5 research outputs found

    O avlenii vtoricnoj nominacii v zargone (na primere pol'skih i russkih nazvanij lokomotivov v reci zeleznodoroznikov)

    Get PDF
    Niniejszy artykuł stanowi próbę porównania polskiego i rosyjskiego żargonu kolejowego w kontekście zjawiska wtórnej nominacji, żargonu, który dotychczas nie był obiektem badań ani w polskiej, ani w rosyjskiej lingwistyce. Uwaga autora skupiona jest na wybranych nazwach taboru, wśród których dominują leksemy wtórnie motywowane nazwami zwierząt, nazwami własnymi (imionami oraz nazwami narodowości — szczególnie w polskiej części materiału leksykalnego) oraz rzeczownikami pospolitymi, nazywającymi przedmioty nieożywione. Największą grupę stanowią leksemy, których wtórną nominację warunkowała asocjacja cech fizycznych desygnatów (szczególnie kształt, rozmiar i kolor), w mniejszym stopniu — cech funkcjonalnych

    Методика моделювання динамічних процесів електромеханічного амортизатору для вагону метрополітену

    Get PDF
    A procedure has been devised for modeling the dynamic processes in the proposed structure of an electromechanical shock absorber. Such shock absorbers can recuperate a part of the energy of oscillations into electrical energy allowing the subsequent possibility to use it by rolling stock. The procedure is based on solving the Lagrange equation for the electromechanical system. The model's features are as follows. The model takes the form of a Cauchy problem, thereby making it possible to use it when simulating the processes of shock absorber operation. Two generalized coordinates have been selected (the charge and displacement of the armature). The components of the Lagrange equation have been identified. Based on the results from magnetic field calculation and subsequent regression analysis, we have derived polynomial dependences of flux linkage derivatives for the current and linear displacement of an armature, which make it possible to identify a generalized mathematical model of the electromechanical shock absorber. The magnetic field calculations, performed by using a finite-element method, have allowed us to derive a digital model of the magnetic field of an electromechanical shock absorber. To obtain its continuous model, a regression analysis of discrete field models has been conducted. When choosing a structure for the approximating model, a possibility to analytically differentiate partial derivatives for all coordinates has been retained. Based on the results from modeling free oscillations, it was established that the maximum module value of current is 0.234 A, voltage – 52.9 V. The process of full damping of oscillations takes about 3 seconds over 4 cycles. Compared to the basic design, the amplitude of armature oscillations and its velocity dropped from 13 to 85 % over the first three cycles, indicating a greater efficiency of electromechanical shock absorber operation in comparison with a hydraulic one. The recuperated energy amounted to 3.3 J, and the scattered energy – 11.5 J.Для предложенной конструкции электромеханического амортизатора разработана методика моделирования динамических процессов. Такие амортизаторы имеют возможность рекуперировать часть энергии колебаний в электрическую энергию с последующей возможностью ее использования на подвижном составе. Методика основана на решении уравнения Лагранжа для электромеханической системы. Особенности модели состоят в следующем. Модель имеет вид задачи Коши, который удобен для моделирования процессов работы амортизатора. Выбраны две обобщенные координаты (заряд и перемещения якоря). Идентифицированы составные части уравнения Лагранжа. По результатам расчета магнитного поля и дальнейшего регрессионного анализа получены полиномиальные зависимости производных потокосцепления по току и линейному перемещению якоря, которые дают возможность идентифицировать математическую модель электромеханического амортизатора. Проведенные расчеты магнитного поля методом конечных элементов позволили получить цифровую модель магнитного поля электромеханического амортизатора. Для получения ее непрерывной модели проведен регрессионный анализ дискретной модели поля. При выборе структуры аппроксимирующей модели соблюдена возможность аналитического дифференцирования частных производных по всем координатам. По результатам моделирования свободных колебаний установлено, что максимальное по модулю значение тока составляет 0,234 А, а напряжения – 52,9 В. Около 3 с. проходит процесс полного погашения колебаний за 4 периода. Сравнительно с базовой конструкцией амплитуда колебаний хода якоря и его скорости снизилась от 13 до 85 % за первые три периода, что свидетельствует о большей эффективности работы электромеханического амортизатора по сравнению с гидравлическим. Энергия, которая рекуперирована, составила 3,3 Дж, а которая рассеяна – 11,5 ДжДля запропонованої конструкції електромеханічного амортизатору розроблено методика моделювання динамічних процесів. Такі амортизатори мають можливість рекуперувати частину енергії коливань в електричну енергію з подальшою можливістю її використання на рухомому складі. Методика основана на вирішенні рівняння Лагранжу для електромеханічної системи. Особливості моделі є наступними. Модель має вигляд задачі Коши, який спритний до вживання при моделювання процесів роботи амортизатору. Обрані дві узагальнені координати (заряд та переміщення якорю). Ідентифіковані складові частини рівняння Лагранжу. За результатами розрахунку магнітного поля і подальшого регресійного аналізу отримано поліноміальні залежності похідних потокозчеплення по току і лінійному переміщенню якоря, які дають можливість ідентифікувати узагальнену математичну модель електромеханічного амортизатору. Проведено розрахунки магнітного поля методом скінчених елементів дозволили отримати цифрову модель магнітного поля електромеханічного амортизатору. Для отримання її безперервної моделі проведено регресійний аналізу дискретні моделі поля. Про виборі структури апроксимуючої моделі дотримана можливість аналітичного диференціювання часткових похідних по всіх координатах. За результатами моделювання вільних коливань встановлено, що максимальне по модулю значення струму складає 0,234 А, а напруги – 52,9 В. За близько 3 с. проходить процес повного погашення коливань за 4 періоду. Порівняно з базовою конструкцією амплітуда коливань ходу якоря та його швидкості знизилась від 13 до 85 % за перші три періоди, що свідчить про більшу ефективність роботи електромеханічного амортизатору в порівнянні з гідравлічним. Енергія, що рекуперовано, склала 3,3 Дж, а, що розсіяно – 11,5 Д

