = -11.52, SE = 

4.91, 95%CI [-26.54, 3.50], p = 0.34) and the predictive display condition (b = -14.13, SE 

= 4.80, 95%CI [-28.81, 0.54], p = 0.07). The mean values can be found in Table 5.7. 
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Table 5.6. Model summary for iterative model building for inspection of underdeck and rooftop continuation (SAGAT 3) 

Variable Model1 Model2, R2 = 0.03, p = 0.034 Model3, R2 = 0.21, p<0.0001   Model4, R2 = 0.27, p = 0.005   
 

B 
(SE) 

CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 71.36 
(1.94) 

67.50 75.21 74.60 
(2.47) 

69.71 79.49 62.84 
(3.27) 

56.40 69.28 56.00 (3.85) 48.48 63.52 

Trial 
Trial 2 

 
  -6.49 

(3.03) 
-12.51 -0.48 -6.49 

(3.06) 
-12.51 -0.48 7.18 (5.03) -2.65 17.00 

Experimental condition (type of visualization) 
Checklist       13.70 

(4.04) 
5.74 21.66 23.05 (5.38) 12.54 33.56 

Predictive display       20.62 
(4.00) 

12.75 28.48 31.27 (5.32) 20.88 41.67 

Interaction between condition and trial 

Checklist: trial 2          -18.70 (7.03) -32.43 -4.97 

Predictive display: 
trial 2 

         -21.31 (6.70) -34.89 -7.74 



183 

 
 

Figure 5.4. Interaction effect of trial and type of visualization (inspection of underdeck 
and rooftop continuation — SAGAT 3) 

Table 5.7. Mean and SD of percentage of correct SAGAT responses for inspection of underdeck and rooftop 
continuation (SAGAT 3) 

Type of visualization 
  Control Checklist Predictive display 

Trial 1 56.00 (20.88) 79.05 (16.40) 87.27 (13.86) 
Trial Trial 2 63.18 (17.57) 67.53 (17.85) 73.14 (16.47) 

 

Inspection of rooftop equipment (SAGAT 4): This task required the participants to inspect 

the general condition of rooftop equipment, including identifying how various pieces were 

fastened to the rooftop and what could happen to them in the event of extreme weather 

conditions. Upon completing this task, participants completed the fourth set of SAGAT 

questions. Table 5.8 illustrates the iterative model summary.
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Table 5.8. Model summary for iterative model building for inspection of rooftop equipment (SAGAT 4) 

Variable Model1 Model2, R2 = 0.02, p = 0.04 Model3, R2 = 0.21, p<0.001   Model4, R2 = 0.24, p = 0.06   
 

B (SE) CI 
Lowe
r 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 67.03 
(2.42) 

62.22 71.85 70.83 
(3.03) 

64.82 76.85 59.43 
(4.10) 

51.37 67.48 53.75 
(4.85) 

44.29 63.21 

Trial 
Trial 2    -7.60 

(3.64) 
-14.81 -0.40 -7.61 

(3.66) 
-14.81 -0.40 3.75 

(6.27) 
-8.49 15.99 

Experimental Condition (type of visualization) 
Checklist       8.36 

(5.11) 
-1.71 18.44 14.70 

(6.77) 
1.49 27.92 

Predictive display       24.68 
(5.06) 

14.72 34.64 34.89 
(6.69) 

21.82 47.95 

Interaction between condition and trial 

Checklist: trial 2          -12.68 
(8.76) 

-29.78 4.42 

Predictive display: 
trial 2 

         -20.42 
(8.66) 

-37.33 -3.50 
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In the final model, the main effect of the type of visualization was significant with 

Δχ2 = 21.54 and p<0.001. The main effect of trial was also significant (Δχ2 = 4.30, p = 

0.04). The interaction between the type of visualization and the study trial was marginally 

significant (Δχ2 = 5.64, p = 0.06). Further analysis was conducted to examine the nature of 

this interaction. As illustrated in Figure 5.5, no significant difference in SA was observed 

between the first and the second trials for participants in the control condition (b = 3.75, 

SE = 6.27, 95%CI [-15.42, 22.92], p = 0.99), the checklist condition (b = -8.93, SE = 6.12, 

95%CI [-27.64, 9.78], p = 0.99) and the predictive display condition (b = -16.67, SE = 5.98, 

95%CI [-34.95, 1.61], p = 0.1). The mean values can be found in Table 5.9. 

 

Figure 5.5. Interaction effect of trial and type of visualization (inspection of rooftop 
equipment — SAGAT 4) 
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Table 5.9. Mean and SD of percentage of correct SAGAT responses for inspection of rooftop inspection (SAGAT 
4) 

Type of visualization 
  Control Checklist Predictive display 

Trial 1 53.75 (14.11) 68.45 (21.87) 88.64 (15.39) 
Trial Trial 2 57.50 (25.63) 59.52 (26.13) 71.97 (23.79) 

 
Inspection of envelope (SAGAT 5): This task involved the inspection of the building 

envelope including the doors, windows and the EIFS. In an actual risk inspection scenario, 

engineers inspect the envelope of the entire building. However, in this study, this task was 

simplified to include the inspection of the windows, dock doors and the EIFS of the rooms 

on the rooftop. The query included questions about the general condition of these 

components and the possible damage they could sustain. Table 5.10 illustrates the iterative 

model summary. 

In the final model, the main effect of the type of visualization was significant with 

Δχ2 = 17.42 and p = 0.0002. The main effect of trial was also significant (Δχ2 = 7.68, p = 

0.006). The interaction between the type of visualization and the study trial was marginally 

significant (Δχ2 = 8.84, p = 0.01). Further analysis was conducted to explore the nature of 

this interaction. As illustrated in Figure 5.6, a significant difference in SA was observed 

between the first and second trials for participants in the control condition (b = 19.37, SE 

= 4.94, 95%CI [4.26, 34.49], p = 0.003). However, no significant difference in SA was 

observed between Trial 1 and Trial 2 for participants in the checklist condition (b = 7.44, 

SE = 6.74, 95%CI [-13.17, 28.95], p = 0.99) and the predictive display condition (b = -

1.13, SE = 4.71, 95%CI [-15.55, 13.27], p = 0.99). The mean values can be found in Table 

5.11. 
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Table 5.10. Model summary for iterative model building for inspection of building envelope (SAGAT 5) 

Variable Model1 Model2, R2 = 0.03, p = 0.006 Model3, R2 = 0.21, p = 
0.0002   

Model4, R2 = 0.24, p = 0.01   
 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 72.22 
(2.63) 

66.99 77.45 68.06 
(3.02) 

62.07 74.04 54.90 
(4.37) 

46.30 63.49 49.37 
(4.82) 

39.56 58.79 

Trial 
Trial 2 

   
8.33 
(2.94) 

2.50 14.16 8.33 
(2.96) 

2.50 14.16 19.37 
(4.94) 

9.72 29.03 

Experimental condition (type of visualization) 
Checklist       13.26 

(5.74) 
1.96 24.56 19.08 

(6.74) 
5.92 32.24 

Predictive display       25.03 
(5.68) 

13.85 36.21 35.28 
(6.67) 

22.27 48.30 

Interaction between Condition and trial 

Checklist: trial 2          -11.64 
(6.91) 

-25.12 1.85 

Predictive display: 
trial 2 

         -20.51 
(6.83) 

-33.85 -7.18 
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Figure 5.6. Interaction effect of trial and type of visualization (inspection of building 
envelope — SAGAT 5) 

Table 5.11. Mean and SD of percentage of correct SAGAT responses for inspection of building envelope (SAGAT 
5) 

Type of visualization 
  Control Checklist Predictive display 

Trial 1 49.37 (23.46) 68.45 (19.61) 84.66 (19.26) 
Trial Trial 2 68.75 (22.40) 76.19 (24.33) 83.52 (20.19) 

Performance 

Participants’ performance was measured using a questionnaire administered at the 

end of each trial. Their responses were graded, and a cumulative score was calculated. A 

percentage of right responses was calculated for both Trial 1 and Trial 2. The data were 

analyzed using a linear multilevel approach. The summary of the multilevel modeling can 

be seen in Table 5.12.
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Table 5.12. Model summary for iterative model building for performance data 

Variable Model1 Model2, R2 = 0.05, p = 0.0003 Model3, R2 = 0.23, p = 
0.0002   

Model4, R2 = 0.26, p = 0.003   
 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 69.59 
(1.51) 

66.58 72.59 66.67 
(1.70) 

63.29 70.04 59.40 
(2.49) 

54.52 64.29 56.25 
(2.70) 

50.98 61.52 

Trial 
Trial 2 

   
5.84 
(1.55) 

2.76 8.92 5.84 
(1.56) 

2.76 8.92 12.15 
(2.56) 

71.5 17.15 

Experimental condition (type of visualization) 
Checklist       6.72 

(3.30) 
0.23 13.21 9.82 

(3.77) 
2.45 17.19 

Predictive display       14.38 
(3.26) 

7.96 20.79 20.45 
(3.73) 

13.17 27.74 

Interaction between Condition and trial 

Checklist: trial 2          -6.20 
(3.58) 

-13.18 0.78 

Predictive display: 
trial 2 

         -12.15 
(3.54) 

-19.06 -5.25 
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In the final model, the main effect of the type of visualization was significant with 

Δχ2 = 17.51 and p = 0.0002. The main effect of trial was also significant (Δχ2 = 12.96, p 

= 0.0003). The interaction between the type of visualization and the study trial was 

marginally significant (Δχ2 = 11.31, p = 0.003). Further analysis was conducted to examine 

the nature of this interaction. As illustrated in Figure 5.7, a significant difference in SA was 

observed between the first and second trials for the participants in the control condition (b 

= 12.15, SE = 2.56, 95%CI [4.32, 19.98], p = 0.0002). However, no significant difference 

in SA was observed between Trial 1 and Trial 2 for participants in the checklist condition 

(b = 5.95, SE = 2.50, 95%CI [-1.69, 13.59], p = 0.31) and the predictive display condition 

(b<0.001, SE = 2.44, 95%CI [-7.46, 746], p = 0.99). The mean values can be found in Table 

5.13.
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Figure 5.7. Interaction effect of trial and type of visualization for participants’ 
performance 

Table 5.13. Mean percentage and SD of performance 
Type of visualization 

  Control Checklist Predictive display 
Trial 1 56.25 (9.12) 66.07 (15.12) 76.70 (9.38) 

Trial Trial 2 68.40 (11.89) 72.02 (12.62) 76.70 (13.16) 

Workload (NASA TLX) 

NASA TLX tool was used to measure the workload experienced by participants. 

Only performance subscale was significantly different. Total workload, mental demand, 

temporal demand, effort and frustration were not significantly different among different 

levels of independent variables. Figure 5.8 illustrates the effect of trial and the type of 

visualization on NASA TLX subscales. 

NASA TLX Performance: Table 5.14 illustrates the summary of the iterative modeling for 

the NASA TLX performance measure. In the final model, the main effect of the type of 

visualization was significant with Δχ2 = 8.38 and p = 0.01. However, the main effect of 

trial (Δχ2 = 0.19, p = 0.66), and the interaction between trial and type of visualization (Δχ2 

= 1.78, p = 0.41) were not significant. A model with only type of visualization as the 

independent variable was considered for the final data analysis. Lower values of NASA 

TLX performance indicate higher perceived performance. Post hoc analysis was conducted 

with Bonferroni correction. Perceived performance was significantly higher for 

participants in the checklist condition (b = -3.18, SE = 1.20, 95%CI [-6.13, -0.22], p = 0.03) 

compared to participants in the control condition. Performance was marginally 

significantly higher for participants in the predictive display condition (b = -2.88, SE = 
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1.19, 95%CI [-5.80, 0.04], p = 0.05) compared to the participants in control condition. 

However, no significant difference in performance was observed between participants in 

the checklist condition and the predictive display condition (b = 0.30, SE = 1.17, 95%CI [-

2.58, 3.18], p = 0.99).  The mean values can be found in Table 5.15. 

 

Figure 5.8. NASA TLX subscales
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Table 5.15. Mean and SD of NASA TLX performance 
Type of visualization 

Control Checklist Predictive display 
11.41 (6.14) 8.23 (4.39) 8.53 (5.31) 

Table 5.14. Model summary for iterative model building for NASA TLX performance  

Variable Model1 Model2, R2 = 0.001, p = 0.66 Model3, R2 = 0.07, p = 0.01   Model4, R2 = 0.08, p = 0.41   
 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

B (SE) CI 
Lower 

CI 
Upper 

Constant 9.34 
(0.51) 

8.33 10.35 9.14 
(0.69) 

7.77 10.51 11.21 
(0.97) 

9.29 13.12 11.77 
(1.19) 

9.43 14.10 

Trial 
Trial 2 

   
0.40 
(0.93) 

-1.45 2.25 0.40 
(0.94) 

-1.45 2.25 -0.72 
(1.66) 

-3.96 2.52 

Experimental condition (type of visualization) 
Checklist       -3.18 

(1.19) 
-5.52 -0.84 -4.59 

(1.67) 
-7.85 -1.33 

Predictive display       -2.89 
(1.18) 

-5.19 -0.56 -3.13 
(1.65) 

-6.35 0.09 

Interaction between Condition and trial 

Checklist: trial 2          2.83 
(2.32) 

-1.70 7.36 

Predictive display: 
trial 2 

         0.50 
(2.29) 

-3.97 4.98 
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DISCUSSION 

This study investigated the transfer of training effect of context based visual 

decision aids. More specifically, it investigated the effect of implementation of these 

decision aids on the SA, performance and workload of the participants. The types of 

visualization used included a checklist based decision aid and a predictive display based 

decision aid. These decision aids were designed based on the insights obtained from a 

previous qualitative study investigating the sensemaking process of windstorm risk 

engineers (Agnisarman et al., 2018). The design principles proposed by Endsley (2016) for 

supporting SA requirements were also considered in the design of these decision aids. 

The SA of participants in the predictive display condition and checklist condition 

remained the same for both Trial 1 and Trial 2 for all risk inspection tasks except one: 

participants in the control condition achieved higher SA in the Trial 2 condition compared 

to the Trial 1 condition. However, their SA was still not better than that of participants in 

the checklist condition or the predictive display condition. This finding is promising as the 

participants in the checklist condition and predictive display condition were able to transfer 

the effect of the context-based decision aids to a similar inspection task conducted later. 

The participants maintained their SA in the second trial for all but one task. Their SA 

dropped significantly for the second task which required them to obtain fastener and weld 

spacing and flashing details. In the first trial, the checklist provided retrieval cues 

highlighting these tasks. However, in second trial, in the absence of such cues, participants 

failed to notice the fasteners.  

https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/N0NQlT/tXgtS
https://paperpile.com/c/Khb32o/vLJB
https://paperpile.com/c/Khb32o/vLJB
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In addition, the performance of the participants in the second trial was not 

significantly different from their Trial 1 performance. The use of the checklist helped 

participants by providing retrieval cues in the first study (Degani & Wiener, 1990; Reason, 

1990; Wickens et al., 2015), helping them remember the steps they needed to complete in 

the second study as well. Additionally, the predictive display showed them what could 

happen to different components on the building in the event of extreme weather conditions, 

specifically helping them visualize what could happen in the event of a Category 4 

hurricane.  This knowledge helped them complete the inspection task in the follow-up 

study without the decision aids. 

