55,012 research outputs found

    Data Partitioning and Load Balancing in Parallel Disk Systems

    Get PDF
    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible ways, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent, self-reliant file system that aims to optimize striping by taking into account the requirements of the applications, and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces. Keywords: parallel disk systems, performance tuning, file striping, data allocation, load balancing, disk cooling. 1 Introduction: Tuning Issues in Parallel Disk Systems Parallel disk systems are of great imp..

    Outflows and Jets from Collapsing Magnetized Cloud Cores

    Full text link
    Star formation is usually accompanied by outflow phenomena. There is strong evidence that these outflows and jets are launched from the protostellar disk by magneto-rotational processes. Here, we report on our three dimensional, adaptive mesh, magneto-hydrodynamic simulations of collapsing, rotating, magnetized Bonnor-Ebert-Spheres whose properties are taken directly from observations. In contrast to the pure hydro case where no outflows are seen, our present simulations show an outflow from the protodisk surface at ~ AU and a jet at ~ 0.07 AU after a strong toroidal magnetic field build up. The large scale outflow, which extends up to ~ AU at the end of our simulation, is driven by toroidal magnetic pressure (spring), whereas the jet is powered by magneto-centrifugal force (fling). At the final stage of our simulation these winds are still confined within two respective shock fronts. Furthermore, we find that the jet-wind and the disk-anchored magnetic field extracts a considerable amount of angular momentum from the protostellar disk. The initial spin of our cloud core was chosen high enough to produce a binary system. We indeed find a close binary system (separation ~ 3 R_sol) which results from the fragmentation of an earlier formed ring structure. The magnetic field strength in these protostars reaches ~ 3 kG and becomes about 3 G at 1 AU from the center in agreement with recent observational results.Comment: revised version, accepted for publication in ApJ, a higher resolution version of this paper can be downloaded at http://www.physics.mcmaster.ca/~banerjee/outflows.pd

    A New Equilibrium for Accretion Disks Around Black Holes

    Full text link
    Accretion disks around black holes in which the shear stress is proportional to the total pressure, the accretion rate is more than a small fraction of Eddington, and the matter is distributed smoothly are both thermally and viscously unstable in their inner portions. The nonlinear endstate of these instabilities is uncertain. Here a new inhomogeneous equilibrium is proposed which is both thermally and viscously stable. In this equilibrium the majority of the mass is in dense clumps, while a minority reaches temperatures 109\sim 10^9 K. The requirements of dynamical and thermal equilibrium completely determine the parameters of this system, and these are found to be in good agreement with the parameters derived from observations of accreting black holes, both in active galactic nuclei and in stellar binary systems.Comment: AAS LaTeX, accepted to Ap. J. Letter

    A Numerical Study of Brown Dwarf Formation via Encounters of Protostellar Disks

    Full text link
    The formation of brown dwarfs (BDs) due to the fragmentation of proto-stellar disks undergoing pairwise encounters was investigated. High resolution allowed the use of realistic initial disk models where both the vertical structure and the local Jeans mass were resolved. The results show that objects with masses ranging from giant planets to low mass stars can form during such encounters from initially stable disks. The parameter space of initial spin-orbit orientations and the azimuthal angles for each disk was explored. An upper limit on the initial Toomre Q value of ~2 was found for fragmentation to occur. Depending on the initial configuration, shocks, tidal-tail structures and mass inflows were responsible for the condensation of disk gas. Retrograde disks were generally more likely to fragment. When the interaction timescale was significantly shorter than the disks' dynamical timescales, the proto-stellar disks tended to be truncated without forming objects. The newly-formed objects had masses ranging from 0.9 to 127 Jupiter masses, with the majority in the BD regime. They often resided in star-BD multiples and in some cases also formed hierarchical orbiting systems. Most of them had large angular momenta and highly flattened, disk-like shapes. The objects had radii ranging from 0.1 to 10 AU. The disk gas was assumed to be locally isothermal, appropriate for the short cooling times in extended proto-stellar disks, but not for condensed objects. An additional case with explicit cooling that reduced to zero for optically thick gas was simulated to test the extremes of cooling effectiveness and it was still possible to form objects in this case. Detailed radiative transfer is expected to lengthen the internal evolution timescale for these objects, but not to alter our basic results.Comment: 18 pages, 12 figures and 2 tables. Accepted for publication in MNRA

