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Abstract 

 

The hypoxic tumor microenvironment is associated with malignant progression and poor 

treatment response. The glucose transporter Glut-1 is a prognostic factor and putative 

hypoxia marker.  So far, studies of Glut-1 in cancer have utilised conventional 

immunohistochemical analysis in a series of individual biopsy or surgical specimens.  Tissue 

microarrays, however, provide a rapid, inexpensive means of profiling biomarker expression.  

To evaluate hypoxia markers, tissue cores must show architectural features of hypoxia, i.e. 

viable tissue surrounding necrotic regions. Glut-1 may be a useful biomarker to validate 

tissue microarrays for use in studies of hypoxia-regulated genes in cancer.  In this study, we 

carried out immunohistochemical detection of Glut-1 protein in many tumor and normal 

tissue types in a range of tissue microarrays.  Glut-1 was frequently found in peri-necrotic 

regions, occurring in 9/34 lymphomas, 6/12 melanomas, and 5/16 glioblastomas; and in 

43/54 lung, 22/84 colon, and 23/60 ovarian tumors.  Expression was rare in breast (6/40) and 

prostate (1/57) tumors, and in normal tissue, was restricted to spleen, tongue and CNS 

endothelium. In conclusion, tissue microarrays enable the observation of Glut-1 expression in 

peri-necrotic regions, which may be linked to hypoxia, and reflect previous studies showing 

differential Glut-1 expression across tumor types and non-malignant tissue. 
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Introduction 

 

Tumor tissue shows increased uptake of glucose relative to normal tissue, a phenomenon first 

observed by Warburg in 1930 (Hatanaka, 1974). Efforts to exploit this metabolic difference 

therapeutically have included the use of glucose antimetabolites such as 2-deoxyglucose 

(Sridhar et al., 1979), which show some specificity to hypoxic cells, glucose-linked 

conjugates of cytotoxic agents such as gluphosphamide (Niculescu-Duvaz, 2002), which are 

preferentially taken up by tumors.  Certain novel anticancer agents are also believed to act via 

modulation of Glut-1; such as the histone deacetylase inhibitors, shown recently to reduce 

glucose transport into multiple myeloma cells by downregulating Glut-1 expression (Wardell 

et al., 2009) and fasentin, a chemical sensitizer to FAS-mediated apoptosis believed to act via 

binding and inhibition of Glut-1 (Wood et al., 2008).  The renewed interest in tumor glucose 

transport coincided with the discovery and characterisation of the erythrocyte type facilitative 

glucose transporter Glut-1, and hence the structural and functional basis of cellular glucose 

uptake (Mueckler et al., 1985).  More recently, though, there has been a significant increase 

in knowledge of how tumor hypoxia regulates the expression and functionality of glucose 

transporters. Tumor hypoxia is a well-established therapeutic problem and is an independent 

predictor of poor prognosis (Brizel et al., 1996). The influence of hypoxia is reflected in 

terms of its impact on treatment response- resulting in radiation (Hall Eric, 2000) and 

chemotherapy (Teicher, 1994) resistance; and morphological changes which reduce the 

penetration of drugs into the tumor.    Hypoxia, due to the selection of p53 mutants and the 

upregulation of hypoxia-inducible survival genes which are regulated via stabilisation of the 

transcription factor hypoxia-inducible factor (HIF-1), results in increased tumor 

aggressiveness (Hockel et al., 1996).  This change in tumor behaviour includes increased 

vascularity, adaptation to low tumour pH (Potter and Harris, 2003) and increased rate of 

anaerobic glycolysis (Seagroves et al., 2001). The use of intrinsic hypoxia markers, which 

may be detected by traditional immunohistochemical techniques in biopsy or surgical 

specimens,  may prove useful in the rational selection of patients to receive hypoxia-linked 
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therapies such as hypoxia-dependent bioreductive drugs such as EO9 and AQ4N (McKeown 

et al., 2007); and ARCON (accelerated radiotherapy with carbogen and nicotinamide) 

(Hoskin et al., 2003). Glut-1 has been used as an intrinsic marker of hypoxia in patients being 

treated for carcinoma of the cervix (Airley et al., 2001, Airley et al., 2003). Glut-1 expression 

and hypoxia have also been mechanistically linked by comparison with HIF-1 expression in 

colorectal cancer and colorectal cell lines exposed to hypoxic conditions (Chung et al., 2009). 

