After the number of vertices, Vertex Cover is the largest of the classical
graph parameters and has more and more frequently been used as a separate
parameter in parameterized problems, including problems that are not directly
related to the Vertex Cover. Here we consider the TREEWIDTH and PATHWIDTH
problems parameterized by k, the size of a minimum vertex cover of the input
graph. We show that the PATHWIDTH and TREEWIDTH can be computed in O*(3^k)
time. This complements recent polynomial kernel results for TREEWIDTH and
PATHWIDTH parameterized by the Vertex Cover