    Анализ и оценка энерго-экономической эффективности вагонов метрополитена с альтернативными системами тягового электропривода

    Get PDF
    Based on the analysis of known technology and economic results of the establishment and operation of Metro, railways and urban electric transport with different electric traction systems on theoretically sound and proven technical solutions to improve the economic efficiency shows a lack of validity of the common beliefs among professionals about no alternative to the use on Metro only asynchronous traction machines, and shows the exact same capabilities significantly increase the effectiveness of their use in traction drive DC.На основании анализа известных технико-экономических результатов создания и эксплуатации электроподвижного состава метрополитенов, железных дорог и городского электрического транспорта с различными системами тягового электропривода (ТЭП) с учётом обоснованных теоретически и проверенных в эксплуатации технических решений по повышению их экономической эффективности показана недостаточная обоснованность распространённого среди части специалистов убеждения о безальтернативности использования на метропоездах только асинхронных тяговых машин (АТМ), а также показаны возможности существенного повышения эффективности применения на них системы тягового электропривода постоянного тока (ТЭП ПТ)

    Методика моделювання динамічних процесів електромеханічного амортизатору для вагону метрополітену

    Get PDF
    A procedure has been devised for modeling the dynamic processes in the proposed structure of an electromechanical shock absorber. Such shock absorbers can recuperate a part of the energy of oscillations into electrical energy allowing the subsequent possibility to use it by rolling stock. The procedure is based on solving the Lagrange equation for the electromechanical system. The model's features are as follows. The model takes the form of a Cauchy problem, thereby making it possible to use it when simulating the processes of shock absorber operation. Two generalized coordinates have been selected (the charge and displacement of the armature). The components of the Lagrange equation have been identified. Based on the results from magnetic field calculation and subsequent regression analysis, we have derived polynomial dependences of flux linkage derivatives for the current and linear displacement of an armature, which make it possible to identify a generalized mathematical model of the electromechanical shock absorber. The magnetic field calculations, performed by using a finite-element method, have allowed us to derive a digital model of the magnetic field of an electromechanical shock absorber. To obtain its continuous model, a regression analysis of discrete field models has been conducted. When choosing a structure for the approximating model, a possibility to analytically differentiate partial derivatives for all coordinates has been retained. Based on the results from modeling free oscillations, it was established that the maximum module value of current is 0.234 A, voltage – 52.9 V. The process of full damping of oscillations takes about 3 seconds over 4 cycles. Compared to the basic design, the amplitude of armature oscillations and its velocity dropped from 13 to 85 % over the first three cycles, indicating a greater efficiency of electromechanical shock absorber operation in comparison with a hydraulic one. The recuperated energy amounted to 3.3 J, and the scattered energy – 11.5 J.