Further, in a phase I trial involving patients with solid tumours, Glut-1 was successfully used 

as a hypoxia marker for the prediction of response to AQ4N (Albertella et al., 2008). Glut-1 

is hypoxia-inducible, dually controlled via HIF-1 and in response to a decreased rate of 

oxidative phosphorylation (Behrooz and Ismail-Beigi, 1997). Depending upon the depth and 

duration of hypoxia, changes in Glut-1 activity may manifest as unmasking of pre-existing 

plasma membrane-bound Glut-1, followed by translocation of Glut-1 bound by intracellular 

vesicles to the plasma membrane, and finally, de novo synthesis of Glut-1(Zhang et al., 

1999).  There is now an accumulation of evidence, provided by previous studies involving 

clinical tumor samples, that Glut-1 is ubiquitously expressed in many tumor types, but rarely 

expressed in corresponding benign tissue (Medina and Owen, 2002, Binder et al., 1997).  

Glut-1 is over-expressed and predicts poor prognosis in a wide range of tumors including 

those of the head and neck (Oliver et al., 2004),  colorectum (Cooper et al., 2003),  breast 

(Younes et al., 1995), cervix (Airley et al., 2001) and clear cell renal carcinoma (Ozcan et al., 

2007).  The influence of Glut-1 on prognosis and its use as a biomarker may be a 

manifestation of tumor hypoxia, and the adaptive upregulation of anaerobic glycolysis that 

may ultimately promote tumour cell survival.  However, there are other factors, such as its 

association with the oncogenes H-ras and C-myc, oestrogen and growth factors such as 

Interleukin-3 (Osthus et al., 2000, Chen et al., 2001, Baron-Delage et al., 1996, Ahmed and 

Berridge, 1997).  Glut-1 expression may be a cause or effect of malignant transformation by 

viruses, either by facilitating the infection of a transforming virus such as HTLV (Manel et 

al., 2004), or as a consequence of the energy-dependent malignant changes induced after viral 

transformation (Kitagawa et al., 1985). This has application in the clinic, where hypoxia 
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driven changes in Glut-1 expression relates to the degree of malignant transformation and 

invasive portential of cervix metaplasia (Rudlowski et al., 2003), breast cancer (Gatenby et 

al., 2007) and hepatocellular carcinoma (Amann et al., 2009).  Glut-1 expression correlates 

with tumor invasiveness (Grover-McKay et al., 1998) and promotes increased proliferative 

activity, which is associated with the loss of functional p53 (Schwartzenberg-Bar-Yoseph et 

al., 2004). Finally, Glut-1 expression may predict response to standard chemotherapeutic 

agents such as lomustine and dacarbazine (Airley et al., 2005). 

Tissue microarrays (TMAs) are an ordered array of multiple (from tens to hundreds) 

formalin-fixed, paraffin-embedded tissue cores presented on a slide. These offer the 

advantage of providing a rapid and relatively inexpensive means of profiling tumors and 

tissues for the expression of different genes and proteins.  Annotation such as clinical 

characteristics of the tumors, provides a means by which a new target may be correlated with 

certain parameters such as grade of differentiation, or recurrence of metastasis (Mobasheri et 

al., 2004).   This information may be used either to provide preliminary data, or supporting 

evidence with which to conceive and carry out comprehensive pre-clinical and clinical 

studies. Chronic or diffusion-limited hypoxia, which occurs at around 70-150 m from a 

patent blood vessel, is typically evident as viable tissue lying adjacent to necrotic regions but 

distal to a patent blood vessel (Hall Eric, 2000).  To enable effective evaluation of tumor 

hypoxia, therefore, tissue cores used in the preparation of TMA’s must contain sufficient 

material to adequately represent the tissue architecture existing in hypoxic regions of tumors.  

