11,159 research outputs found

    Glucose transporter Glut-1 is detectable in pen-necrotic regions in many human tumor types but not normal tissues: Study using tissue microarrays

    Get PDF
    The hypoxic tumor microenvironment is associated with malignant progression and poor treatment response. The glucose transporter Glut-1 is a prognostic factor and putative hypoxia marker. So far, studies of Glut-1 in cancer have utilised conventional immunohistochemical analysis in a series of individual biopsy or surgical specimens. Tissue microarrays, however, provide a rapid, inexpensive means of profiling biomarker expression. To evaluate hypoxia markers, tissue cores must show architectural features of hypoxia, i.e. viable tissue surrounding necrotic regions. Glut-1 may be a useful biomarker to validate tissue microarrays for use in studies of hypoxia-regulated genes in cancer. In this study, we carried out immunohistochemical detection of Glut-1 protein in many tumor and normal tissue types in a range of tissue microarrays. Glut-1 was frequently found in peri-necrotic regions, occurring in 9/34 lymphomas, 6/12 melanomas, and 5/16 glioblastomas; and in 43/54 lung, 22/84 colon, and 23/60 ovarian tumors. Expression was rare in breast (6/40) and prostate (1/57) tumors, and in normal tissue, was restricted to spleen, tongue and CNS endothelium. In conclusion, tissue microarrays enable the observation of Glut-1 expression in peri-necrotic regions, which may be linked to hypoxia, and reflect previous studies showing differential Glut-1 expression across tumor types and non malignant tissue

    Statistical methods for tissue array images - algorithmic scoring and co-training

    Full text link
    Recent advances in tissue microarray technology have allowed immunohistochemistry to become a powerful medium-to-high throughput analysis tool, particularly for the validation of diagnostic and prognostic biomarkers. However, as study size grows, the manual evaluation of these assays becomes a prohibitive limitation; it vastly reduces throughput and greatly increases variability and expense. We propose an algorithm - Tissue Array Co-Occurrence Matrix Analysis (TACOMA) - for quantifying cellular phenotypes based on textural regularity summarized by local inter-pixel relationships. The algorithm can be easily trained for any staining pattern, is absent of sensitive tuning parameters and has the ability to report salient pixels in an image that contribute to its score. Pathologists' input via informative training patches is an important aspect of the algorithm that allows the training for any specific marker or cell type. With co-training, the error rate of TACOMA can be reduced substantially for a very small training sample (e.g., with size 30). We give theoretical insights into the success of co-training via thinning of the feature set in a high-dimensional setting when there is "sufficient" redundancy among the features. TACOMA is flexible, transparent and provides a scoring process that can be evaluated with clarity and confidence. In a study based on an estrogen receptor (ER) marker, we show that TACOMA is comparable to, or outperforms, pathologists' performance in terms of accuracy and repeatability.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS543 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    TmaDB: a repository for tissue microarray data

    Get PDF
    Background: Tissue microarray (TMA) technology has been developed to facilitate large, genome-scale molecular pathology studies. This technique provides a high-throughput method for analyzing a large cohort of clinical specimens in a single experiment thereby permitting the parallel analysis of molecular alterations ( at the DNA, RNA, or protein level) in thousands of tissue specimens. As a vast quantity of data can be generated in a single TMA experiment a systematic approach is required for the storage and analysis of such data. Description: To analyse TMA output a relational database ( known as TmaDB) has been developed to collate all aspects of information relating to TMAs. These data include the TMA construction protocol, experimental protocol and results from the various immunocytological and histochemical staining experiments including the scanned images for each of the TMA cores. Furthermore the database contains pathological information associated with each of the specimens on the TMA slide, the location of the various TMAs and the individual specimen blocks ( from which cores were taken) in the laboratory and their current status i.e. if they can be sectioned into further slides or if they are exhausted. TmaDB has been designed to incorporate and extend many of the published common data elements and the XML format for TMA experiments and is therefore compatible with the TMA data exchange specifications developed by the Association for Pathology Informatics community. Finally the design of the database is made flexible such that TMA experiments from several types of cancer can be stored in a single database, which incorporates the national minimum data set required for pathology reports supported by the Royal College of Pathologists (UK). Conclusion: TmaDB will provide a comprehensive repository for TMA data such that a large number of results from the numerous immunostaining experiments can be efficiently compared for each of the TMA cores. This will allow a systematic, large-scale comparison of tumour samples to facilitate the identification of gene products of clinical importance such as therapeutic or prognostic markers. In addition this work will contribute to the establishment of a standard for reporting TMA data analogous to MIAME in the description of microarray dat

    Cellular expression, trafficking, and function of two isoforms of human ULBP5/RAET1G