Past research investigating the effectiveness of checklist-based decision aids for 

training in intraoperative handover found a checklist had a positive effect on the 

communication of items during anesthesia handovers (Jullia et al., 2017). However, no 

existing research has investigated the transfer of the training effect of checklists or 

predictive display based decision aids. Many studies have investigated the transfer of 

training effect of virtual reality based training. For example, past studies investigating  the 

transfer of training effect of virtual environments for surgery training observed that the use 

of virtual reality training techniques is as good or better than other conventional training 

methods such as video-based training (Aïm, Lonjon, Hannouche, & Nizard, 2016; Alaker, 

Wynn, & Arulampalam, 2016).  None of these studies investigated the effect of decision 

aids in virtual environments for transfer of training.  

https://paperpile.com/c/N0NQlT/eJu1P+0J6Hj+chH1K
https://paperpile.com/c/N0NQlT/eJu1P+0J6Hj+chH1K
https://paperpile.com/c/N0NQlT/eJu1P+0J6Hj+chH1K
https://paperpile.com/c/N0NQlT/eJu1P+0J6Hj+chH1K
https://paperpile.com/c/N0NQlT/3J7St
https://paperpile.com/c/N0NQlT/3J7St
https://paperpile.com/c/N0NQlT/YGp8E+su4w0
https://paperpile.com/c/N0NQlT/YGp8E+su4w0
https://paperpile.com/c/N0NQlT/YGp8E+su4w0
https://paperpile.com/c/N0NQlT/YGp8E+su4w0
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As identified in this research, participants in the control condition improved their 

performance and SA significantly in Trial 2 compared to Trial 1. During the retrospective 

think aloud session post study completion, participants mentioned that the SAGAT 

questionnaire helped them identify what to look for. Since they were exposed to the 

SAGAT questionnaires in the first study, they knew the type of issues they needed to look 

for in Trial 2. Exposure to the SAGAT questionnaire and performance questionnaire in the 

first study improved their SA and performance in the second trial. A past study 

investigating the effectiveness of announced quizzes on exam performance identified that 

the group of students who took the quizzes showed higher performance on the exams 

(Azorlosa, 2011). This study suggested that the quizzes provided the opportunity for 

increased studying by the students. Additional research investigating the effect of quizzes 

on student performance identified similar results in addition to finding that students who 

were quizzed regularly had higher performance on identical, similar and new questions 

compared to the control condition. Quizzes appeared to increase their engagement with 

their study materials (Batsell, Perry, Hanley, & Hostetter, 2017). Additionally, a study 

investigating the transfer of training effect of head-mounted display based training for 

assembly tasks found that the addition of a quiz before proceeding to an actual assembly 

task without any assistance improved the training effect (Werrlich, Nguyen, & Notni, 

2018). In our research, the SAGAT quizzes helped participants focus on issues they needed 

to identify, in turn improving the SA and performance of the participants in the control 

condition. The quizzes made them more attentive and focused on the assigned tasks. 

However, the SAGAT quizzes did not have any additional effect on the participants 

https://paperpile.com/c/N0NQlT/SwCoo
https://paperpile.com/c/N0NQlT/SwCoo
https://paperpile.com/c/N0NQlT/ceGyc
https://paperpile.com/c/N0NQlT/ceGyc
https://paperpile.com/c/N0NQlT/0sqpX
https://paperpile.com/c/N0NQlT/0sqpX
https://paperpile.com/c/N0NQlT/0sqpX
https://paperpile.com/c/N0NQlT/0sqpX
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exposed to the checklist condition or the predictive display condition. Their performance 

was already higher in Trial 1.  

As identified in this research, no significant difference in workload was 

experienced by participants across study conditions or trials. This result is promising as the 

checklist and predictive display did not place any additional cognitive demands on 

participants (see Chapter 4). Higher workload can lead to lower SA (Endsley, 2016; 

Mahadevan, 2009). Additionally, the removal of decision aids in the second trial did not 

have any negative effect on participants’ workload. The participants experienced the same 

workload in the presence and absence of context-based visual decision aids.  

Though this study sheds light on the potential of using context-based visual 

decision aids for training windstorm risk engineers, it is not without limitations. One of the 

important limitations is the use of convenient sampling of civil or construction engineering 

students. However, their skill sets match quite well with novice risk engineers who need 

such training. In addition, it used simulated scenarios and simplified inspection tasks, 

factors that might have resulted in limited ecological validity. Additionally, the follow-up 

study was conducted within a week of the first one. More studies need to be conducted 

before we can more fully understand the transfer of training effect of these decision aids. 

Furthermore, as this study did not include a few trials without SAGAT simulation freezes, 

their effect on performance is not known. 

 

https://paperpile.com/c/N0NQlT/hAGvz+SABBB
https://paperpile.com/c/N0NQlT/hAGvz+SABBB
https://paperpile.com/c/N0NQlT/hAGvz+SABBB
https://paperpile.com/c/N0NQlT/hAGvz+SABBB
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CONCLUSION 

This study investigated the effectiveness of checklist based and predictive display 

based contextual decision aids for windstorm risk inspection training. Based on a mixed 

experimental design, the study was conducted using a virtual risk inspection scenario. 

Findings from this study suggest that the checklist and predictive display based decision 

aids were effective in supporting the SA requirements and performance of participants. 

Participants exposed to the experimental condition in the first trial maintained their SA and 

performance in a follow-up study conducted after a week without any decision aids. 

However, one unexpected observation was the significantly higher performance of 

participants in the control condition in Trial 2. When questioned about their experience, 

they suggested that the SAGAT questionnaire helped them focus on important tasks that 

needed to be completed. They mentioned that they knew what and where to inspect and 

what to look for. This finding suggests the potential of the SAGAT method itself for 

training novice windstorm risk engineers. Future research needs to be conducted with and 

without SAGAT freezes to identify the potential training effect of the SAGAT.   

In addition to performance and SA, the participants’ workload was measured using 

NASA TLX. The study found that the absence of decision aids in the follow-up study did 

not increase the cognitive load on the participants. This finding is promising because the 

absence of decision aids did not place any additional workload demands on participants. 

Though findings from this study are promising, further research is needed to investigate 
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the effectiveness of the training materials proposed in this study in real-world inspection 

tasks. 
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CHAPTER SIX 

CONCLUSION 

Windstorm risk loss prevention survey, the process of assessing the wind 

vulnerabilities of an infrastructure system to limit the extent of damages in the event of an 

extreme wind event, is highly subjective, depending on the skill sets of the engineers 

conducting the inspection.  This dissertation first investigated the state of the art of an 

automation-assisted infrastructure inspection process and the human factors implications 

of such systems. While the results suggested an increased interest in the application of 

automation-assisted technologies to support infrastructure inspection, further investigation 

of the human factors aspects of these systems to better design the technology to meet the 

needs of the inspectors is required. 

To design such automation-assisted inspection systems for infrastructure engineers, 

we first need to understand both their sensemaking process and their mental model of the 

system. To address this need the first study investigated the sensemaking process of 

windstorm risk engineers performing loss prevention surveys to identify their needs and 

the challenges they face. Using a semi-structured interview procedure, 10 windstorm risk 

engineers were interviewed in this study. The data obtained were then analyzed using an 

inductive thematic approach, and the sensemaking framework proposed by Klein et al. 

(2006a) was used to analyze the results of this study. This study identified several 

challenges faced by windstorm risk engineers, a primary one being their inability to predict 

the future state of the infrastructure system. Because they seldom receive feedback on the 

https://paperpile.com/c/Khb32o/4Uf5
https://paperpile.com/c/Khb32o/4Uf5
https://paperpile.com/c/Khb32o/4Uf5
https://paperpile.com/c/Khb32o/4Uf5
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performance of the facility after an event, it is difficult for them to predict what could 

happen when one occurs. This situation can be particularly challenging for novice risk 

engineers as they have only limited experience conducting windstorm risk inspection 

surveys.  

 The second study explored the possibility of developing context-based visual 

decision aids to support the SA requirements and performance of windstorm risk engineers. 

These decision aids, developed based on the results of previous qualitative research, 

included a checklist based and a predictive display based decision aid. Following a between 

subjects study design, 65 participants completed this study. The results found that 

participants exposed to the experimental conditions exhibited higher SA and performed 

better, with the use of context-based decision aids having a positive effect by reducing their 

reliance on memory. Additionally, the decision aids helped users integrate the cues 

available to make sense of the environment. More specifically, the checklist alone was 

sufficient for some tasks including the inspection of obvious issues like roof ponding, 

cracking and clogged drainage. However, for the tasks involving the identification of the 

interaction among different components in the building, predictive display provided 

additional benefits. For example, the tasks involving identification of various damages 

caused by rooftop equipment and EIFS, predictive display is more useful. These results are 

important to consider while designing decision aids for windstorm risk engineers. 

 The final study evaluated the transfer of training effect of these context based visual 

decision aids. These follow-up studies were conducted a week after the first study to learn 
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more about the SA and performance of participants in the absence of the context-based 

decision aids. The results of this study found that the participants in the control condition 

achieved higher SA and performed better in the follow-up study compared to the first study. 

However, the performance of participants in the checklist condition and predictive display 

condition remained unchanged for the most part in the second trial. During the 

retrospective think aloud session, participants mentioned that the SAGAT questionnaire 

helped them focus on the important issues, findings suggesting the possibility of using this 

questionnaire as a potential training mechanism for windstorm risk engineers. As the 

participants responded to questions similar to those in the first trial, they knew what to look 

for in the second, resulting in improved performance. The performance and SA of 

participants in the predictive display condition and checklist condition who exhibited 

higher performance and SA in the first trial remained unchanged in the second trial. This 

result is promising as the training effect of the decision aids was transferred to a similar 

scenario without the decision aids.  However, there is a need to further investigate the 

training potential of the SAGAT method.  

 The findings from this research can be used to develop context based visual 

decision aids as well as training materials for windstorm risk engineers. As windstorm risk 

inspection is a highly qualitative process depending on the skill sets of the risk engineers, 

the checklist developed in this study can be used as a mechanism to standardize this 

inspection process. The use of a standardized checklist will streamline the inspection task 

and improve the quality of the inspection process. In addition, the predictive display can 

be used in actual windstorm risk inspection tasks to improve the Level 2 and Level 3 SA 
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of windstorm risk engineers. The research also uncovered several drawbacks of these 

decision aids. Some participants did not think that the predictive display was helpful or that 

it had any value beyond the training phase, suggesting not everyone perceives the benefits 

of predictive display equally. Moreover the use of predictive display resulted in attentional 

tunneling for some participants. To address these issues, in future designs predictive 

display can be included only to show complex interactions among different components of 

the infrastructure system in the event of an extreme weather condition. Additionally, the 

checklist used in this study was specific to the scenario used. In actual risk inspection tasks, 

the use of adaptive checklists can be considered. Finally, these decision aids can be used 

for training as well based on the transfer of training effect of these decision aids.  This 

research also found potential for using the SAGAT questionnaire for training. 

This research has the potential to provide several benefits for understanding the 

advantages of using context-based visualizations while performing windstorm risk 

inspection. Thus, it has the potential to affect the domain of windstorm risk inspection as 

it identified the type of information requirements of the risk engineers and developed 

context-based visualizations to support those requirements. The broader application of the 

findings from this study can influence the development of visual aids in various other 

sectors such as aviation, the nuclear power industry, the automotive industry, disaster 

response, emergency medicine and surgery. Identifying domain specific requirements is 

key for the development of the right type of context-based visualizations to support the 

specific needs of the users. Not only will the findings from this research help design visual 
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aids in the area of risk inspection as well as for other domains but its outcomes also add 

valuable knowledge to the literature in human factors. 

Limitations and future work 

 One of the primary limitations of this dissertation research is the use of convenient 

sampling in the second and third study. Further research needs to be conducted with 

professional windstorm risk engineers to confirm the effectiveness of these decision aids 

for actual risk inspection tasks. Further studies also need to be conducted using actual risk 

inspection tasks rather than the simplified simulated tasks used here. In addition, the 

potential of using other feedback methods such as haptic cues to minimize the bias caused 

by the use of automated decision aids needs to be investigated. Furthermore, there is a need 

to conduct additional studies to investigate the training potential of the SAGAT method. 

These studies could be conducted both with and without SAGAT freezes to determine their 

impact on performance. 

My contributions 

During my tenure as a doctoral student at Clemson University, I was fortunate to 

have worked on various human factors and usability projects. I have used a number of 

different research approaches such as interviews, contextual inquiry, content analysis, 

surveys and controlled behavioral experiments to investigate human factors problems. I 

have conducted multiple research studies to understand the usability issues of home-based 

telemedicine systems. A number of journal and conference articles were published based 
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on the results of this research (Agnisarman et al., 2017; Agnisarman, Narasimha, Madathil, 

et al., 2017; Narasimha et al., 2018, 2016, 2017; Rogers et al., 2017). I have also explored 

how anecdotal information and publicly available performance indicators on the 

performance of a healthcare facility affected consumers’ sensemaking as well as decision 

making process (Agnisarman, Ponathil, Lopes, & Chalil Madathil, 2018a; Agnisarman, 

Ponathil, Lopes, & Chalil Madathil, 2018b). I have also been a part of a research project 

investigating the effectiveness of decision aids in supporting the sensemaking process on 

anonymous social media (Ponathil, Agnisarman, Khasawneh, Narasimha, & Chalil 

Madathil, 2017). Additionally, I was a part of a research investigating the information 

sought by caregivers of Alzheimer's patients on online peer support groups (Scharett, 

Madathil, Lopes, & Rogers, 2017). Further, I have written two literature reviews: one on 

persuasive technologies for sustainable living and one on automation enabled infrastructure 

inspection systems (Agnisarman et al., 2019; Agnisarman et al., 2018).  

 The first qualitative study and the second controlled study of this dissertation 

project were published in the conference proceedings of Human Factors and Ergonomics 

Society’s Annual Meeting (Agnisarman et al., 2018; Sruthy Agnisarman, Madathil, & 

Bertrand, 2019).  

 

https://paperpile.com/c/SWPtPP/1I4G+O0oD+M9u6+i7by+n1Ci+cUtG
https://paperpile.com/c/SWPtPP/1I4G+O0oD+M9u6+i7by+n1Ci+cUtG
https://paperpile.com/c/SWPtPP/1I4G+O0oD+M9u6+i7by+n1Ci+cUtG
https://paperpile.com/c/SWPtPP/bxqv+YTMk
https://paperpile.com/c/SWPtPP/bxqv+YTMk
https://paperpile.com/c/SWPtPP/bxqv+YTMk
https://paperpile.com/c/SWPtPP/bxqv+YTMk
https://paperpile.com/c/SWPtPP/bk35
https://paperpile.com/c/SWPtPP/bk35
https://paperpile.com/c/SWPtPP/bk35
https://paperpile.com/c/SWPtPP/bk35
https://paperpile.com/c/SWPtPP/4poN
https://paperpile.com/c/SWPtPP/4poN
https://paperpile.com/c/SWPtPP/4poN
https://paperpile.com/c/SWPtPP/4poN
https://paperpile.com/c/SWPtPP/cYrl+lWAu
https://paperpile.com/c/SWPtPP/cYrl+lWAu
https://paperpile.com/c/SWPtPP/nRp5+uIjj
https://paperpile.com/c/SWPtPP/nRp5+uIjj
https://paperpile.com/c/SWPtPP/nRp5+uIjj
https://paperpile.com/c/SWPtPP/nRp5+uIjj
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APPENDICES 

Appendix A 

Summary of Selected Articles 

Article Domain Technology Implementation/testing Objectives Key Findings 
Chae et 

al. 
(2001)  

Sewer 
condition 
assessment 

SSET: CCTV technology, optical scanner, 
gyroscopic technology. The system moves 
continuously collecting gyroscope data. 
Next step involves preprocessing of collected 
images 
Algorithm:  
Multiple Artificial Neural Network used to 
recognize the defects: input—preprocessed data, 
output—attributes of cracks such as number and 
dimensions 
Joint detection neural network 
Fuzzy estimation system: automated 
identification, classification and rating of defects 
based on neural network output. 
 
