5,875 research outputs found
A Biomechanical Investigation of Load Sharing at the Distal Forearm
Loading at the distal forearm has been previously examined under static loads, however there remains no consensus on how loading is affected by active wrist and forearm motion. This work examines load magnitudes and load sharing at the distal radius and ulna during of active wrist and forearm motion. Two instrumented implants were designed to measure in vitro loading in cadaveric specimen. The implants were evaluated and found reliable for use in further biomechanical studies. An in vitro study investigated the effect of joint angle and direction of joint motion on loads in the distal radius and ulna during active flexion-extension, radioulnar deviation and dart throw motion. Loads through the distal radius and ulna were significantly greater in extension and reverse dart throw motion than in flexion and forward dart throw motion. A subsequent study examined the effect of radial length changes, joint angle and direction of motion on distal radius and ulna loading during active forearm rotation. Load magnitudes through the distal radius were greater in supination than in pronation. Radial lengthening found to increase radial loading and decrease ulnar loading and radial shortening decreased distal radius loading and increased distal ulna loading throughout forearm rotation, in a quasilinear fashion. This work improves the understanding of forearm bone loading and will assist clinicians in the development of rehabilitation techniques, surgical protocols and implant designs
Load transfer at the distal ulna following simulated distal radius fracture malalignment.
PURPOSE: To measure the effects of distal radius malalignment on loading at the distal ulna.
METHODS: Using an adjustable mechanism to simulate angulated and translated malalignments, clinically relevant distal radius deformities were simulated in a cadaveric model. A custom-built load cell was inserted just proximal to the native ulna head to measure the resultant force and torque in the distal ulna. Loads were measured before and after transecting the triangular fibrocartilage complex (TFCC).
RESULTS: There was an increase in distal ulna load and torque with increasing dorsal translation and angulation. Combined conditions of angulation and translation increased force and torque in the distal ulna to a greater extent than with either condition in isolation. Transecting the TFCC resulted in a reduction in distal ulna load and torque.
CONCLUSIONS: A progressive increase in load at the distal ulna was observed with increasing severity of malalignment, which may be an important contributor to residual ulnar wrist pain and dysfunction. However, no clear-cut threshold of malalignment of a dorsally angulated and translated distal radius fracture was identified. These observations suggest that radius deformities cause articular incongruity, which increases TFCC tension and distal radioulnar joint load. Cutting of the TFCC decreased distal ulna loading, likely by releasing the articular constraining effect of the TFCC on the distal radioulnar joint, allowing the radius to rotate more freely with respect to the ulna.
CLINICAL RELEVANCE: Anatomical reduction of a distal radius fracture minimizes the forces in the distal ulna and may reduce residual ulnar wrist pain and dysfunction
Parathyroid Hormone Enhances Mechanically Induced Bone Formation, Possibly Involving L-Type Voltage- Sensitive Calcium Channels
PTH and mechanical loading might act synergistically on bone formation. We tested the in vivo effect of the L-type voltage-sensitive calcium channel (VSCC) blocker, verapamil, on bone formation induced by human PTH-(1–34) (PTH) injection with or without mechanical loading. Adult rats were divided into eight groups: vehicle, verapamil, PTH, or verapamil plus PTH with or without mechanical loading. Verapamil (100 mg/kg) was given orally 90 min before loading. PTH (80 μg/kg) was injected sc 30 min before loading. Loading applied to tibia and ulna for 3 min significantly increased the bone formation rate on both the endocortical surface of tibia and the periosteal surface of ulna (P < 0.0001). Treatment with PTH enhanced load-induced bone formation by 53% and 76% (P < 0.001) on the endocortical and periosteal surfaces, respectively. Treatment with verapamil suppressed load-induced bone formation rate by 77% and 59% (P < 0.01). Furthermore, verapamil suppressed bone formation in rats subjected to PTH plus loading by 74% and 68% (P < 0.0001) at the tibia and ulna, respectively. In the groups without loading, neither verapamil nor PTH treatment significantly changed any bone formation parameter. This study indicates that L-type VSCCs mediate load-induced bone formation in vivo. Furthermore, PTH enhances load-induced bone adaptation through involvement of L-type VSCCs
Static versus dynamic loads as an influence on bone remodelling