    Radiative Transfer on Perturbations in Protoplanetary Disks

    Full text link
    We present a method for calculating the radiative tranfer on a protoplanetary disk perturbed by a protoplanet. We apply this method to determine the effect on the temperature structure within the photosphere of a passive circumstellar disk in the vicinity of a small protoplanet of up to 20 Earth masses. The gravitational potential of a protoplanet induces a compression of the disk material near it, resulting in a decrement in the density at the disk's surface. Thus, an isodensity contour at the height of the photosphere takes on the shape of a well. When such a well is illuminated by stellar irradiation at grazing incidence, it results in cooling in a shadowed region and heating in an exposed region. For typical stellar and disk parameters relevant to the epoch of planet formation, we find that the temperature variation due to a protoplanet at 1 AU separation from its parent star is about 4% (5 K) for a planet of 1 Earth mass, about 14% (19 K) for planet of 10 Earth masses, and about 18% (25 K) for planet of 20 Earth masses, We conclude that even such relatively small protoplanets can induce temperature variations in a passive disk. Therefore, many of the processes involved in planet formation should not be modeled with a locally isothermal equation of state.Comment: 23 pages, 8 figures (including 3 color figs). Submitted to Ap

    Low heat conduction in white dwarf boundary layers?

    Full text link
    X-ray spectra of dwarf novae in quiescence observed by Chandra and XMM-Newton provide new information on the boundary layers of their accreting white dwarfs. Comparison of observations and models allows us to extract estimates for the thermal conductivity in the accretion layer and reach conclusions on the relevant physical processes. We calculate the structure of the dense thermal boundary layer that forms under gravity and cooling at the white dwarf surface on accretion of gas from a hot tenuous ADAF-type coronal inflow. The distribution of density and temperature obtained allows us to calculate the strength and spectrum of the emitted X-ray radiation. They depend strongly on the values of thermal conductivity and mass accretion rate. We apply our model to the dwarf nova system VW Hyi and compare the spectra predicted for different values of the thermal conductivity with the observed spectrum. We find a significant deviation for all values of thermal conductivity that are a sizable fraction of the Spitzer conductivity. A good fit arises however for a conductivity of about 1% of the Spitzer value. This also seems to hold for other dwarf nova systems in quiescence. We compare this result with thermal conduction in other astrophysical situations. The highly reduced thermal conductivity in the boundary layer requires magnetic fields perpendicular to the temperature gradient. Locating their origin in the accretion of magnetic fields from the hot ADAF-type coronal flow we find that dynamical effects of these fields will lead to a spatially intermittent, localized accretion geometry at the white dwarf surface.Comment: 8 pages, 5 figs, to appear in Astronomy & Astrophysic

    Did Fomalhaut, HR 8799, and HL Tauri Form Planets via the Gravitational Instability? Placing Limits on the Required Disk Masses

    Full text link
    Disk fragmentation resulting from the gravitational instability has been proposed as an efficient mechanism for forming giant planets. We use the planet Fomalhaut b, the triple-planetary system HR 8799, and the potential protoplanet associated with HL Tau to test the viability of this mechanism. We choose the above systems since they harbor planets with masses and orbital characteristics favored by the fragmentation mechanism. We do not claim that these planets must have formed as the result of fragmentation, rather the reverse: if planets can form from disk fragmentation, then these systems are consistent with what we should expect to see. We use the orbital characteristics of these recently discovered planets, along with a new technique to more accurately determine the disk cooling times, to place both lower and upper limits on the disk surface density--and thus mass--required to form these objects by disk fragmentation. Our cooling times are over an order of magnitude shorter than those of Rafikov (2005),which makes disk fragmentation more feasible for these objects. We find that the required mass interior to the planet's orbital radius is ~0.1 Msun for Fomalhaut b, the protoplanet orbiting HL Tau, and the outermost planet of HR 8799. The two inner planets of HR 8799 probably could not have formed in situ by disk fragmentation.Comment: 5 pages, 1 figure, accepted for publication in ApJ
    corecore