Для предложенной конструкции электромеханического амортизатора разработана методика моделирования динамических процессов. Такие амортизаторы имеют возможность рекуперировать часть энергии колебаний в электрическую энергию с последующей возможностью ее использования на подвижном составе. Методика основана на решении уравнения Лагранжа для электромеханической системы. Особенности модели состоят в следующем. Модель имеет вид задачи Коши, который удобен для моделирования процессов работы амортизатора. Выбраны две обобщенные координаты (заряд и перемещения якоря). Идентифицированы составные части уравнения Лагранжа. По результатам расчета магнитного поля и дальнейшего регрессионного анализа получены полиномиальные зависимости производных потокосцепления по току и линейному перемещению якоря, которые дают возможность идентифицировать математическую модель электромеханического амортизатора. Проведенные расчеты магнитного поля методом конечных элементов позволили получить цифровую модель магнитного поля электромеханического амортизатора. Для получения ее непрерывной модели проведен регрессионный анализ дискретной модели поля. При выборе структуры аппроксимирующей модели соблюдена возможность аналитического дифференцирования частных производных по всем координатам. По результатам моделирования свободных колебаний установлено, что максимальное по модулю значение тока составляет 0,234 А, а напряжения – 52,9 В. Около 3 с. проходит процесс полного погашения колебаний за 4 периода. Сравнительно с базовой конструкцией амплитуда колебаний хода якоря и его скорости снизилась от 13 до 85 % за первые три периода, что свидетельствует о большей эффективности работы электромеханического амортизатора по сравнению с гидравлическим. Энергия, которая рекуперирована, составила 3,3 Дж, а которая рассеяна – 11,5 ДжДля запропонованої конструкції електромеханічного амортизатору розроблено методика моделювання динамічних процесів. Такі амортизатори мають можливість рекуперувати частину енергії коливань в електричну енергію з подальшою можливістю її використання на рухомому складі. Методика основана на вирішенні рівняння Лагранжу для електромеханічної системи. Особливості моделі є наступними. Модель має вигляд задачі Коши, який спритний до вживання при моделювання процесів роботи амортизатору. Обрані дві узагальнені координати (заряд та переміщення якорю). Ідентифіковані складові частини рівняння Лагранжу. За результатами розрахунку магнітного поля і подальшого регресійного аналізу отримано поліноміальні залежності похідних потокозчеплення по току і лінійному переміщенню якоря, які дають можливість ідентифікувати узагальнену математичну модель електромеханічного амортизатору. Проведено розрахунки магнітного поля методом скінчених елементів дозволили отримати цифрову модель магнітного поля електромеханічного амортизатору. Для отримання її безперервної моделі проведено регресійний аналізу дискретні моделі поля. Про виборі структури апроксимуючої моделі дотримана можливість аналітичного диференціювання часткових похідних по всіх координатах. За результатами моделювання вільних коливань встановлено, що максимальне по модулю значення струму складає 0,234 А, а напруги – 52,9 В. За близько 3 с. проходить процес повного погашення коливань за 4 періоду. Порівняно з базовою конструкцією амплітуда коливань ходу якоря та його швидкості знизилась від 13 до 85 % за перші три періоди, що свідчить про більшу ефективність роботи електромеханічного амортизатору в порівнянні з гідравлічним. Енергія, що рекуперовано, склала 3,3 Дж, а, що розсіяно – 11,5 Д

    Розробка методики вибору оптимальних параметрів електромеханічного амортизатору для вагону метрополітену