 

Prototype deployed in 
San Jose, CA 

Crack detection of 
sewer line 

Pipe joints detected 
with 100% accuracy 
Overall pipe 
condition assessed 
using joint detection 
and crack detection 
algorithms 
Results not validated 
against conventional 
methods 

Cho et 
al. 

(2004)  

Nuclear 
reactor 
vessel 
inspection 

The Korea Electric Power 
Robot for Visual Test (KeproVt): underwater 
robot, vision processor based measuring units, 
master control station and servo control station. 
Robot:  Arranged LEDs. Used radiation hardened 
inspection camera and zoom lens. Also included 
acoustic sensor and depth sensor 
Control: Servo control station controls the robot, 
and master control station sends command to 
servo station 
Position & orientation measuring unit: camera, 
LEDs, visual position and orientation measuring 
program (installed in master station). Measured 
based on the position of LED lights 
Automatic or manual control 

Carried out small-scale 
experiments and full-
scale experiments in the 
nuclear training center. 
Positioning and heading 
errors within +/- 1cm 
and +/-2°. 

Positioning of robot. Robot inspections 
took 5hrs compared 
to 10hrs for 
conventional 
inspection 
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Also developed a robot simulator imitating robot 
activities 
Algorithm: 
 
Tracking window predict the position of LEDs. 

Jiang et 
al. 

(2005)  
 

Undergrou
nd cable 
system 

Developed an autonomous robotic platform 

The control system of robot: remote host 
computer, data acquisition board, general control 
board 

Viewed sensor output remotely using the 
interface on remote host computer 

Controlled robot using the control board. 

Data acquisition: dielectric, acoustic, thermal and 
video sensors 
 

Compared manual and 
autonomous control 

 

Underground electric 
cable monitoring  

No difference 
between manual and 
autonomous control.  
Platform worked 
properly 
 

Kwak et 
al. 

(2007)  

Pipeline 
inspection 

Robotic platform equipped with a sensor suite 
housing a sonar, CCTV camera, high-resolution 
imager, multi-gas logger, and 3-D laser scanner 
Lining: Responder collected the data. Used 
standard convex hulling algorithm to calculate 
area and perimeter 
Corrosion evaluation: 3-D LADAR used to obtain 
data on a 1.9 meter diameter and 790 meter long 
pipe. Photos taken at 5-meter intervals 
Geo-location: used  a combination of different 
position estimation techniques (dead-reckoning 
technique, iterative closest point algorithm) 

Three case studies: 
1. To estimate 

cross sectional 
area 

2. To estimate 
corrosion 

3. To estimate 
pipe position  

Determine transport 
capacity 
Corrosion estimation 
Geo-location of 
segments of sewer 

Improved detection 
of material loss 
 

Agrawal 
et al. 

(2008) 
 

Sewer 
force main 

Ultrasonic crawler: consists of a video inspection 
robot with ultrasonic transducers.  
Used fiber optics for video transmission and 
remote control. Time difference between 
ultrasonic signals used to calculate pipe thickness 
 

Conducted pilot testing 
on a steel pipe 18 inches 
in diameter and 100 ft 
long. PitViewer software 
automatically analyzed 
the data.  

Damage detection and 
thickness measurement 
of sewer line 

Detected 
characteristics of 
defects such as 
location, severity, 
and depth 
Measured wall 
thickness 

Reed et 
al. 

(2010) 

Ship hull 
and harbor 
inspection 

Remotely operated vehicle: automated and semi-
automated piloting and manual control (joystick).  
Images taken using 3D SONAR 

Did not conduct any tests Performs ship hull and 
harbor detection  

No information 
available  
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 Had target detection module 
Used video sensors 
Automated control algorithm allowed operators 
to focus on inspection tasks. 
ROVs can conduct complex maneuvers 
Automatic Target Recognition (ATR) algorithms 
used for Real-time sensor processing tools. 
3D reconstruction profiling from sonar data for 
harbor pier pilings and the running gear of the 
ship. 
SeeByte – True dynamic positioning software, 
(ATR), 3D reconstruction, sensor driven control, 
advance navigation solution, world modelling and 
change detection algorithm. 
2 key modules: Motion planner module & True 
dynamic Positioning (DP) 
3 modes of STO – Automated , semi- automated, 
full manual (Joystick) 
Geo referencing information with mosaic – 
situation awareness 
Image processing technologies – thresholding and 
morphology to clean up sonar frames. 
 

Ridao et 
al. 

(2010) 

Dam 
inspection 

Automated Underwater Vehicle (AUV): power 
module — lead batteries, computer module — 2 
PCs (control and image & sonar processing).  
Operated as either AUV or ROV (tethered mode) 
Acoustic modem for communication 
Robot interface module: Sensors: drivers for 
surface buoy, Motion Reference Unit (MRU), 
Doppler Velocity Log (DVL), imaging sonar, 
echo sounder, camera, water leakage detectors, 
temperature and pressure sensors 
Perception module: navigator and environment 
detector. Control module uses data from 
navigator and environment detector detects the 
position 
Algorithms: 
Extended Kalman Filter — navigation 

Carried out experiments 
in Pasteral Hydroelectric 
Dam, Spain 

Crack detection of dam 
structure 
Navigation of AUV 

Developed geo-
referenced 
photomosaic of 
inspected walls 
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wall detection and tracking algorithm 
 

Ékes et 
al. 

(2011) 

Pipe 
inspection 

Pipe penetrating radar (PPR): radar data combined 
with CCTV images. 
2 or more high frequency GPR antennas. 
Majority of current underground infrastructure is 
over 50 years old. 
GPR- emission, reflection and detection of 
electromagnetic waves (12.5 MHz to 4 GHz) 
Greater the change in material – more energy 
reflected. 
LIDAR data correlate with on board inertial 
navigation system (INS). 
Other sensors can be used like H2S sensor. 
Can be used along with pipe rehabilitation 
technology. 
 

The system was deployed 
on a rectangular 30 inch 
storm-sewer pipe in 
Canada  

Pipe bending symptoms 
and remaining service 
life. 
Pipe wall thickness and 
pipe deterioration. 
Dielectric properties of 
the pipe 
/affecting factors – 
polarization, dielectric 
controls, signal 
attenuation, background 
noise. 
 

Demonstrated early 
success 

Murphy 
et al. 

(2011) 
 

Post 
disaster 
bridge 
inspection 

Used three UMVs: Sea-RAI USV, VideoRay 
tethered ROV, YSI Ecomapper (compared these 
UMVs) 
Sea-RAI USV: autonomous navigation, acoustic 
camera, 3 video cameras. Data collected stored 
and displayed in a Google Earth interface. 
Controlled by a pilot  
VideoRay: acoustic camera, camera. Controlled 
by a pilot 
YSI Ecomapper: GPS and inertial navigation 
system, sonar, autonomous 

The team inspected the 
Rollover Pass Bridge 
after Hurricane Ike 

Bridge substructure 
inspection 
Debris field mapping 

Explained findings in 
3 areas: 
Control challenges: 
navigation and 
station keeping, GPS 
loss, obstacle 
avoidance 
Huma-robot 
interaction: members 
in a team need to 
have a shared 
understanding   
Multi-Robot 
Cooperation: having 
a multi-robot team 
will be beneficial 
Uncertain sensor 
data: challenges 
associated with 
handling large data 
set and uncertain 
sensor data  
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Merz 
and 

Chapma
n (2011) 

Infrastructu
re 
inspection 
(general) 

Autonomous helicopters 
Portable ground station (provides a user interface 
to control the helicopter) 
Flight plans provided through wireless 
GNC system with GPS, altitude sensors, pressure 
meter, LIDAR, computers 
Payload with 3 digital cameras, thermal camera. 
 
Dynamic Airspace Controller (ADAC) 
Plant Phonemics- Spectral reflection of plants to 
compare growth  

The helicopter was 
successfully deployed in 
the field. First person 
view (FPV) with video 
goggles. 
Beyond Visual range 
(BVR) 
Automated helicopter 
with Cots 2 D LIDAR 
Autonomous (GNC) 
guidance, navigation and 
control 
LIDAR 270^ scan range 
Hardware in loop (HIL) 
simulation in real time. 

Height estimation by 
LIDAR & Extended 
Kalman filters for 
Helicopter state. 
2 Flight modes: 
Pirouette descent 
and Waggle cruise 
Separation detection 
between other aircrafts 
controlled by 
Automatic 

System was able to 
collect data and 
capture images that 
had sufficient details 
for analysis 

Chen et 
al. 

(2011) 
 

Highway 
bridge 
monitoring 

Aerial photography: Digital color photography. 
Camera set up inside a Cessna C210L plane. A 
pilot and camera operator in the plane. 
SI-SFAP: commercial remote sensing (CRS) 
technique 
Used a bridge surface condition index (BSCI) to 
rate the condition of bridges from the 
photographs taken 
Rectified and georeferenced the images 
GPS for tracking and navigation 
 

Data collected during 
construction of the 
Cuthbertson Road 
Bridge, NC 

Detect bridge deck 
distress 
New construction 
monitoring 

Remote sensing 
technology can detect 
defects on bridge 
deck 

Lee et al. 
(2012) 

Underwater 
application 

Underwater robot: 2 pressure vessels (computer 
control system and sensor processing units) 
4 horizontal and 2 vertical thrusters 
Two cameras with 2 LED lights 
Sonar 
High resolution HAD CCD sensor 
Main control computer, optical and sonar 
processing computer and acoustic signal 
processing computer communicate through high 
speed internal network 
Algorithms: 
Used a color restoration algorithm 
Template matching algorithm (target object 
detection)  

Carried out indoor 
experiments 
Video collected by the 
camera used to test the 
detection and image 
restoration algorithm 
Object used: cross, cone, 
sphere, cylinder (in air 
and water) 
Experiment 1: used 
pictures taken in 
underwater environment 
Experiment 2: Used 
images of objects taken 

Vision based 
autonomous navigation 
Underwater color 
restoration 

Best result for 
experiment 1. Lower 
performance 
observed for 
experiments 2 and 3. 
However, slightly 
better results for 
experiment 3 because 
of the algorithm 
Use of color 
restoration algorithm 
improved the 
performance of 
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Mean shifting algorithm (object tracking) in air (without color 
restoration algorithm) 
Experiment 3: Used 
images taken in air (with 
color restoration 
algorithm) 

underwater object 
tracking 

Eschman
n et al. 
(2012) 

Building 
inspection 
and 
monitoring 

Octocopter: Gyroscope, accelerometer, 
barometric altitude sensor, GPS & 3D magnetic 
sensor (for navigation), camera 
Camera automatically took pictures 
Manual flight control 
 
Algorithms: 
Image processing: Pattern recognition techniques 
Crack detection algorithm 
Edge detection algorithm 

Took 12,000 images of a 
building 

Damage inspection and 
crack detection of 
building 

The images provided 
valuable information 

Larrauri 
et al. 

(2013) 

Powerline 
inspection 

Proposed a system to investigate power lines: 
RELIFO 
UAV flies as close as 10 ms over power lines 
Ground station: antenna, 3 computers, (flight 
plan, telemetry, UAV-ground station 
communication managed by first computer, 
second computer receives video from HD camera 
and telemetry, third computer receives images 
from IR thermal camera, also sends online reports 
via SMS and email) 
 
Algorithms: 
Artificial vision algorithms to estimate distances 
and locate hotspots 
Edge detection algorithm  
 

Two field application:  
1. to calculate the 

distance between 
vegetation, trees 
and buildings to the 
power line based on 
HD camera 
images—generates 
an alarm based on 
the distance (go off 
for distances less 
than 5m) 

2. to detect hotspot 
based on IR thermal 
images: 
automatically sends 
report (SMS, Email) 
about hotspots 

To inspect power lines 
for possible issues 

Measured distances 
and detected 
hotspots. 

Torok et 
al. 

(2013) 

Concrete 
crack 
detection 

Robot based image collection system. 
3D maps for (USAR) – structural light and visual. 
(SLAM) simultaneous localization and mapping 
Uses Structures from motion (SfM) for image 
processing 

Autonomous concrete 
crack detection in post-
disastrous buildings.  

Image-based 3-D 
reconstructions 
Used a 3-D crack 
detection 

Robot-based image 
collection method is 
ideal for collecting 
images, especially 
after a disaster. 
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(SfM) uses around 50 images to use for 
(SIFTGPU) scale invariant feature transform 
graphics processing unit for feature point 
detection. 
Output from (SIFTGPU)placed into clustering 
Multiview algorithm to generate 3D point cloud 
model. 
Poisson surface reconstruction approach for color 
mash. 
Algorithms: 
Crack detection algorithm 
Arial direction algorithm with orthonormal axes. 

  

Develops continuous 
surface model. 

Painumg
al et al. 
(2013) 

 

Underwater 
pipeline 
(lab 
experiment
) 

PICTAN Autonomous Underwater Vehicle ( 
AUV): Equipped with green cone laser, fisheye 
lens camera and LED lights 
Images captured and stored in SD card. Later 
analyzed to assess the pipe condition 
Microcontrollers processes the image and 
controls the autonomous position of vehicle 
Algorithm: 
Real-time position estimation algorithm and 
offline position estimation algorithm 

Algorithm was tested 
using images collected 
under dry lab condition 
by placing vehicle in a 
760mm dia, 1.5 meter 
long pipe 
Subsequent lab tests in 
pipeline filled with water 
and pipeline with 
flowing water 

Position estimation of 
robot 

Validated real-time 
position estimation 
technology 

La et al. 
(2013) 

Bridge 
deck 
inspection 

Holonomic mobile robot equipped with 
navigation, motion planning sensors (2 GPS units 
and one IMU sensor) and NDE sensors (laser 
scanners, GPR units, seismic/acoustic array 
sensors, electrical resistivity probes, digital 
cameras, panoramic camera) 
Control: 3 industrial standard computers with one 
running Robot Operating System (for navigation) 
and other two running Windows OS (NDE 
sensors). These computers are connected to each 
other using Ethernet and connected with remote 
computers using WiFi 
The data collected visualized and analyzed using 
remote computers 
Robot stops and collects data using NDE sensors 

Navigation system tested 
on campus 
NDE sensors validated 
through field deployment 
in NJ, USA 

Deck inspection and 
evaluation 
Robot localization and 
navigation 

Better localization 
and navigation with 
EKF- based 
navigation 
3-4 times better 
performance 
compared to 
conventional NDE 
testing 

https://paperpile.com/c/OxU0Mu/uP9DS
https://paperpile.com/c/OxU0Mu/uP9DS
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Controller used a GUI to control the robot, 
sensors and for visualization 
Algorithms: 
Used control algorithm (coordinate between 
sensors and navigation) 
Extended Kalman Filter (EKF) based navigation 
 

Ellenber
g et al. 
(2014) 

 

Masonry 
crack 
detection 

UAV with high resolution camera. Crack 
detection using edge detection and percolation 
approaches 

Conducted preliminary 
tests to determine how  
crack size detection 
affected by distance (on 
paper and actual 
masonry wall) 
Third study conducted 
using a manned 
helicopter to collect 
RGB and IR images  
However, did not 
conduct tests with UAV. 
Results reported based 
on the helicopter test.  
 

