12,023 research outputs found

    Percutaneous Ureteric Stricture Dilation (PCUSD)

    Get PDF
    Ureteric stricture dilation as an interventional uroradiological technique was initiated locally in March 1991. In ureteric dilation two approaches are feasible. The retrograde cystoscopic route is undertaken by a uroradiology team in theatre, and the renal antegrade percutaneous route is undertaken in the radiology interventional suite. This study reviewed the results of percutaneous ureteric stricture dilation undertaken over the last five years. Eighteen dilations in 16 patients (10 males : 6 females) were analysed. There was an overall success rate of 61 %. We found the procedure to be safe and effective with minimal complications. No mortality resulted from the procedure. The indications for its use are fully discussed.peer-reviewe

    Investigating the flow dynamics in the obstructed and stented ureter by means of a biomimetic artificial model.

    Get PDF
    Double-J stenting is the most common clinical method employed to restore the upper urinary tract drainage, in the presence of a ureteric obstruction. After implant, stents provide an immediate pain relief by decreasing the pressure in the renal pelvis (P). However, their long-term usage can cause infections and encrustations, due to bacterial colonization and crystal deposition on the stent surface, respectively. The performance of double-J stents - and in general of all ureteric stents - is thought to depend significantly on urine flow field within the stented ureter. However very little fundamental research about the role played by fluid dynamic parameters on stent functionality has been conducted so far. These parameters are often difficult to assess in-vivo, requiring the implementation of laborious and expensive experimental protocols. The aim of the present work was therefore to develop an artificial model of the ureter (i.e. ureter model, UM) to mimic the fluid dynamic environment in a stented ureter. The UM was designed to reflect the geometry of pig ureters, and to investigate the values of fluid dynamic viscosity (?), volumetric flow rate (Q) and severity of ureteric obstruction (OB%) which may cause critical pressures in the renal pelvis. The distributed obstruction derived by the sole stent insertion was also quantified. In addition, flow visualisation experiments and computational simulations were performed in order to further characterise the flow field in the UM. Unique characteristics of the flow dynamics in the obstructed and stented ureter have been revealed with using the developed UM

    Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud

    Get PDF
    Mice homozygous for the recessive limb deformity (ld) mutation display both limb and renal defects. The limb defects, oligodactyly and syndactyly, have been traced to improper differentiation of the apical ectodermal ridge (AER) and shortening of the anteroposterior limb axis. The renal defects, usually aplasia, are thought to result from failure of ureteric bud outgrowth. Since the ld locus gives rise to multiple RNA isoforms encoding several different proteins (termed formins), we wished to understand their role in the formation of these organs. Therefore, we first examined the embryonic expression patterns of the four major ld mRNA isoforms. Isoforms I, II and III (all containing a basic amino terminus) are expressed in dorsal root ganglia, cranial ganglia and the developing kidney including the ureteric bud. Isoform IV (containing an acidic amino terminus) is expressed in the notochord, the somites, the apical ectodermal ridge (AER) of the limb bud and the developing kidney including the ureteric bud. Using a lacZ reporter assay in transgenic mice, we show that this differential expression of isoform IV results from distinct regulatory sequences upstream of its first exon. These expression patterns suggest that all four isoforms may be involved in ureteric bud outgrowth, while isoform IV may be involved in AER differentiation. To define further the developmental consequences of the ld limb defect, we analyzed the expression of a number of genes thought to play a role in limb development. Most significantly, we find that although the AERs of ld limb buds express several AER markers, they do not express detectable levels of fibroblast growth factor 4 (fgf-4), which has been proposed to be the AER signal to the mesoderm. Thus we conclude that one or more formins are necessary to initiate and/or maintain fgf-4 production in the distal limb. Since ld limbs form distal structures such as digits, we further conclude that while fgf-4 is capable of supporting distal limb outgrowth in manipulated limbs, it is not essential for distal outgrowth in normal limb development. In addition, ld limbs show a severe decrease in the expression of several mesodermal markers, including sonic hedgehog (shh), a marker for the polarizing region and Hoxd-12, a marker for posterior mesoderm. We propose that incomplete differentiation of the AER in ld limb buds leads to reduction of polarizing activity and defects along the anteroposterior axis

    Urologic manifestations of inflammatory pseudotumor: Report of 2 cases and review of the literature.

    Get PDF
    We report two adult patients with varied urologic symptoms who were found to have inflammatory pseudotumor on histopathology. The first patient had a large, solid, enhancing retroperitoneal mass lesion and presented with increased frequency of urination and recurrent urinary tract infections. The second patient had an obstructing left distal ureteric stricture and presented with painless hematuria. Though preoperative radiological diagnosis of this entity is not feasible, the present article illustrates the imaging findings in this unusual disease entity with review of the relevant literature

    Kidney regeneration: common themes from the embryo to the adult

    Get PDF
    The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be “reprogrammed” to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.Fil: Cirio, Maria Cecilia. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Groh, Eric D.. University of Pittsburgh; Estados UnidosFil: de Caestecker, Mark P.. Vanderbilt University; Estados UnidosFil: Davidson, Alan J.. The University of Auckland; Nueva ZelandaFil: Hukriede, Neil A.. University of Pittsburgh; Estados Unido
    corecore