    Get PDF
    A procedure for determining basic estimation parameters has been devised for the proposed structure of the electromechanical shock absorber. The procedure is based on a simplified mathematical model for determining the electromagnetic and electromotive force for the electromechanical shock absorber. Feature of the model is taking into consideration the operational modes of permanent magnet based on the calculation of a magnetic circle. The model devised makes it possible to perform approximate calculation of the shock absorber operational modes and could be used for solving the problem on the optimization of parameters for an electric shock absorber. We have verified adequacy of the constructed simplified mathematical model by comparing the results from calculating the mechanical characteristic for a shock absorber based on the simplified procedure and those obtained using a finite element method in the axial-symmetrical statement of the problem. There is a good match between the results from calculations based on the simplified procedure and from modeling a magnetic field using the method of finite elements. We have determined the geometric relationships between the elements of the structure that ensure the optimal uniform magnetic load on the elements of the magnetic circuit. The problem on the conditional two-criteria optimization of parameters for the electromechanical shock absorber has been stated. We have chosen constraints that are divided into the three following categories. Constraints for a permanent magnet demagnetization that make it possible to maintain operability of the permanent magnet. Constraints for a current density, which ensures the thermal modes in the shock absorber operation. Constraints for assembly and constraints for the parameters of an optimization problem, which enable the arrangement of a structure within the running part of a carriage. It has been proposed to choose the reduced volume of a shock absorber as a criterion, which predetermines the cost of constructing a shock absorber, and its efficiency as a criterion, which predetermines the recuperated energy of oscillations. The parameters were convoluted to a single objective cost function; the weights were defined. We have chosen, as an optimization method, the combined method that includes a genetic algorithm at the preliminary stage of the search. At the final stage of an optimization procedure an optimum is refined by using the Nelder-Mead method. The result from solving the optimization problem on the shock absorber's parameters is the defined optimal geometric dimensions and the number of turns in the winding of the electromechanical shock absorber.Для предложенной конструкции электромеханического амортизатора разработана методика определения основных расчетных параметров. Методика основана на упрощенной математической модели по определению электромагнитной и электродвижущей сил электромеханического амортизатора. Особенностью модели является учет режимов работы постоянного магнита на основе расчета магнитной цепи. Созданная модель позволяет проводить приблизительный расчет режимов работы амортизатора и может быть использована в решении задачи оптимизации параметров электроамортизатора. Проведена проверка адекватности разработанной упрощенной математической модели путем сравнения результатов расчета механической характеристики амортизатора по упрощенной методике и методом конечных элементов в аксиально-симметричной постановке задачи. Получены хорошие совпадения результатов расчетов по упрощенной методике и путем моделирования магнитного поля методом конечных элементов. Определены геометрические соотношения между элементами конструкции, которые обеспечивают оптимальные равномерные магнитные нагрузки в элементах магнитопровода. Проведена постановка задачи условной двухкритериальной оптимизации параметров электромеханического амортизатора. Выбранные ограничения разделены на три следующие категории. Ограничения по размагничивания постоянного магнита, позволяющие сохранить работоспособность постоянного магнита. Ограничения по плотности тока, которое обеспечивает тепловые режимы работы амортизатора. Компоновочные ограничения и ограничения на параметры задачи оптимизации, обеспечивающие размещение конструкции в ходовой части тележки. Предложено в качестве критериев выбрать приведенный объем амортизатора, обусловливающий затраты на создание амортизатора, и его КПД, который обусловливает величину рекуперированной энергии колебаний. Проведена свертка параметров к единой целевой функции затрат с выбором весовых коэффициентов. В качестве метода оптимизации выбран комбинированный метод, включающий в себя генетический алгоритм, на начальном этапе поиска. На завершающем этапе оптимизационной процедуры уточнения оптимума осуществляется методом Нелдера-Мида. По результатам решения задачи оптимизации параметров амортизатора определены оптимальные геометрические размеры и количество витков обмотки электромеханического амортизатораДля запропонованої конструкції електромеханічного амортизатору розроблено методика визначення основних розрахункових параметрів. Методика основана на спрощеній математичній моделі по визначенню електромагнітної та електрорушійної сили електромеханічного амортизатору. Особливістю моделі є урахування режимів роботи постійного магніту на основі розрахунку магнітного кола. Створення модель дозволяє проводити приблизний розрахунок режимів роботи амортизатора та може бути використана у вирішенні задачі оптимізації параметрів електроамортизатору. Проведено перевірка адекватності розробленої спрощеної математичної моделі шляхом порівняння результатів розрахунку механічної характеристики амортизатора за спрощеною методикою та методом кінцевих елементів в аксиально-симетричній постановці задачі. Отримано наявне добре співпадіння результатів розрахунків за спрощеною методикою та шляхом моделювання магнітного поля за методом кінцевих елементів. Визначенні геометричні співвідношення між елементами конструкції, які забезпечують оптимальне рівномірне магнітне навантаження в елементах магнітопроводу. Проведена постановка задачі умовної двокритеріальної оптимізації параметрів електромеханічного амортизатору. Обрані обмеження, що поділено на три наступні категорії. Обмеження за розмагніченням постійного магніту, що дозволяють зберегти працездатність постійного магніту. Обмеження за щільністю струму, яке забезпечує теплові режими роботи амортизатору. Компоновачні обмеження та обмеження на параметри задачі оптимізації, що забезпечують розміщення конструкції у ходовій частині візка. Запропоновано у якості критеріїв обрати приведений об’єм амортизатору, що обумовлює затрати на створення амортизатору та його ККД, який обумовлює рекуперовану енергію коливань. Проведено згортку параметрів до єдиної цільової функції затрат та обрані вагові коефіцієнти. У якості метода оптимізації обрано комбінований метод, що включає в себе генетичний алгоритм, на попередньому етапі пошуку. На завершальному етапі оптимізаційної процедури уточнення оптимуму здійснюється методом Нелдера-Міда. За результатами вирішення задачі оптимізації параметрів амортизатору визначені оптимальні геометричні розміри та кількість витків обмотки електромеханічного амортизатор
    corecore