Masonry crack 
identification  

Challenge: 
environmental 
conditions, flight 
control, noise in the 
data 

Ellenber
g et al. 
(2014) 

Bridge UAV and remote sensing: UAV, powered by a 
battery equipped with 2 cameras, Altitude and 
navigation: ultrasonic sensors, gyroscope, 
accelerometer, magnetometer, pressure sensor 
Kinect: IR laser projector  
Image processing algorithms 
UAV took pictures of the structure 
UAV controlled by any Wi-Fi device 
Algorithm to identify markers (measurement 
algorithm) 

Crack detection: Tests 
conducted in lab. 
Camera moved over a 
paper with lines of 
different thicknesses. 
Carried out tests on a 
masonry wall using 
built-in UAV camera 
Deformation: Lab steel 
deck mockup 
Field demonstration: 
Flew UAV over a 
pedestrian bridge 

Bridge crack detection 
and 
deformation 
measurement 

Algorithm identified 
ma  rkers 

Halfawy 
and 

Hengme

Sewer 
system 

        CCTV video 
        Multiclass support vector machine 
        Algorithms for fault detection, debris  
         detection etc…                     

Prototype tested in 
Regina and Calgary, 
Canada, to validate the 
algorithms 

Camera motion analysis 
algorithm 

Results compared 
with the actual 
inspection report 
using CCTV. Results 
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echai 
(2014) 

Automated 
identification of ROI 
algorithm 
Automated debris 
detection algorithm 
Automated joint 
displacement defect 
detection algorithm 
Frame classification 
algorithm 
Frames segmentation 
algorithm 
 

were in agreement 
with the operators’ 
observations 

Son et 
al. 

(2014) 

Bridge 
inspection 

Robotic system with camera mounted to take 
photographs of bridge structure 
Robotic system captured color images 
 
Models: 
Rust classification model: Classifiers used: 
support vector machine (SVM), back-propagation 
neural network (BPNN), decision tree (J48), 
naive Bayes (NB), logistic regression (LR), and 
k-nearest neighbors (KNN) 
Blasting decision  made by calculating the 
percentage of rust in the figure 

Tested algorithms using 
the images taken in a 
simulated condition 
when a robot takes 
images of bridge using a 
mounted camera 
Took 40 images: 22 rust 
images & background 
images 

Corrosion detection and 
blasting area detection 
of bridge structure 

97.95% average 
accuracy of rust 
classification 
97.48% blast area 
detection accuracy 
0.57s/ image process 
time 

Lim et 
al. 

(2014)  

Bridge 
deck 
maintenanc
e  

ROCIM system has a mobile robot, canon 
camera, laser sensor and one laptop. 
Images were collected and analyzed using 
Laplacian of Gaussian (LoG) algorithm. 
Differential GPS, Inertial Measurement Unit 
(IMU) are not in ROCIM robot, but 
recommended by the researcher. 
Advanced nondestructive evaluation (NDE) 
sensors can be used for calculating depth and 
severity of the cracks. 
To generate navigation map ROCIM uses 
simultaneous localization 
and mapping (SLAM) algorithm. 
Algorithm to generate efficient rectilinear 

 
Performed indoor and 
outdoor simulations and 
experiments 

Bridge deck automated 
crack inspection 

Collected images and 
created crack maps 
Crack detection 
algorithm works for 
real cracks 
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coverage paths developed by Muzaffer. 
Mapper3 software 
Orientation and location of the robot based on 
Monte Carlo localization (MCL) algorithm 
Laplacian of Gaussian (LoG) algorithm used for 
image processing to crack detection. 
Compared RIP (Robotic inspection plan) GA and 
RPI Greedy algorithms for path finding. GA 
performs better than Greedy. 
Future work to use impact Echo and Ultrasound 
surface wave (NDE Sensors) for depth (3d) 
evaluation. 
 

Steele et 
al. 

(2014) 

Oil and gas 
refinery 
inspection 

The robot 
Sensors: navigation sensors (GPS receiver, digital 
compass, scanning laser range finder, IR 
proximity sensor and navigation cameras), 
inspection sensors (microphone, methane gas 
sensor, thermal imaging camera, network video 
camera) 
Command, control and communication system: 
Wi-Fi communication link 
Tele-operation mode, autonomous operation 
mode and shared control mode 
GPS used for navigation 
Kalman Filter 
Robot supervisory control system 
Navigation Algorithm 
RMP enabled motion controllers 
 

Carried out preliminary 
tests in their mechanical 
room 

Inspection of oil and 
gas refinery Navigation 
of robot 

Observed that 
controlling a robot 
only using streamed 
video was 
challenging 

Villarino 
et al. 

(2014) 

Road 
infrastructu
re 

Photogrammetric method: Calibrated 
photographic camera, used 2D and 3D modeling 
Laser scanning method: Static laser scanning 
system, mobile scanning system with LIDAR and 
navigation system 
Mobile inspection unit: laser scanning system (2 
LIDARS), navigation system, thermographic 
camera, multi-camera computer viewing system, 
GPR, laser profilometer 
System integrating all these sensors 

Conducted tests in Spain Inspection of road 
infrastructure 
Data management 

Geomatic methods 
can be successfully 
used for 
infrastructure 
inspection 

https://paperpile.com/c/OxU0Mu/Rzn9d
https://paperpile.com/c/OxU0Mu/Rzn9d
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Vehicle generated the 3D model of the area 
Software for visualization and data management 

Gucunsk
i et al. 
(2015) 

 

Bridge 
deck 
inspection 

Robot (RABIT) using multiple non-destructive 
evaluation.  
Robotic system with fully developed sensors. The 
main focuses were rebar corrosion, delamination 
and concrete degradation. The system houses 4 
technologies: electrical resistivity (ER), impact 
echo (IE), ground-penetrating radar (GPR), 
ultrasonic surface waves (USW), 2 cameras, 2 
GPS antennas to navigate. In addition, a base 
GPS station at the beginning or end of the bridge. 
Autonomous operation facilitated by path 
planning algorithm. Three-fold production rates 
compared to a team of 5 NDT technicians. 
Developed a tool that identifies crack, spalls and 
patches. 
Algorithm: 
Path planning algorithm  

Field deployed and 
collected data using 
NDE sensors 

Primary objective was 
bridge inspection 
Developed a data 
visualization technique 

Efficient process with 
less traffic 
interruption 
  

Khan et 
al. 

(2015) 

Bridge 
deck 
inspection 

Unmanned Aerial Vehicle (UAV) based 
inspection: UAV with GoPro camera for image 
collection, FLIR TAU2 IR camera for thermal 
imaging 
Airborne bridge inspection: using helicopter with 
IR camera, RGB camera, 
Inspection using ground transportation: Video 
RGB camera, IR scanner mounted on a vehicle 

An actual field was 
inspected using UAV, 
helicopter, ground 
transportation and 
portable cart 

To detect bridge 
anomalies (surface 
cracking and internal 
delamination) 

Obtained similar 
results for both UAV- 
based and portable 
cart based inspection 
Limitation of 
airborne inspection 
(maintaining a 
distance) mitigated 
thro  ugh UAV 

Wang 
and 

Birken 
(2015) 

 

Surface and 
subsurface 
assessment 
of 
roadways 

The Versatile Onboard Traffic Embedded 
Roaming Sensors (VOTERS): multi-sensor 
mobile data collection van: completely automated 
data acquisition system 
Consists of acoustic, optical, electromagnetic and 
GPS sensors. Texture depth calculated using 
acoustic data captured by microphone. Pressure 
sensor calculated the roughness index. Camera 
images used to observe cracks. Millimeter-wave 
radar detected the roughness and quality. 
Data then processed and geo-centered.  

Real world 
implementation in 
Boston, MA. Six 5-hour 
field tests conducted  

Crack detection of 
roadways 
Other condition ratings 

Findings were 
compared against 
professionally done 
condition survey 
85% correlation for 
400 road segments 
Condition ratings are 
non-subjective 
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Ekes 
(2016) 

Undergrou
nd pipe 
infrastructu
re 

CCTV,LIDAR- and SONAR-based. 
System is deployed on a remotely operated 
vehicle (ROV) 
Uses visual and quantitative technologies 
CCTV data will be correlated with GPR data 
LIDAR: quantitative measurement of insides of 
pipes 
The ROV had 3 cameras & is a float- based 
system 
Performs accurate cross-sectional analysis and 
sediment volume 
Name – (VUEmspi) multisensory pipe inspection 
Laser profiling for pipe parameters 
CIPP (cured in place pipe) engineering will 
benefit from VUEmspi. 
Onboard inertial navigation system 
Planer laser performs continuous pipe ring 
profiling 
Pilot test locations were Abbotsford, B.C., and 
Boulogne, France. 
 

Deployed in France 
 

Quantify sediment 
distribution in 
underground pipe 
infrastructure 

LIDAR estimated the 
size and shape of the 
pipe 
SONAR profiled the 
pipe and estimated 
sediment and debris 
volume 
The findings helped 
managers in 
prioritizing the areas 
need to be cleaned 

Liu et al. 
(2016) 

 

Curtain 
wall 

Multiple technologies: 
Developed a Building Information Model (BIM), 
point cloud model (using LIDAR technology) 
Data collected on site using UAS equipped with a 
camera taking pictures every 5 seconds  
Used GPS technology to locate the location of 
photo taken by the UAV 

Inspected a 12-story 
building curtain wall  
Laser point cloud 
compared against 
photogrammetry point 
cloud 

Built models 
 

UAS was found to be 
effective and had 
many advantages 
LIDAR points 
concentrated more 
linearly on the 
exterior surface of the 
curtain wall and 
distribution was more 
even. 
 

Ellenber
g et al. 
(2016) 

Bridge 
inspection 

UAV: Flight control using pressure sensor and 
GPS feedback. 
GoPro camera sends live video to a GoPro app on 
smartphone 
Photos captured using Sony NEX 7 camera to 
compare with UAV imagery 

Lab scale study (turned 
off GPS) 
Deflection: Images taken 
without and with load on 
the steel grid deck 

Bearing deformation 
Deflection 
measurement 
Corrosion assessment 
Crack identification of 
bridge structure  

The deflection 
measures using 
GoPro camera were 
not very accurate 
UAV manual 
corrosion 
measurements were 
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Images processed using camera calibration and 
homography 
Algorithms: Camera calibration algorithm 
Homography: images flattened to plane 
Crack detection algorithm 
K-means algorithm 

Corrosion: Images taped 
to the steel grid. Then 
images of grid taken 
Crack: images taken of 
existing crack on 
masonry wall using 
GoPro. Then used image 
processing techniques. 

more accurate than k-
means method 
Cracks identified 
correctly 

Harris et 
al. 

(2016) 

Bridges Commercially available remote sensing 
technologies. 
Used multiple remote sensing technologies 
Collected basic optical imagery. 
Close range photogrammetry using camera 
Surface imagery using StreetView-style 
photography/Bridge Viewer Remote Camera 
System (BVRCS), GigaPan 
LIDAR 
IR thermography 
RADAR 
Algorithm: 
3DOBS algorithm (close range photogrammetry) 

Conducted inspection on 
satisfactory condition 
bridge, fair condition 
bridge, poor condition 
bridge and 
supplementary bridges 

International 
Roughness Index (IRI) 
Spall detection of 
bridge structure 

Provides a basis for 
more in-depth 
observations/inspecti
ons 
Better performance 
for photogrammetry 
compared to LIDAR 

Lins and 
Givigi 
(2016) 

Structural 
health 
monitoring 
Lab study 
(bridge) 

Fully automated SHM. Autonomous robot 
system with camera and GPS 
Trajectory control algorithm to control the 
trajectory 
Self-navigation, detection and measurement of 
defects: laser and ultrasonic sensors 
Robot operating system (ROS) used for remote 
communication. 
Visual Path tracking for navigation 
ROS master and nodes – Navigate, defect 
detection, measurement and data storage. 
Command velocity nodes controls robot motors. 
SQL, ODBC interface for database management. 
Clearpath husky robot with 24 Optitrack camera 
 Algorithms: Control algorithm, vision-based 
measurement algorithm (relative pose of target), 
crack detection algorithm, crack measurement 
algorithm 

Lab study using camera 
instead of GPS 
Camera images are fed 
to vision-based 
measurement algorithm 
Crack detection 
algorithm and crack 
measurement algorithm. 
After object detection 
image imputed in crack 
detection algorithm. 
Image processing – 
crack measurement 
algorithm. 
 

Computerized 
maintenance 
management system to 
support decision 
making. 
Navigation 
Crack detection 

The system navigated 
successfully, and it 
detected and 
measured defects 
without human 
involvement.  
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Henricks
on et al. 
(2016) 

Multiple 
application
s: railroad, 
pipelines, 
bridges, 
roads  

Unmanned aircraft system (UAS) with sensors 
and ground equipment. 
The sensors selected: CMOS sensors for visual 
and IR images, Canon DSLR camera for RGB 
imagery with external GPS antennae, and a 
GoPro silver edition for situation awareness.  
Used both fixed wing and rotorcraft flights 
Ground equipment: ground control station 
notebook computer, telemetry radio, R/C 
transmitter, flight batteries, tools such as 
screwdriver and plier 

Conducted studies to 
inspect if vegetation 
encroached on runway 
infrastructure. 
Vegetation areas and 
non-vegetation areas 
differentiated using 
different colors. 
 

Develop a mechanism 
to quickly explore 
infrastructure 

The system was able 
to collect sufficient 
data to perform 
infrastructure 
assessment.  

Özaslan 
et al. 

(2016) 

Dam 
penstock 
inspection 

Micro Aerial Vehicles (MAVs): Intel i7 board, 2 
LIDARs, four cameras, IMU and power LEDs  
Data from pose estimation camera, map, IMU 
data and LIDAR data fed to the Robot Operating 
System 
One camera tracked the features of the dam to 
update its path.  
Researchers also explained how they analyzed 
these data and the equations they used 
Operators provided commands using RC 
interface 
Algorithm: Iterative Closest Point (ICP) 

Inspected penstocks of 
Carters Dam, GA 

Pose estimation and 
automated inspection of 
dam penstock 

Achieved complete 
autonomy in 
inspection 
360° panoramic 
images and 3D 
textured 
reconstruction. 