Bone remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulna preparation is made by two submetaphyseal osteotomies, the cut ends of the bone being covered with stainless steel caps which, together with the bone they enclosed, are pierced by pins emerging transcutaneously on the dorsal and ventral surfaces of the wing. The 110 mm long undisturbed section of the bone shaft can be protected from functional loading, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression by engaging the pins in an Instron machine. Similar loads (525 n) were used in both static and dynamic cases engendering similar peak strains at the bone's midshaft (-2000 x 10-6). The intermitent load was applied at a frequency of 1 Hz during a single 100 second period per day as a ramped square wave, with a rate of change of strain during the ramp of 0.01 per second
The Effect of Radial and Ulnar Length Change on Distal Forearm Loading
The effect of distal radial and ulnar length change on forearm bone loading is not well understood during simulated dynamic wrist loading. This thesis presents two studies which investigate the effect of these length changes on distal forearm loading under simulated dynamic wrist motion. The first study investigates the effect of radial length change on axial loading at the distal radius and ulna and relationship between ulnar variance and distal forearm loading. The complex variation in axial loads in the distal radius and during length change and dynamic wrist motion were studied and discussed. There was no correlation between native variance and distal loads. The second study investigates the effect of ulnar change on axial loading at the distal radius and ulna and the effect of triangular fibrocartilage ligament complex (TFCC) on this relationship. Variation in axial loads during ulnar lengthening followed similar trends to radial shortening and vice versa
A three-dimensional finite element model of maximal grip loading in the human wrist
The aim of this work was to create an anatomically accurate three-dimensional finite element model of the wrist, applying subject-specific loading and quantifying the internal load transfer through the joint during maximal grip. For three subjects, representing the anatomical variation at the wrist, loading on each digit was measured during a maximal grip strength test with simultaneous motion capture. The internal metacarpophalangeal joint load was calculated using a biomechanical model. High-resolution magnetic resonance scans were acquired to quantify bone geometry. Finite element analysis was performed, with ligaments and tendons added, to calculate the internal load distribution. It was found that for the maximal grip the thumb carried the highest load, an average of 72.2 ¡ 20.1 N in the neutral position. Results from the finite element model suggested that the highest regions of stress were located at the radial aspect of the carpus. Most of the load was transmitted through the radius, 87.5 per cent, as opposed to 12.5 per cent through the ulna with the wrist in a neutral position. A fully three-dimensional finite element analysis of the wrist using subject-specific anatomy and loading conditions was performed. The study emphasizes the importance of modelling a large ensemble of subjects in order to capture the spectrum of the load transfer through the wrist due to anatomical variation
On the creation of a subject specific finite element model of the wrist joint
Anatomy varies greatly between individuals and therefore it can be inaccurate to derive any clinical conclusions based on a single computer model. It is important to create models which are directly linked to a specific subject who then can be identified as a part of a larger population 1. By these means it is possible to draw conclusions about the discrepancy between two or more subjects or two or more subject groups. Advances have been made to create a subject specific finite element model of the hip, by using automated procedures 2. The hip poses a relatively simple geometry for such robust procedures to be implemented. However when faced with a more geometrically such as the wrist joint or the ankle joint, the procedure becomes more laborious since automatic procedures become impossible to apply. The geometry is the single most important factor for modeling such types of multi-bone systems and there needs to exist a good balance between creation time and level of accuracy and mesh refinement. In previously reported finite element studies of the wrist joint, ad hoc boundary conditions have been applied to the system. In creating a subject specific model it is important to apply boundary conditions that have been measured from the particular subject. Coupling subject specific boundary conditions with accurate application of material properties of the bones and soft tissues allows the creation of models to predict realistic in-vivo stresses on the carpal bones. In this study three subject specific finite element models were created of the wrist joint, ranging from the distal end of the radius and ulna to the proximal third of the metacarpals, a total of 14 bones were included in the model
Finite Element Analysis of the Mouse Proximal Ulna in Response to Elbow Loading
Bone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain
Role of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading
Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP(8-37), for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP(8-37) was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP(8-37) both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP(8-37) administration.CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton
- …