7,740 research outputs found

    TREEWIDTH and PATHWIDTH parameterized by vertex cover

    Full text link
    After the number of vertices, Vertex Cover is the largest of the classical graph parameters and has more and more frequently been used as a separate parameter in parameterized problems, including problems that are not directly related to the Vertex Cover. Here we consider the TREEWIDTH and PATHWIDTH problems parameterized by k, the size of a minimum vertex cover of the input graph. We show that the PATHWIDTH and TREEWIDTH can be computed in O*(3^k) time. This complements recent polynomial kernel results for TREEWIDTH and PATHWIDTH parameterized by the Vertex Cover

    Vertex and edge covers with clustering properties: complexity and algorithms

    Get PDF
    We consider the concepts of a t-total vertex cover and a t-total edge cover (t≥1), which generalise the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has at least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FTP algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FTP algorithm for the latter problem

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201
    corecore