Yoder 
and 

Scherer 
(2016) 

Train 
bridge  

MAV: Intel i7 dual core processor, LIDAR, 
cameras, barometric pressure sensor, IMU 
Effective 3D path planning algorithm 
Surface Frontier: #D surface exploration and 
incremental path planning algorithm. 
Frontier exploration algorithm 
 MOV exploring river uses frontier shoreline 
algorithm. 
SPARTAN path planner 
Depth enhanced visual odometry 
Kalman filter to fuse IMU, visual odometry, 
pressure and GPS 
Developed algorithm for autonomous navigation 
  

Field deployment Infrastructure 
exploration and 
infrastructure 
modelling. 
Arbitrary geometry 
rapidly modelled 
outdoor structure 
3D bounding box 
around the structure to 
scan all the surfaces. 
 

Autonomous 
exploration is 
compared with  
manual control 
Autonomous system 
performed as good as 
a skilled pilot. 
Entropy reduction 
method to determine 
best exploration path. 
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Ellenber
g et al. 
(2016) 

Highway 
bridges 
(indoor and 
lab studies) 

DJI Phantom with GoPro camera 
Images extracted and applied crack detection 
algorithm 
Outdoor: GoPro and 2 IR cameras 
Videos streamed to the ground to the pilot 
Conducted a helicopter flight test to obtain a 
global view 
 
Algorithms: 
K-means 

Conducted laboratory 
study 
Images collected using 
the camera were 
extracted and detected 
using the crack detection 
algorithm 
Region of images 
without crack was 
removed using K-means 
algorithm 
Corrosion identification 
based on difference in 
color 
Bearing and beam 
deformation 
measurements calculated 
from the images 
Outdoor testing with 
GoPro and IR cameras 

Image processing 
Crack identification 
algorithm  
Corrosion identification 
of highway bridge 

Actual and UAV-
based measurements 
were comparable 

Protopap
adakis et 

al. 
(2016) 

Tunnel 
inspection 

The robotic platform: robotic arm, visual cameras 
Mobile wheeled vehicle with robotic sensors 
Robotic arm takes the measurements 
Cameras and laser sensors 
State of the art algorithm is used to detect the 
defects 
Faro 3D Laser scanner measures and calculates 
deformation in lining. 
11-ft crane with robotic manipulator 
Six Degree of Freedom for robotic arm to cover 
all directions. 
Recognition algorithm and #D information 
extraction algorithm.  
Crack detection done by deep learning approach 
Visual inspection is based on convolutional 
neural network—carried out by multi-layer 
perceptron method. 

System was evaluated in 
road and railway tunnel 
on Egnatia Highway, 
Greece, and London 
underground 
infrastructure  

Integrated Global 
Controller (ICG) to 
identify position of 
crack, semantic info of 
tunnel structure. 
Defects in concrete 
using monocular 
camera RGB image. 
 

Crack detection in 
tunnel inspection  
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Update reconstructed lining (based on previous 
plan) with new images. 
Photogrammetric methods are used for 3D crack. 

Dong et 
al. 

(2016) 

Nuclear 
power plant 
water-filled 
infrastructu
re 
Field 
experiment 
in nuclear 
simulation 
pool 

Remotely Operated Vehicle (ROV) 
Underwater robot: contains control cabinet, 
buoyancy module, propellers, cameras, 
manipulator, depth gauge, SONAR, 
accelerometer, gyroscope, magnetometer. Visual 
inspection made possible through IST-REES 
irradiation resistant camera. 
Control box: has a personal computer, liquid 
crystal display monitor, 2 joysticks, peripheral 
buttons 
Operator communicates with the underwater 
robot based on the information from the sensor 
data 
ROV can be controlled through user interface, 
through peripheral buttons and joysticks, and 
through handheld controllers. 
Control system: control board receiving 
commands from the controller transfers the signal 
to the propeller to execute the command. 

Conducted field test in 
reactor simulation pool 
Conducted a simulation 
study 
Conducted radiation 
testing 

Depth control  
Navigation and location 
of ROV in nuclear 
power plant 
 

The performance was 
good 
Validated algorithms 

Fujita et 
al. 

(2017) 

Asphalt 
pavement 
crack 
detection 

Mobile mapping system (MMS): consists of a 
vehicle with GPS, laser scanners, cameras and 
other equipment. Convolutional neural network—
visual inspection 
Pixel level classification – using support vector 
network 
Gaussian function varying scales are used for 
multi-scale convolution 
F measure was used to evaluate crack detection 
accuracy  
F measure is the harmonic mean between 
precision and recall 
Hilditch’s algorithm was used to detect 
centerlines of the cracks              
Morphological transformation 
Image processing based on subtraction using 
smoothed images by the 

 
Collected 100 road 
surface images using 
mobile mapping system 
Conducted tests to 
evaluate the new 
method. 
 

Crack detection of 
asphalt pavement  

Proposed machine 
learning algorithm 
for image processing 
was compared with 
the conventional 
technique 
Proposed method 
improved the crack 
detection accuracy 
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median filter and multi-scale line filter based on 
Hessian matrix. 
Crack detection processing steps— 
probabilistic relaxation based method and a 
locally dynamic thresholding method. 
 

Yeum et 
al. 

(2017) 

Road 
pavement 
inspection 

Vision sensors on serial inspection platforms. 
The camera is completely automated 
Developed a new technique (RILVI) to extract 
Region of Interest (ROI) from the collected 
images. 
Fiducial markers were used in TRI (targeted 
region of interest) coordinate systems. 
iWitness-Photogrammetry software, 
PhotoModeler-close-range photogrammetry and 
image-based modeling were used for automatic 
matching 
Horn’s method used for 3D coordinate 
transformation. 
 

Lab test on full-scale 
highway design 
structure 

Performs visual 
inspection of civil 
infrastructure.  

Validated the new 
method 

Eschman
n and 

Wundsa
m (2017) 

Bridge 
inspection 

UAS equipped with airborne NDT devices such 
as visual camera, LIDAR and Long Wavelength 
Infrared (LWIR) 
3D model building completed using the images 
collected using the images collected highlighting 
the intensity of damages 
LWIR sensor data used to measure humidity and 
LIDAR data used for surface recognition and 
deformation detection 
Algorithms: Automated crack detection algorithm 

No study explained Crack detection of 
bridge structures and 
dashboard development 

Developed a web-
based GIS platform 
equipped with 
visualization tools 
and databases 
It allows the 
visualization of the 
data collected using 
sensors 
This platform can be 
used via a user 
interface providing 
information including 
name of structure, 
construction details 
and thumbnails.  
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Javadnej
ad et al. 
(2017) 

Pipeline 
inspection 

Data collected using UAS with the help of a 
Nokia RGB camera and LIDAR sensor. 
The images were processed using Structure from 
Motion (SfM) technique. The accuracy of this 
method was compared using the ground control 
points (GCP) and check points (CP) established 
in the ground. 
These ground target points were traversed using 
radial traversing Total Station method. The SfM 
and LIDAR point clouds were georeferenced.  
Civil Integrated Management (CIM) model was 
developed by creating a geometric 3D model. 
Algorithm: Random sample consensus algorithm 
 

Data collected from a 
storage yard to store 
gravel, asphalt 
grindings, debris, spare 
bridge parts, and piping 
material in Oregon.  
SfM model based on 
UAS images was 
compared against 
LIDAR point clouds. 

Pipe feature extraction Developed a 3D 
model based on UAS 
aerial imagery. 
Generated detailed 
point clouds for pipe 
feature extraction. 
Pipe feature extracted 
using SfM models 
were less consistent 
compared to LIDAR 
model. However, 
UAS based method 
was less time 
consuming and more 
convenient than 
LIDAR method. 

Moradi 
and 

Zayed 
(2017) 

Sewer 
pipeline 
inspection 

Data collected using CCTV 
Real-time supervised anomaly detection was 
performed using Hidden Markov Model (HMM) 
The proposed method facilitated real-time 
automated anomaly detection 
Data was split into training and testing set 
Algorithm: HMM with Viterbi algorithm 

Data was collected 
using CCTV camera 
from City of Laval, 
Quebec, Canada  
 

Sewer line defect 
detection 

Results revealed that 
the proposed method 
is capable for 
detecting anomalies 
Reported accuracy  =  
82.5% 

Moselhi 
et al. 

(2017) 

Bridge 
inspection 

Explored data fusion technology for bridge 
inspection. 
Data collected using GPR and IR technique were 
fused to generate new and improved images. IR 
images were thermal processed and GPR 2D scan 
data were converted to 3D images. These two 
were then transformed to the same coordinate 
system. The new fused images were used for 
feature extraction. 
Algorithm: Wavelet transformation 
Image processing technique: histogram 
equalization, threshold, edge detection, 
background subtraction and image segmentation 

A concrete bridge 
located in Laval, Canada 
was inspected using this 
technology 
Results were compared 
against IR only, GPR 
only and conventional 
hammer sound and 
visual inspection 
techniques. The fusion 
technique’s result were 
more accurate and close 
to visual inspection 
technique 

Bridge defect detection The new method 
produced more 
accurate result close 
to actual condition. 
Image processing 
prior to image fusion 
improved accuracy. 
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Vong et 
al. 

(2017) 

Railway 
culvert and 
tunnel 
inspection 

Used small scale UAS equipped with LIDAR 
technology to measure cross sectional shape of 
the culvert. This method also helped the UAS to 
align autonomously with the centroid of the cross 
section. 
The UAS transmitted collected data to the ground 
station computer (GSC) 
Flight controller can switch from autonomous to 
semi-autonomous mode by using data collected 
using the LIDAR technology 
Localized centroid using LIDAR data 
Navigation: Using commercially available flight 
controller. A proportional-integral-derivative 
(PID) controller was used in semi-autonomous 
mode. 
Algorithm: Centroid aligning algorithm 

Experiment was 
conducted in a small 
tunnel built to simulate 
field condition.  

To achieve self-
stabilization in a 
confined environment  

The algorithm was 
found to be 
reasonably robust 

Wang et 
al. 

(2017) 

Catenary 
bridge 
inspection 

A camera system mounted on a car for inspecting 
every component of a catenary.  
Camera system consisted of up to 25 area 
cameras with varied field of views. 
A post detection module to trigger a signal at a 
specific distance relative to catenary posts. Laser 
sensors mounted upward were used for reliable 
detection. 
Cameras were controlled using a GUI. Images 
taken using the cameras can be viewed on the 
interface. 
Proposed an intelligent analysis system to 
automatically detect defects based on localized 
structural analysis followed by the use of 
detection algorithm.  

This system was sued to 
inspect several 
catenaries. 

Defect detection Achieved 
reproducibility 
implying accurate 
post detection and 
trigger signal 
generation.  

Hiasa et 
al. 

(2018)  

Bridge 
inspection  

Data collected using commercially available 
drone equipped with camera, and IR 
thermography (IRT) sensors. 
A combination of these two technologies were 
used. 

Images of a bridge were 
taken in Florida. Cracks 
were simulated on 
paper.  
In the second 
experiment, thermal 
images of 10 x 10 cm 

Crack detection  0.1mm thick cracks 
were observed from 
enlarged images 
taken from 1-3m 
distance.  
IR camera has the 
potential of using in 
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lattice pattern squares 
on a brick wall were 
taken using IR camera 
mounted on a drone. 

drone based 
structural monitoring  

Hackl et 
al. 

(2017) 

Bridge 
inspection 

Utilized UAV photogrammetry to obtain 
topographical information. 
A pilot and camera operator controlled the UAV 
A commercially available UAV platform, DJI 
inspire 1 quadcopter was used. 
Terrestrial images were taken using a Canon 
DSLR camera. Images were georeferenced.  
Image preprocessing, camera calibration, sparse 
point-cloud reconstruction, dense point-cloud 
reconstruction, mesh reconstruction, mesh 
refinement, mesh texturing, and accuracy 
assessment techniques were used to develop 3D 
model from 2D images. This 3D mesh was used 
to generate computations model to run fluid 
dynamic simulation during bridge risk inspection 
to understand its hydraulic stability. 
OpenCV, openMVG and openMVS software 
platforms were used. 
The complex flow field around the bridge was 
analyzed using OpenFOAM. 

A bridge located in the 
submountainous region 
of Switzerland was 
inspected using the 
method explained.  

Runoff flow 
determination and its 
impact on a structure’s 
hydraulic stability 

Complex flow 
situations were 
simulated using 
225opographical 
images collected 
using UAV 

Lins et 
al. 

(2018)  

General 
application 

An Internet Protocol(IP) camera mounted on an 
autonomous robotic system 
The processing unit in the robot processed the 
image data collected using various algorithms  
Algorithms: vision-based measurement algorithm 
(VBM), velocity estimation algorithm (VE), 
crack detection (CD) and crack measurement 
(CM) algorithms. 
The algorithms ran in real-time and provided the 
engineers with output. 
Operated in fully autonomous mode or with 
human intervention  
Data transferred to a remote station via Wi-Fi or 
radio modem.  

Carried out a test in an 
indoor environment 
replacing GPS with 
camera. 
Carried out 5 trials using 
the same robot under the 
same environmental 
condition. 

Crack detection and 
measurement  

Robot followed a 
trajectory without 
much variance in 
terms of distance and 
time across multiple 
trials 
Images were 
processed as it 
navigated through the 
trajectory. 
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Used ROS comprising of ROS master and nodes 
controlling specific tasks 

Dabove 
et al. 

(2018)  

Post 
catastrophi
c 
inspection 
of a 
cultural 
heritage 

Data collected 20m far from the church using 2 
commercially available tablets 
Acquired positions using GPS 
Some images gathered using Canon EOS 5D 
Mark II camera  
Topographic survey completed using total 
station. 
Model generated from collected data using 
PhotoScan software. 
3D point cloud and texturized 3D models were 
created. 
Algorithms: Nearest neighbor algorithm for 
cloud to cloud distance comparison 

Data collected from 
Sant’Agostino Church 
in Amatrice after the 
earthquake of the 
August 
24, 2016. 
Point clouds generated 
using images collected 
through tablets were 
compared against that 
created using images 
from camera. 

Post-earthquake 
inspection  

The difference 
between tablet and 
camera 3D models is 
less than 2 cm. 
Tablets can be 
potentially used in 
emergency situation 
to save time.  

Rea and 
Ottavian
o (2018) 

General 
industrial 
sites, 
structures 
and 
infrastructu
re 
inspection  

THROO (Tracking Hybrid Rover for 
Overpassing Obstacles) robot was used to equip 
inspection equipment. 
Three levels of autonomy: complete 
teleoperation, safeguarded teleoperation and 
autonomous navigation 
Data transmitted over analog video transmitter or 
radio modem in teleoperation. Waypoint 
technique is used in autonomous mode. 
T0.his paper utilized complete teleoperation 
mode. 
The sensors used for inspection and monitoring 
tasks are; infrared camera, an electronic board 
equipped with accelerometer, gravity and 
gyroscope sensors, GPS sensor, magnetic field 
and acceleration sensors, gravity and gyroscope 
sensors, GPS sensor, magnetic field and 
acceleration sensors, navigation camera, infrared 
sensor, Xbox Kinect, and 2 micro cameras.  
Data displayed on a tablet and laptops. Used 
tablet for navigation control. 
 A controller controlled the interoperability of 
sensors. 

The technology was 
tested in an indoor 
laboratory environment.  
An electrical component 
was tested.  

Defect detection Integration of sensor 
data provides 
inspectors an 
opportunity to inspect 
3D and thermal 
images of objects or 
structures. 
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Algorithms: Control algorithm 
 
 
 

Khaloo 
et al. 