    Get PDF
    Background: The activating immunoreceptor NKG2D is expressed on Natural Killer (NK) cells and subsets of T cells. NKG2D contributes to anti-tumour and anti-viral immune responses in vitro and in vivo. The ligands for NKG2D in humans are diverse proteins of the MIC and ULBP/RAET families that are upregulated on the surface of virally infected cells and tumours. Two splicing variants of ULBP5/RAET1G have been cloned previously, but not extensively characterised. Methodology/Principal Findings: We pursue a number of approaches to characterise the expression, trafficking, and function of the two isoforms of ULBP5/RAET1G. We show that both transcripts are frequently expressed in cell lines derived from epithelial cancers, and in primary breast cancers. The full-length transcript, RAET1G1, is predicted to encode a molecule with transmembrane and cytoplasmic domains that are unique amongst NKG2D ligands. Using specific anti-RAET1G1 antiserum to stain tissue microarrays we show that RAET1G1 expression is highly restricted in normal tissues. RAET1G1 was expressed at a low level in normal gastrointestinal epithelial cells in a similar pattern to MICA. Both RAET1G1 and MICA showed increased expression in the gut of patients with celiac disease. In contrast to healthy tissues the RAET1G1 antiserum stained a wide variety or different primary tumour sections. Both endogenously expressed and transfected RAET1G1 was mainly found inside the cell, with a minority of the protein reaching the cell surface. Conversely the truncated splicing variant of RAET1G2 was shown to encode a soluble molecule that could be secreted from cells. Secreted RAET1G2 was shown to downregulate NKG2D receptor expression on NK cells and hence may represent a novel tumour immune evasion strategy. Conclusions/Significance: We demonstrate that the expression patterns of ULBP5RAET1G are very similar to the well-characterised NKG2D ligand, MICA. However the two isoforms of ULBP5/RAET1G have very different cellular localisations that are likely to reflect unique functionality

    Development and application of two novel monoclonal antibodies against overexpressed CD26 and integrin α3 in human pancreatic cancer.

    Get PDF
    Monoclonal antibody (mAb) technology is an excellent tool for the discovery of overexpressed cell surface tumour antigens and the development of targeting agents. Here, we report the development of two novel mAbs against CFPAC-1 human pancreatic cancer cells. Using ELISA, flow cytometry, immunoprecipitation, mass spectrometry, Western blot and immunohistochemistry, we found that the target antigens recognised by the two novel mAbs KU44.22B and KU44.13A, are integrin α3 and CD26 respectively, with high levels of expression in human pancreatic and other cancer cell lines and human pancreatic cancer tissue microarrays. Treatment with naked anti-CD26 mAb KU44.13A did not have any effect on the growth and migration of cancer cells nor did it induce receptor downregulation. In contrast, treatment with anti-integrin α3 mAb KU44.22B inhibited growth in vitro of Capan-2 cells, increased migration of BxPC-3 and CFPAC-1 cells and induced antibody internalisation. Both novel mAbs are capable of detecting their target antigens by immunohistochemistry but not by Western blot. These antibodies are excellent tools for studying the role of integrin α3 and CD26 in the complex biology of pancreatic cancer, their prognostic and predictive values and the therapeutic potential of their humanised and/or conjugated versions in patients whose tumours overexpress integrin α3 or CD26

    Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel

    Get PDF
    <b>Background</b> Pancreatico-biliary adenocarcinomas (PBA) have a poor prognosis. Diagnosis is usually achieved by imaging and/or endoscopy with confirmatory cytology. Cytological interpretation can be difficult especially in the setting of chronic pancreatitis/cholangitis. Immunohistochemistry (IHC) biomarkers could act as an adjunct to cytology to improve the diagnosis. Thus, we performed a meta-analysis and selected KOC, S100P, mesothelin and MUC1 for further validation in PBA resection specimens.<p></p> <b>Methods</b> Tissue microarrays containing tumour and normal cores in a ratio of 3:2, from 99 surgically resected PBA patients, were used for IHC. IHC was performed on an automated platform using antibodies against KOC, S100P, mesothelin and MUC1. Tissue cores were scored for staining intensity and proportion of tissue stained using a Histoscore method (range, 0–300). Sensitivity and specificity for individual biomarkers, as well as biomarker panels, were determined with different cut-offs for positivity and compared by summary receiver operating characteristic (ROC) curve.<p></p> <b>Results</b> The expression of all four biomarkers was high in PBA versus normal ducts, with a mean Histoscore of 150 vs. 0.4 for KOC, 165 vs. 0.3 for S100P, 115 vs. 0.5 for mesothelin and 200 vs. 14 for MUC1 (p < .0001 for all comparisons). Five cut-offs were carefully chosen for sensitivity/specificity analysis. Four of these cut-offs, namely 5%, 10% or 20% positive cells and Histoscore 20 were identified using ROC curve analysis and the fifth cut-off was moderate-strong staining intensity. Using 20% positive cells as a cut-off achieved higher sensitivity/specificity values: KOC 84%/100%; S100P 83%/100%; mesothelin 88%/92%; and MUC1 89%/63%. Analysis of a panel of KOC, S100P and mesothelin achieved 100% sensitivity and 99% specificity if at least 2 biomarkers were positive for 10% cut-off; and 100% sensitivity and specificity for 20% cut-off.<p></p> <b>Conclusion</b> A biomarker panel of KOC, S100P and mesothelin with at least 2 biomarkers positive was found to be an optimum panel with both 10% and 20% cut-offs in resection specimens from patients with PBA.<p></p&gt
    corecore