(2018) 

Bridge 
inspection 

A six-rotor hexacopter equipped with a camera 
was used for data collection. Further, a GoPro 
camera was also used. 
Each part was covered by multiple images 
arranged in overlapping strips. 
UAV ground control station planned the flight 
paths.  
An observer provided guidance to the UAV 
control pilot via remote control radio link. 
Images converted to 3D point clouds using SfM 
method.  
Algorithms: Scale-Invariant Feature Transform 
(SIFT), Binary Robust Invariant Scale Point 
(BRISK), Speeded Up Robust Features (SURF) 
for feature extraction. 
Fast Approximate Nearest Neighbors (FANN) 
for feature matching across image pairs. 
Semi-Global matching (SGM) algorithm for 
transforming sparse 3D point cloud to dense 
point cloud. 

Placer river bridge in 
Alaska was inspected 
using this method. 
UAV based point cloud 
was compared against 
point cloud generated 
using shift-based 
LIDAR. 
Point clouds generated 
using UAV captured 
images compared 
against a combined 
model created from both 
UAV and human 
inspector captured data. 

Defect detection Image based point 
clouds exhibited 
increased noise level 
compared to LIDAR 
point clouds. 
UAV point clouds 
and combined model 
had similar noise 
levels.  
However, UAV 
based point clouds 
were better than 
LIDAR point cloud 
in terms of 
completeness and 
resolution. 

Attard et 
al. 

(2018) 

Large 
Hadron 
Collider 
(LHC) 
tunnel 
inspection 

Data collected using a Train Inspection Monorail 
(TIM). Sensors mounted on a robotic arm 
extending from one of the wagons.  
Images collected using a Nikon 1 V3 Mirrorless 
camera automatically and saved to a repository. 
Navigation made possible through an encoder 
measuring the distance travelled, fitted to the 
traction wheel. Cumulative errors avoided by 
position bar codes installed next to monorail 
every 100m. 
Proposed a computer vision technique, Tinspect 
Pre-processing – downsampling and 
enhancement. 

Tested the image 
processing technique 
proposed on images 
taken from LHC tunnel. 
In this experiment, 
camera was mounted 
not on a robotic arm, but 
on a tripod. 

Defect detection Observed an overall 
accuracy of 81.4%. 
System detected 
changes as small as 
10cm. Provided only 
a limited view of 
tunnel since a single 
wide angle lens was 
used. 
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Prior to image comparison, image registration 
completed to align images to the same coordinate 
system. 
Algorithms: Mosaic algorithm using binary 
detection for feature extraction, Canny edge 
detection algorithm, correlation matching. 
Change detection techniques used to identify 
difference between query images and survey 
images. Pixel-based and object-based change 
detection methods adopted. 
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Appendix B 

Interview Questions 

Demographic & Background 
1. Age 
2. What is your educational training and certification? 
3. What is your work background and current position? 
4. What was your designation when you joined this company? 
5. How long have you been working as a field engineer? 
6. Have you been doing the same thing for all these years? 
7. Did you do any other jobs before this? 
8. How long have you been working for AIG? 
9. How many surveys do you perform a year? How many total surveys had you 

performed? 
10. Do you have any post-catastrophic inspection experience? 

Field inspection 
11. Could you please explain to me what you look for when you go for an inspection? 
12. What initial hypotheses do you develop based on the wind speed? 
13. Could you describe a recent inspection that you performed? 
14. What are the mental processes involved? 
15. How do you estimate the damage based on what you see in this picture? 
16. Could you please describe each sub-step involved in this step?  
17. What judgement did you/do you make in this step? 
18. What are the assumptions that you make here? 
19. How did you infer something based on the available information? 
20. Do you think that you had to use your cognitive skills to carry out this step 

successfully (eg: judgement, assessment, problem-solving, decision making, 
inference etc…)? How did you use them? Which skill do you think is important?  

21. What mistakes/errors might a less-experienced person make at this step? 
Go to powerpoint (slide 2) 

22. What would you do when you do not have sufficient information to confirm a 
hypothesis? For example, if there is no manufacture information available, how 
will you conclude if that window/door is/isn’t susceptible to wind damage? 

23. When taking measurements, are you focused only on measuring or do you think 
about how this could affect the safety? 

24. What are the critical cues that lead to decision making? 
25. Where do you search for issues? Do you have any expectations? How do you 

make sure that other sites are also inspected? 
26. What are some of the skill-based, rule-based and knowledge-based behavior 

involved in risk inspection? 
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27. Do you use any inspection methods other than visual to assess the risk? (for 
example knocking on wood) 

28. How do you make a decision based on positive and negative factors? Do you give 
equal weight to both positive and negative factors? 

29. How do you assess the risk associated with a metal, concrete and wooden roof? 
Can you please walk me through the steps? 
Go to PowerPoint (slide 3-10) 

30. When you are on a roof top, what is the first thing that you look for? 
31. Could you please divide the roof inspection task into several small steps? 
32. If you see a cracked /bubbled roof, how do you conclude if the roof needs to be 

changed or not? What questions do you ask to accept/reject your hypothesis? 
33. What will you do if the information from 2 sources contradicts? 
34. I know that you do not do in depth structural analysis. But, how do you decide the 

threshold for your inspection? Is there a clear cut boundary? 
35. Other than wind damage, what else do you look for, especially when you are 

assessing occupancy? 
36. Go to PowerPoint (slide 11) – could you tell me what information you get from 

this placard? 

Missile Exposure 
37. How do you assess the risk in this scenario? What are the information that you 

look for? PowerPoint (slide 13, 15) 
38. How do you decide if something could be a potential missile? 

Occupancy 
39. How do you assess occupancy? How do you relate envelop risk factors to 

occupancy factors? 
40. How do you make sure that the recommendations you propose is feasible? 
41. How do you develop a few hypotheses based on building envelop alone? For 

example based on the shape or age. (again ask about missing information) 
42. How are your hypotheses and conclusions influenced by the purpose of the 

building? 
43. How do you say if a building is old or not? How old is actually old for your 

purpose? Is it subjective? 
PowerPoint slide 16-17 – could you do an occupancy assessment in this 
condition? 

Loss investigation report/past report/building codes/sketches 
44. How does a loss investigation report help in risk assessment? (Do you compare 

the damages happened with the prediction you made to check if you called it 
accurately?)  

45. In the event of a catastrophe, you might review the previous risk assessment 
report to check if the engineer called the damage accurately. How does this affect 
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the risk inspection? (Will this make the engineer biased? Will he end up reporting 
everything?) 

46. How do past inspection reports help in subsequent inspections? (Do you use the 
findings from past inspections directly in subsequent inspections? Why?) 

47. When you go to the same sight for a second inspection, do you use the previous 
report? If yes, does that bias your assessment? 

48. What if you were not the inspector for the first inspection? 
49. Describe an instance when a company followed the building codes but still, you 

observed flaws? 
50. PowerPoint (slide 14) – how do you use this information in risk assessment? 

Novice Vs expert 
51. Is there a difference between novice and experienced inspectors? 
52. On average, how long an inspection survey would take (expert Vs novice, 

efficiency)? 
53. When you started your career as a field engineer, what errors were you prone to? 

How has your inspection procedure evolved over time? 
54. How often do you evaluate a site? 

Tools and technology 
55. What types of equipment do you use on site? (glass thickness gauge, micrometer 

etc…) 
56. Do other tools like Google Earth assists you in risk inspection? 
57. What are some of the unique methods or tools that you use for risk assessment? 

For example, do you have a checklist that you take to the site? 
58. Might using a checklist bias your decisions? 
59. What are the issues with the conventional evaluation techniques you use? What 

are the advantages? What changes do you want to see? 
60. Could you describe one of your most challenging experiences as a field engineer? 
61. How flexible is the inspection method? Do you have to stick on to all these things 

or do you have the freedom to deviate from the conventional technique? 
62. What’s your note taking technique? 

Collaboration 
63. How do you collaborate with others and make decisions together? 
64. How do you communicate your findings with others? 
65. How many people will be there in a risk inspection team? 
66. How do you think collaborating with others can improve the efficiency of the risk 

inspection process? 

Challenges/new technology 
67. How do you inspect areas that are hard to access? 
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68. Do you or are you planning to use any technologies to reach areas that are hard to 
access? 

69. How can the efficiency of current risk inspection method be improved? 
70. If you got a chance to design a technology to assist you in risk inspection, what 

would it be? 
71. How does this inspection survey help in underwriting? 
72. Do you currently use automated technologies such as robots, drones and sensors 

for this task? What are the pros and cons of these technologies? 
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Appendix C 

Consent Form for Study 1 

An Observational Study to Understand the Needs of Field Engineers 
 
Description of the research and your participation 
 
I am Sruthy Orozhiyathumana Agnisarman. You are invited to participate in a research 
study conducted by Dr. Kapil Chalil Madathil and me. The purpose of this study is to 
understand the nature of insurance risk assessment survey and the needs of field engineers. 
I am conducting this research as a part of my doctoral dissertation work. I am thankful to 
you for letting me join you at the inspection site. This information letter will give you the 
details about the study protocol and you are welcome to discuss with me your questions 
and concerns.  
  Research team member, Sruthy Orozhiyathumana Agnisarman, will observe you 
at the risk inspection site. If you are comfortable, you will be asked questions while 
performing risk inspection tasks. If you allow me to do so, you will be audio and video 
recorded performing risk inspection. Photographs may be taken of the inspection site, if 
their policy allows that. You are welcome to tell me not to record at any point. In 
addition, you will be asked to conduct a post evaluation interview and focused group. 
These sessions will be conversational in style and will last for 30 minutes to two hours. 
You will be encouraged to talk freely. You may choose not to answer any questions you 
are uncomfortable with and stop the interview at any time. You will be asked to attend 
focus group session with other field engineers.  Notes will be taken during the focus 
groups and they will be audio and video recorded, if you are comfortable with that. We 
ask that you respect the privacy of others in the group and keep the information shared 
private. 
You may refuse to answer or leave the discussion at any time if you become 
uncomfortable. 
 

Please understand that we are not testing your personal capabilities. We are trying 
to understand your needs and the state of the art of risk inspection. 

 
Risks and discomforts 
 
There is the possibility for loss of confidential information, but we have minimized this 
risk by not revealing any of your personal identifiers publicly. Your personal identifiers 
and collected data will not be available to anyone other than the principal and co-
investigators. Also, please understand that revealing sensitive information in a focus 
group session will result in others knowing personal or confidential details. Please be 
wary of revealing sensitive or confidential information during focus group sessions. You 
may also find this study to be intrusive.  
Potential benefits 
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There are no known benefits to you that would result from your participation in this 
research. This research may help us to understand how to develop automation assisted risk 
inspection methods. My dissertation will be available at Clemson’s Cooper Library and 
will be accessible to the public. Moreover, the findings from this study may be presented 
at conferences or published as journal articles. Vignettes from your responses may also be 
used in journal or conference articles. However, your identity will not be revealed.  
 
Protection of confidentiality 
 
The captured data (audio, video and photographs) will be stored in a password-protected 
computer in the Fluor Daniel 326. The documents will be accessible only to the principal 
and co-investigators. Your identity will not be revealed in any publication that might result 
from this study. We will delete all these recordings by July 2018.  
 
 
Voluntary participation 
 
Your participation in this research study is voluntary. You may choose not to participate 
and you may withdraw your consent to participate at any time. You will not be penalized 
in any way should you decide not to participate or to withdraw from this study. 
 
Participant incentives 
You will be awarded a $10 gift card upon study completion. 
 
Contact information 
 
If you have any questions or concerns about this study or if any problems arise, please 
contact Dr. Kapil Chalil Madathil at Clemson University at 713-294-6499. If you have any 
questions or concerns about your rights as a research participant, please contact the 
Clemson University Institutional Review Board at 864-656-0636. 
 
A copy of this form will be given to you. 
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Appendix D 

Coding Schema and Rules 

1. Demographic 
a. Age: anytime they talk about their age 
b. Education: anytime they talk about their education/training/certification 
c. Location: anytime they talk about their location 
d. Occupation: any time the interviewee talking about their current job 

position 
2. Level of Experience 

a. Experience: any time they talk about their work experience/years/number 
of surveys 

b. Wind experience : anytime they talk about any relevant wind related work 
experience 

c. Novice (performed by less experienced people): any time an interviewee 
talking about less experienced or novice inspectors. 

d. Expert (very experienced inspectors): any time they talk about 
improving/learning from experience (over time) 

3. Learning 
a. Post catastrophic: anytime they talk about post-catastrophic/post-disaster 

inspection/loss investigation report 
b. Lessons learned: any time the interviewee talking about or referring to 

something as lessons learned or learning exercise or retrieving any 
information/knowledge/memory acquired 

c. Training: anytime they talk about getting training or providing training 
related to wind survey (method employed to provide initial knowledge to 
novice inspectors) 

4. Information Source 
a. Wind information: anytime they talk about wind speed, wind map, and 

wind zone 
b. Building drawings: any time the interviewee talking about getting 

information from building sketches 
c. Manufacturer information: any time the interviewee talking about 

manufacturing information like placard, labels etc… 
d. Internet: any time the interviewee talking about looking up information 

online (google, google earth, google map, other websites etc…) 
e. Past inspection report: any time the interviewee talking about past 

inspection reports/ inspections 
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f. Building history: any time the interviewee talking about how the building 
was constructed and related factors (restoration etc.) 

g. Guidelines: anytime they talk about the assumptions they take based on 
their guidelines (things that lead the inspectors to use the assumptions 
provided by the company) 

5. Inspection process:  
a. Steps followed: any time the interviewee talking about the steps followed 

(for example, go to the roof top, take measurement, etc..) 
b. Dimensions/taking measurements: anytime they talk about taking 

measurements (such as length, fastener spacing etc.) and measurement 
pattern (such as corner, field perimeter) 

c. Non-visual methods: any time the interviewee talking about non-visual 
methods such as dragging their foot, knocking on wood, toilet plunger, 
uplift testing, moisture testing  

d. Areas of focus: anytime an area of a building is inspected (windows, 
walls,, doors) 

e. Unique technique/preference: anytime the inspector talks about a step or 
something that he/she normally does but it’s not a step in their procedure. 

f. Information offloading: any time the interviewee talk about checklist and 
note-taking 

6. Building characteristics 
a. Age of the building: any time the interviewee talking about the age of the 

building or its components  
b. Roof type: any time the interviewee talks about different types of roof like 

concrete roof, metal roof, tile roof, etc 
c. Building occupancy: any time the interviewee talking about the things 

inside the building, and the building purpose. 
d. Building location: anytime they speak about the location on a building 

being inspected 
7. New technology:  

a. Type of new technology: any time the interviewee talking about 
drones/new technologies used for risk inspection (drones, ipad etc…) 

b. New technology advantage: Any time the interviewee was talking about 
the advantages of new technologies 

c. New technology disadvantage: any time the interviewee talking about the 
disadvantages of new technology  

8. Damage: 
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a. Forecasting Failure: any time the interviewee talking about failures/failure 
modes based on the results or conditions 

b. Water damage: any time the interviewee talking about damages due to 
flooding/surge. It could be any water damage. 

c. Missile: any time the interviewee talking about missiles/projectile 
d. Roof condition: any time the interviewee talking about the roof condition 

(wrinkle, leak, bubble, tear, peeling, faulty drains, ponding, leaking, debris 
and any qualitative condition of roof) 

 
9. Tools 

a. Wind tool/calculator: any time the interviewee talking about the wind tool 
or property tool (software) used to calculate the wind pressure 

b. Devices/tools: anytime they talk about a piece of equipment used for 
inspection 

10. Factors affecting decision making 
a. Cognitive process/skills: any time the interviewee talking about cognitive 

processes/skills, Decision making (any time the interviewee talking about 
making a decision or actually makes a decision), Judgement (any time the 
interviewee talking about their judgement/judgement call), inference, 
analytical skills, problem solving skill 

b. Biases and methods to avoid/minimize biases: any time the interviewee 
talking about different biases that would affect their inspection/decisions 
and the measures they take to minimize or avoid it or the steps they take to 
remain cautious about biases. 

c. Errors/mistakes and Method to fix/resolve/recover errors: any time the 
interviewee talking about the errors/mistakes an engineer make and the 
ways to overcome/recover from a mistake 

d. Assumptions/expectations: any time the interviewee talking about their 
expectations or any assumptions that they make based on their 
expectations or understanding (but, not based on the guidelines). If the 
interviewee is talking about any assumptions they take based on their 
guidelines, it should be coded as guidelines. 

e. Critical cues: cues that played important role in the inspection 
process/decision making 

f. Confidence: any time the interviewee talking about their confidence level 
in their decision or information available 
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g. Trust: Anytime the interviewee talking about trusting the information 
(such as building sketches, Internet etc..) or people (contractors, clients 
etc..) 

11. Sensemaking framework 
a. Contradicting information: any time the interviewee talking about positive 

factors/negative factors or any pieces of information contradicting to each 
other 

b. Confirming information: anytime the interviewee talking about confirming 
one piece of information using another piece of information 

c. Initial cue: any time they talk about the first thing that they look at or the 
first step to develop the initial frame 

d. Questioning data: any time the interviewee talk about looking for reasons 
for something or questioning an existing condition or doubting the 
data/information 

e. Lack of information: any time the interviewee talking about not having 
information available to complete inspection (eg: unavailability of 
building drawings/manufacture information) 

 
12. Conventional inspection 

a. obstacle/challenges and disadvantages of conventional risk inspection: any 
time the interviewee talking about the challenges associated with wind 
survey or the challenges they face such as inability to access any part of 
the building. 

b. Advantages of conventional inspection: advantages of conventional risk 
inspection 

13. Loss expectancy report 
a. Recommendations: any time the interviewee talking about 

recommendations  
b. Feasibility: any changes or recommendations that is feasible to apply (if it 

satisfies the ratio criterion 1 to 10) 
c. Loss expectancy: anytime the interviewee talks about loss expectancy 

calculation, analysis, report etc 
14. Collaboration: any time the interviewee talking about collaborating with 

others/wind inspection team, clients or any experts 
15. Emergency preparedness: any time the interviewee talking about the client’s 

emergency response/preparedness plan or back up plans such as generators etc…  
16. Needs: anytime the inspector talks about his/her needs or things he/she wishes 

s/he has 
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17. Rooftop equipment: anytime the interviewee talks about roof top equipment 
 
Code rules: 

1. Code by segments 
2. Double and triple coding is acceptable. If you are assigning more than 3 codes 

(beyond holistic/attribute codes) to a segment, consider breaking up the segment 
if possible. 

3. Use memos to indicate:  
a. Text that you feel should be coded, but do not have a code for it 
b. Potential future themes you see emerging or want to explore once all data 

is coded 
c. Any other thoughts, notes you need to get down about what you reviewing 

and coding 
4. Don’t feel compelled to code every word or line of text. Be mindful of overall 

purpose of project 
Consensus 

1. Each person should code independently 
2. After coding your documents meet with you partner to discuss your coding results 

a. Discuss your coding for each segment  
b. If you have applied the same code but are off by a full sentence or less in 

where you have started or stopped the segment designation – you are in 
consensus – but you must decide where to start and stop applying the 
codes in your final coding structure 

c. If your coding is consistent (with consensus) indicate your final codes for 
that segment on one document 

d. If you do not have the same codes applied to a segment of text you are not 
in consensus. This includes: 

i. Applying different codes 
ii. Omitting codes 

e. As you go through the document discuss where your coding is not 
consistent and reach consensus about the final codes to apply to each 
segment. Indicate that you had to discuss and reach consensus on the 
specific code by marking it with an * or highlighting it as specific color. 

f. If you are not able to reach consensus for a specific segment, then indicate 
this on your document. 

3. Use your memos within your consensus discussion! 
4. Your final document should clearly indicate the final codes for each coded 

segment and segments and codes you had to discuss to reach consensus. 
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Appendix E 

Checklist Developed 

1. Inspection of surroundings: 
a. Confirm the wind speed for this area 
b. What is the exposure level (B, C or D)? You can use the drone to inspect 

the area. 
c. Please observe the surroundings 

i. Are there any potential missiles or any loose/untethered objects 
(trees, furniture etc.)? 

ii. Are there any adjacent buildings or structures? 
iii. Are there any elements from the adjacent building (eg: rooftop 

equipment or loose objects) that could be potential missiles for the 
building under question? 

iv. Is the building subject to flooding? 
2. Roof inspection: 

a. What is the roof type? 
b. Measure the underdeck fastener spacing, if the roof has a metal deck. 
c. Measure the distance between joists 
d. Please confirm how the roof is attached (adhered, mechanically fastened 

or a combination) 
e. Please take roof dimensions and fastener spacing dimensions on rooftop. 
f. Please inspect the roof flashing especially perimeter flashing. 
g. Confirm that the roof has a parapet. If the roof has parapet, is it 

continuous? 
h. Take the parapet height 
i. Please observe the overall roof condition. Look for any damages such as 

i. Bubbling 
ii. Cracking 

iii. ponding - inadequate slope and clogged drainage allows water to 
pond on a flat roof 

iv. vegetation growth 
v. debris 

3. Rooftop equipment: 
a. Are there any rooftop equipment? 
b. How are the rooftop equipment attached to the roof deck? How do the 

fasteners and connections look like? 
c. Is the equipment properly strapped down? Is the fan cowling attached 

properly to resist the wind load? 
d. Are there any random unattended debris particles (nails, wooden planks 

etc.)? 
e. Are there any signs of corrosion or deterioration? 
f. Does the roof have skylights or rooftop garden? 
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g. Are there any potted plants? 
4. External wall/envelope inspection 

a. Dock door 
i. Are there any dock doors? 

ii. Is the dock door impact rated and pressure rated? 
iii. Is the dock door properly installed? How do the fasteners and 

connections look like? 
iv. Look for any potential missile impact 

b. Windows 
i. Are the windows pressure rated and impact rated? 

ii. Look for any potential missile impact 
c. EIFS 

i. Please observe the general EIFS condition 
ii. Make sure that the EIFS is free from mildew or mold issues and 

cracks. 
iii. Identify if there is any potential missile impact to EIFS 
iv. Identify how a damaged EIFS can lead to water/flood damage 

inside the building 
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Appendix F 

Consent Form for Study 2 

An investigation of the effect of context-based visualizations to enhance the 
situation awareness of risk engineers 

 
KEY INFORMATION ABOUT THE RESEARCH STUDY  
 
Voluntary Consent: You are invited to participate in a research study conducted by Sruthy 
Orozhiyathumana Agnisarman and Dr. Kapil Chalil Madathil. Dr. Kapil Chalil Madathil is 
an assistant professor at Clemson University. Sruthy Agnisarman is a PhD candidate at 
Clemson University, running this study with the help of Dr. Kapil Chalil Madathil.  
 
You may choose not to take part and you may choose to stop taking part at any time. You 
will not be punished in any way if you decide not to be in the study or to stop taking part 
in the study. If you choose to stop taking part in this study, the information you have 
already provided will be used in a confidential manner. 
 
Alternative to Participation: Participation is voluntary and the only alternative is to not 
participate. 
 
Study Purpose: The purpose of this research is to investigate the effect of context-based 
visualization strategies to enhance the situation awareness and to improve the performance of 
windstorm risk engineers. Risk inspection is the process of investigating various risk factors 
associated with an infrastructure system to limit the extent of damage in the event of an 
extreme weather condition. The visualization strategies we propose are expected to 
improve the performance of the risk engineers.  
 
Activities and Procedures: You will be assigned to one of the study conditions (control 
or experimental conditions). You will be asked to complete a scenario in which you will 
be completing the inspection of a commercial building in a simulated environment.  
 
You will be asked to complete a demographic questionnaire. Then the researcher will guide 
you to the laboratory and will give you a brief description of the study. Then you will be 
asked to perform the task, followed by a subjective questionnaire about the task to help us 
evaluate your situation awareness and workload.  
 
Your eye movements will be tracked using a non-invasive eye tracker mounted on the 
computer.  
 
Participation Time: The amount of time required for your participation will be 
approximately 90 minutes. You will be asked to come back within a week to complete 



 243 

another simulated task following the same procedure. However, this will take only 45 
minutes. 
 
Risks and Discomforts: There are certain discomforts that you might experience if you 
take part in this research. They include feeling of discomfort from using the eye tracking 
equipment and possible eyestrain. You will be allowed to take breaks to rest, and you may 
quit the research at any time without penalty.  
 
Possible Benefits: There are no known benefits to you that would result from your 
participation in this research. But, the potential benefit to the science is the development of 
visualization strategies to improve situation awareness of infrastructure engineers. 
 
EXCLUSION/INCLUSION REQUIREMENTS 
 
In order to participate in this study, you need to have a civil engineering or constructions 
science background. You have to be either a graduate student (with a bachelor’s degree in 
civil engineering or related domains) or senior student (pursuing a bachelor’s degree in 
civil engineering or related domains). 
 
INCENTIVES 
 
You need to participate in both the first study and follow-up study to receive gift card. 
You will be awarded a $20 Amazon gift card at the end of the follow up study. 
 
EQUIPMENT AND DEVICES THAT WILL BE USED IN THE RESEARCH 
STUDY 
 
You will complete the study on a desktop computer. An eye tracking device will record 
your eye movements. The simulation will also record data about your interaction with the 
simulation.  
 
Although highly unlikely, if you happen to feel uncomfortable in any way (dizzy, 
lightheaded, or nauseous) while using the eye tracker, notify the research team 
immediately. If you continue to experience any discomforts after the study, please contact 
your preferred healthcare provider and notify the research team. 
 
PROTECTION OF PRIVACY AND CONFIDENTIALITY 
 
The captured data will be stored on a password-protected computer in Fluor Daniel, room 
321. The documents will be accessible only to the principal investigator and the co-
investigators. Identifiable information collected during the study will be removed and the 
de-identified information will not be used or distributed for future research studies. Your 
identity will not be revealed in any publication that might result from this study.   
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We might be required to share the information we collect from you with the Clemson 
University Office of Research Compliance and the federal Office for Human Research 
Protections. If this happens, the information would only be used to find out if we ran this 
study properly and protected your rights in the study.  
 
CONTACT INFORMATION 
 
If you have any questions or concerns about your rights in this research study, please 
contact the Clemson University Office of Research Compliance (ORC) at (864) 656-0636 
or irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the 
ORC’s toll-free number, (866) 297-3071. The Clemson IRB will not be able to answer 
some study-specific questions. However, you may contact the Clemson IRB if the 
research staff cannot be reached or if you wish to speak with someone other than the 
research staff. 
 
If you have any study related questions or if any problems arise, please contact Kapil 
Chalil Madathil at Clemson University at 713-294-6499. 
 
Consent 
 
By signing this consent form, you indicate that you have read the information 
written above, are at least 18 years of age, been allowed to ask any questions, and 
are voluntarily choosing to take part in this research. You do not give up any legal 
rights by signing this consent form. 
 
Participant’s signature: ____________________________________ Date: 
_________________ 
 
Print name of participant: __________________________________ 
 
 
A copy of this form will be given to you. 
 
  

mailto:irb@clemson.edu
mailto:irb@clemson.edu
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Appendix G 

SAGAT Questionnaires for First Trial 

 
SAGAT_1 
 
Q1 Participant number 
________________________________________________________________ 
 
 
Q2 What is the wind speed of the location 
________________________________________________________________ 
 
 
Q3 What is the exposure category? 

o B  (1)  

o C  (2)  

o D  (3)  
 
 
Q4 Did you see any water body in the vicinity of the building? 

o Yes  (1)  

o No  (2)  
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Q5 Did you notice any object/objects between the lake and the building? 

o Yes  (6)  

o No  (7)  
 
Skip To: Q7 If Did you notice any object/objects between the lake and the building? = 
No 
 
 
Q6 What is it? 

o Potted plants  (4)  

o Satellite  (5)  

o Cinder blocks  (6)  

o Fire hydrant  (7)  
 
 
Q7 Is there any other building or structure? 

o Yes  (4)  

o No  (5)  
 
Skip To: Q11 If Is there any other building or structure? = No 
 
 
Q8 What is it? 
________________________________________________________________ 
 
 
Q9 What are some of the equipment on the rooftop of the warehouse building? 
________________________________________________________________ 
 
 
 
Q10 What missile impact do you expect on the window facing the warehouse? 

o Satellite  (4)  

o Cement block  (5)  

o Gravel  (6)  
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o Tree branch  (7)  
 
 
Q11 What is the wall facing the warehouse (north side wall) made of? 

o Brick  (3)  

o Glass  (4)  

o EIFS  (5)  

o Wood  (6)  
 
 
Q12 Do you expect any water damage in the event of an extreme weather condition? 
How do you expect it to happen? 
________________________________________________________________ 
 
 
Q13 What type of damage do you expect by missiles? 
 
________________________________________________________________ 
 
 
SAGAT_2 
 
Q1 Participant number 
________________________________________________________________ 
 
 
Q2 What was the under deck fastener spacing? 
________________________________________________________________ 
 
 
Q3 What was the spacing between joist welds? 
________________________________________________________________ 
 
 
Q4 What was the under deck and roof type used here? 

o Steel under deck with built up roof  (1)  

o Asbestos under deck with built up roof  (2)  

o Steel under deck with TPO roof  (3)  
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o Wood under deck with TPO roof  (4)  

o Aluminium under deck with TPO roof  (5)  
 
 
Q5 Did you see any fasteners on the rooftop (not under deck)?  

o Yes  (1)  

o No  (2)  
 
Skip To: Q7 If Did you see any fasteners on the rooftop (not under deck)?  = No 
 
Q6 Does the fastener spacing meet code requirements? Explain. 
________________________________________________________________ 
 
 
Q7 Did the roof have any perimeter flashing? 

o Yes  (1)  

o No  (2)  
 
Skip To: End of Survey If Did the roof have any perimeter flashing? = No 
 
Q8 Did the flashing look fine? 

o Yes  (4)  

o No  (5)  
 
Skip To: End of Survey If Did the flashing look fine? = Yes 
 
Q9 What damage do you expect from this damaged flashing when there is a category 
4 hurricane? 
________________________________________________________________ 
 
 
SAGAT_3 
 
Q1 Participant number 
________________________________________________________________ 
 
 
Q2 Did you see any clogged drain? 
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o Yes  (6)  

o No  (7)  
 
Skip To: Q5 If Did you see any clogged drain? = No 
 
 
Q3 How was the drain on the north side (left side if you are facing the building) of the 
building clogged? 
________________________________________________________________ 
 
 
 
Q4 What issues do you expect as a result of clogged drain? 
________________________________________________________________ 
 
 
Q5 Did you observe water ponding on rooftop? 

o Yes  (1)  

o No  (2)  
 
Skip To: Q7 If Did you observe water ponding on rooftop? = No 
 
 
Q6 What would be the possible reason for it? 

o Leaking pipe  (4)  

o Clogged drain  (5)  

o Improper slope  (6)  
 
 
Q7 Where do you expect high wind pressure on the roof? 

▢ Perimeter and corner  (4)  

▢ Perimeter and field  (5)  

▢ Field and corner  (6)  
Q8 Did you measure the parapet height? 
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o Yes  (17)  

o No  (18)  
 
Skip To: Q12 If Did you measure the parapet height? = No 
 
 
Q9 What is the parapet height? 
________________________________________________________________ 
 
 
Q10 Does this height meet code standards? 

o Yes  (1)  

o No  (2)  
 
 
Q11 Should this parapet be given credit for modifying wind pressure? Why or why 
not? 
________________________________________________________________ 
 
 
Q12 Is the parapet continuous? 

o Yes  (1)  

o No  (2)  
 
 
SAGAT_4 
 
Q1 Participant number 
________________________________________________________________ 
 
 
Q2 Does the roof have skylights? 

o Yes  (1)  

o No  (2)  
 
 
Q3 Does the roof have solar panels? 
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o Yes  (1)  

o No  (2)  
 
 
Q4 How is the antenna attached to the rooftop? 
________________________________________________________________ 
 
 
Q5 What will happen to the antenna on the rooftop in the event of a category 4 
hurricane? 
________________________________________________________________ 
 
 
Q6 What other damages do you expect from this antenna? 
________________________________________________________________ 
 
 
Q7 What other object did you see in front of the dock door? 

o Antenna  (4)  

o Exhaust fan  (5)  

o Solar panel  (6)  

o Cement blocks  (7)  

o There was nothing  (8)  
 
Skip To: End of Survey If What other object did you see in front of the dock door? != 
Exhaust fan 
 
 
Q8 How is this object attached to the roof? 
________________________________________________________________ 
 
 
Q9 What will happen to this object if there is a category 4 hurricane? What other 
damages do you expect from this object? 
________________________________________________________________ 
 
SAGAT_5 
 
Q1 Participant number 
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________________________________________________________________ 
 
 
Q2 How many dock doors were present on the rooftop? 

o 0  (4)  

o 1  (5)  

o 2  (6)  

o 3  (7)  

o 4  (8)  
 
 
Q3 How many of them were impact rated? What code is the impact rating based on? 
________________________________________________________________ 
 
 
 
Q4 What are the potential damages do you expect for the dock door? 
________________________________________________________________ 
 
 
Q5 How many windows did you observe on the rooftop? 

o 0  (4)  

o 1  (5)  

o 2  (6)  

o 3  (7)  

o 4  (8)  
 
Q6 How many of them were impact rated? What code is the impact rating based on? 
________________________________________________________________ 
 
 
Q7 What are the potential damages do you expect for the windows? Explain for each 
window separately. 
________________________________________________________________ 
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Q8 What are some of the consequences of damaged windows? 
________________________________________________________________ 
 
 
Q9 Does the external wall have EIFS finishing? 

o Yes  (1)  

o No  (2)  
 
Skip To: End of Survey If Does the external wall have EIFS finishing? = No 
 
Q10 How do you  describe the general condition of this EIFS? 
 
Q11 What could happen to this EIFS if there is a category 4 hurricane? 
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Appendix H 

Performance Questionnaire for First Trial 

Q1 Participant number 
 
Q2 Please answer the questions on this page based on the first task you completed. 
 
Q3 What are the different types of missiles you expect in the event of a category 4 
hurricane? 
 
Q4 What is the implication of the exposure level of this location? 
 
Q5 Is there any potential for interior damage due to rain? How?  
 
Q6 What is your recommendations to reduce the wind vulnerability of this site based on 
the things you observed? 
 
Q7 Please answer the questions on this page based on the second scenario you completed. 
 
Q8 How do you know if a roof is mechanically fastened or fully adhered? Is the TPO roof 
in the simulation mechanically fastened or fully adhered? 
 
Q9 Were the fastener rows parallel or perpendicular to the roof ribs? 

o Parallel  (1)  

o Perpendicular  (2)  
 
Q10 What are some of the issues you noticed on the rooftop? 
 
Q11 How do you think these issues will cause further damages to the building in the event 
of an extreme weather condition? 
 
Q12 Did you observe ponding on rooftop? 

o Yes  (1)  

o No  (2)  
 
Skip To: Q14 If Did you observe ponding on rooftop? = No 
 
Q13 What could be the possible reason for roof ponding? 
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Q14 What is the general condition of roof flashing? What kind of damages do you expect 
as a result of flashing failure? 
 
Q15 What is the fastener spacing in perimeter, corner and field? 
 
Q16 Where do you expect high wind pressure on rooftop? Why? 
 
Q17 Please answer the questions on this page based on the third task you completed. 
 
Q18 List the equipment you observed on the rooftop. 
 
Q19 What is the equipment you observed on the north side of the rooftop (left side when 
you face the building)? 

o Antenna  (4)  

o Duct work  (5)  

o Skylight  (6)  

o Chimney  (7)  
 
Skip To: Q21 If What is the equipment you observed on the north side of the rooftop (left 
side when you face the... != Antenna 
 
Q20 What are the possible damages this equipment could cause? Why? 
 
Q21 What are the issues associated with the air duct on the rooftop? Is it properly attached? 
 
Q22 Does the fastening method used for this equipment meet the standard criterion for a 
building in high exposure area?  
 
Q23 What would be your recommendations to the clients to reduce the wind vulnerability 
of this facility? 
 
Q24 Please answer the questions on this page based on the fourth task you completed. 
 
Q25 Is the dock door pressure rated? 

o Yes  (1)  

o No  (2)  
 
Q26 What do you expect to happen to this dock door in the event of a category 4 hurricane? 
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Q27 Were the windows pressure rated? What is the advantage of using pressure rated 
windows? 
 
Q28 Do you expect these windows to withstand a category 4 hurricane wind pressure? Why 
or why not? 
 
Q29 Does the building have any kind of External Insulation Finishing System (EIFS)? 

o Yes  (4)  

o No  (5)  
 
Skip To: Q32 If Does the building have any kind of External Insulation Finishing System 
(EIFS)? = No 
 
Q30 How do you describe the general condition of EIFS? 
 
Q31 What will happen to EIFS and the building in the event of a higher category hurricane? 
 
Q32 What would you recommend to change about the windows, dock doors and EIFS to 
improve the wind resistance of the building? 
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Appendix I 

SAGAT Questionnaires for Second Trial 

 
SAGAT_1_2 
 
Q1 Participant number 
________________________________________________________________ 
 
 
Q2 What is the wind speed of the location 
________________________________________________________________ 
 
 
Q3 What is the exposure category? 

o B  (1)  

o C  (2)  

o D  (3)  
 
 
Q4 Are there any potential wind borne missiles in the building surroundings?  

o Yes  (4)  

o No  (5)  
 
Skip To: Q6 If Are there any potential wind borne missiles in the building 
surroundings?  = No 
 
Q5 What are they? Select all that apply. 

▢ Furniture  (1)  

▢ Antennae  (2)  

▢ Tree  (3)  

▢ Lamp post  (4)  
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Q6 Did you see any water body in the vicinity of the building? 

o Yes  (1)  

o No  (2)  
 
 
Q7 What furniture did you observe outside the hotel? Select all that apply 

▢ Table  (6)  

▢ Bench  (7)  

▢ Chair  (8)  

▢ Lounge chair  (9)  
 
 
Q8 Is there any other building or structure?  

o Yes  (4)  

o No  (5)  
 
 
Q9 Do you expect any water damage in the event of an extreme weather condition? 
How do you expect it to happen? 
________________________________________________________________ 
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SAGAT_2_2 

 

Q1 Participant number 

________________________________________________________________ 

 

Q2 What was the under deck fastener spacing? 

________________________________________________________________ 

 

Q3 What was the spacing between joist welds? 

________________________________________________________________ 

 

Q4 What was the under deck and roof type used here? 

o Steel under deck with built up roof  (1)  

o Asbestos under deck with built up roof  (2)  

o Steel under deck with TPO roof  (3)  

o Wood under deck with TPO roof  (4)  

 

Q5 Did you see any fasteners on the rooftop (not under deck)?  

o Yes  (1)  

o No  (2)  

 

Skip To: Q7 If Did you see any fasteners on the rooftop (not under deck)?  = No 

 

 

Q6 Does the fastener spacing meet code requirements? Explain. 
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________________________________________________________________ 

 

Q7 Did the roof have any perimeter flashing? 

o Yes  (1)  

o No  (2)  

 

Skip To: End of Survey If Did the roof have any perimeter flashing? = No 

 

Q8 Did the flashing look fine? Explain. 

________________________________________________________________ 

 

Q9 What are the issues? 

________________________________________________________________ 

 

SAGAT_3_2 

 

Q1 Participant number 

________________________________________________________________ 

 

Q2 Did you see any clogged drain? 

o Yes  (6)  

o No  (7)  

 

Skip To: Q6 If Did you see any clogged drain? = No 

 

Q3 How many clogged drains did you see on the rooftop? 
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o 1  (1)  

o 2  (2)  

o 3  (3)  

o 4  (4)  

 

Q4 How was it clogged? 

________________________________________________________________ 

 

Q5 What issues do you expect as a result of clogged drain? 

________________________________________________________________ 

 

Q6 Did you observe water ponding on rooftop? 

o Yes  (1)  

o No  (2)  

 

Skip To: Q8 If Did you observe water ponding on rooftop? = No 

 

Q7 What would be the possible reason for it? 

o Leaking pipe  (4)  

o Clogged drain  (5)  

o Improper slope  (6)  

 

Q8 Where do you expect high wind pressure on the roof? 
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▢ Perimeter and corner  (4)  

▢ Perimeter and field  (5)  

▢ Field and corner  (6)  

 

Q9 What are the parapet materials used? Select all that apply. 

▢ Concrete  (1)  

▢ Glass  (2)  

▢ Wood  (3)  

▢ Fiber  (4)  

 

Q10 Did you measure the parapet height? 

o Yes  (17)  

o No  (18)  

 

Skip To: Q14 If Did you measure the parapet height? = No 

 

Q11 What is the parapet height? 

________________________________________________________________ 

 

Q12 Does this height meet code standards? 

o Yes  (1)  
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o No  (2)  

 

Q13 Should this parapet be given credit for modifying wind pressure? Why or why not? 

________________________________________________________________ 

 

Q14 Is the parapet continuous? 

o Yes  (1)  

o No  (2)  

 

SAGAT_4_2 

 

Q1 Participant number 

________________________________________________________________ 

 

Q2 Select the objects you saw on the rooftop. 

▢ Skylight  (1)  

▢ Potted plants  (2)  

▢ Barbecue grill  (3)  

▢ Lamp post  (4)  

 

Q3 How is the big air duct attached to the rooftop? 

__________________________________________________________ 
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Q4 What equipment did you see on the north side edge of the rooftop? (your left hand 
side when you face the building) 

o Satellite  (1)  

o Air duct  (2)  

o Barbecue grill  (3)  

o Solar panel  (4)  

 

Skip To: End of Survey If What equipment did you see on the north side edge of the 
rooftop? (your left hand side when you f... != Satellite 

Q5 How is this object attached to the roof? 

________________________________________________________________ 

 

Q6 What will happen to this object if there is a category 4 hurricane? What other 
damages do you expect from this object? 

________________________________________________________________ 

 

SAGAT_5_2 

Q1 Participant number 

________________________________________________________________ 

 

Q2 How many dock doors were present on the rooftop? 

o 0  (4)  

o 1  (5)  

o 2  (6)  

o 3  (7)  
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o 4  (8)  

 

Q3 How many of them were impact rated? What code is the impact rating based on? 

________________________________________________________________ 

 

Q4 What are the potential damages do you expect for the dock door? 

________________________________________________________________ 

 

Q5 How many windows did you observe on the rooftop? 

o 0  (4)  

o 1  (5)  

o 2  (6)  

o 3  (7)  

o 4  (8)  

 

Q6 How many of them were impact rated? What code is the impact rating based on? 

________________________________________________________________ 

 

Q7 What are the potential damages do you expect for the windows? 

________________________________________________________________ 

 

Q8 What are some of the consequences of damaged windows? 

________________________________________________________________ 

 

Q9 Does the external wall have finishing? 
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o Yes  (1)  

o No  (2)  

 

Skip To: End of Survey If Does the external wall have finishing? = No 

Q10 How do you  describe the general condition of this EIFS? 

________________________________________________________________ 

 

Q11 How many skylights did you see on the north side of the building? 

o 2  (1)  

o 3  (2)  

o 4  (3)  

o 5  (4)  
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Appendix J 

Performance Questionnaire for Second Trial 

Q1 Participant number 
 
Q2 Please answer the questions on this page based on the first task you completed. 
 
Q3 What are the different types of missiles you expect in the event of a category 4 
hurricane? 
 
Q4 What are the factors that could influence the impact of these missiles? 
 
Q5 Is there any potential for interior damage due to rain? How?  
 
Q6 What is your recommendations to reduce the wind vulnerability of this site based on 
the things you observed? 
 
Q7 Please answer the questions on this page based on the second task you completed. 
 
Q8 How do you know if a roof is mechanically fastened or fully adhered? Is the TPO 
roof in the simulation mechanically fastened or fully adhered? 
 
Q9 What are some of the issues you noticed on the rooftop? Explain what might have 
caused those damages? 
 
Q10 How do you think these issues will cause further damages to the building in the 
event of an extreme weather condition? 
 
Q11 What could be the possible reason for roof ponding? 
 
Q12 What is the general condition of roof flashing? What kind of damages do you expect 
as a result of flashing failure? 
 
Q13 Where do you expect high pressure on rooftop? Why? 
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Q14 Were the fastener rows parallel or perpendicular to the roof ribs? 

o Parallel  (1)  

o Perpendicular  (2)  
 
Q15 Please answer the questions on this page based on the third task you completed. 
 
Q16 List the equipment you observed on the rooftop. 
 
Q17 What are the issues associated with the air duct on the rooftop? Is it properly 
attached? 
 
Q18 Does the fastening method used for this equipment meet the standard criterion for a 
building in high exposure area?  
 
Q19 What would be your recommendations to the clients to reduce the wind vulnerability 
of this facility? 
 
Q20 Please answer the questions on this page based on the fourth task you completed. 
 
Q21 Is the dock door impact rated? 

o Yes  (1)  

o No  (2)  
 
Q22 What do you expect to happen to this dock door in the event of a category 4 
hurricane? 
 
Q23 Was the window impact rated? What is the advantage of using impact rated 
windows? 
 
Q24 Do you expect the window to withstand a category 4 hurricane wind pressure? Why 
or why not? 
 
Q25 Does the building have any kind of finishing? 

o Yes  (4)  

o No  (5)  
 
Skip To: End of Survey If Does the building have any kind of finishing? = No 



 269 

 
Q26 How do you describe the general condition of the finishing? 
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