In the present study, we have used a range of TMA’s containing samples from a wide range 

of tumor and normal tissue types to evaluate Glut-1 as a potential biomarker of malignancy 

and hypoxia. The major objective of this study is to determine if TMA’s and the 

accompanying clinical information may be used to carry out translational studies of the 

expression of hypoxia markers such as Glut-1 that allow correlation with clinical parameters 

in a manner that is comparable to conventional immunohistochemical analysis.  Our 

validation will use three criteria: examination of the extent of Glut-1 expression, as well as 

the differential between malignant and corresponding normal tissue; the use of Glut-1 as an 
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intrinsic marker to assess the spatial pattern of hypoxia in a wide range of tumor types; and 

the use of available clinical information on clinical characteristics to correlate Glut-1 

expression with characteristics such as differentiation and oestrogen receptor status. In doing 

so, we may also accumulate further evidence of the merit of Glut-1 as a tumor-specific 

biomarker and therapeutic target. 
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Methods 
 

Normal and Tumor Tissue Arrays 

 

 

Four different TMAs of formalin-fixed, paraffin-embedded tumor samples, were obtained 

from the TARP Lab, National Cancer Institute, NIH, Maryland, USA.  These included the 

TARP-4 array, which consisted of mixed normal and tumor tissue types including melanoma, 

lymphoma, CNS tumors (exclusively glioblastoma multiforme), as well as breast colon, 

ovarian, lung and prostate tumors.  The three further arrays were designed to offer a wider 

range of tumor samples within a tumor type, and included the T-CL-1 (colon and lung 

tumor), T-BO-1 (breast and ovarian tumors) and finally, the T-Pr-1 array, which consisted of 

matched tumor and normal prostate samples. Maps and annotations of the TMAs are 

available at www.cancer.gov/tarp .  

 

Immunohistochemistry 

 

Immunohistochemical staining for Glut-1 protein was carried out on at least 2 serially cut 

slides for each array.  Staining was undertaken as per Airley et al (Airley et al., 2001)  and 

Oliver et al(Oliver et al., 2004), using an Envision kit containing an anti-rabbit mouse- 

labelled polymer conjugate (DAKO). The primary antibody step used was an affinity-purified 

anti-rabbit Glut-1 (Alpha Diagnostic International, Texas, USA), which was used at a dilution 

of 1/100 (10g/ml protein), alongside rabbit IgG negative control used at the same protein 

concentration. 

 

Semi-quantitative Analysis 

 

Glut-1 expression was assessed by initial examination at low power (x100) using a light 

microscope to confirm the identity of the tumor sample according to the layout of the array, 

and to assess the tumor samples for absence or presence of Glut-1 protein.  To evaluate the 

http://www.cancer.gov/tarp
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extent and intensity of Glut-1 staining, and to put this staining into the context of tumor 

histology, a further examination of the samples was made at higher magnification (X250 and 

X400).  For the TARP-4 arrays, Glut-1 staining was classified as positive or negative.  

However, for the tissue-specific arrays (T-CL-1, T-BO-1, and T-Pr-1), where there was a 

wider range of tissue samples available for each site, Glut-1 expression was classified as 

negative, light (<30% and mostly cytoplasmic) or heavy (>30% and mostly membranous) 

staining.  Although areas of necrosis were excluded, peri-necrotic areas were closely 

examined in order to note possible hypoxia-linked Glut-1 expression. Arrays were scored 

blindly by two independent observers (RA and AE) to rule out inter-observer variation. 
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Results 

Pattern of Glut-1 protein staining 

 

Figure 1 shows Glut-1 expression surrounding necrosis in (A) lung, (B) breast and (C) 

ovarian carcinomas.  Peri-necrotic Glut-1 expression was particularly apparent in a number of 

samples of ovarian tumours and in squaemous carcinoma of the lung.  Adenocarcinomas 

were characteristically hard to define visually by semi-quantitative analysis, owing to the 

glandular nature of the tumour tissue.  However, in samples showing heavy Glut-1 staining, 

the protein did not appear to be expressed in the core of tumour nests, but rather in layers 

proximal to the stroma. 

 

Glut-1 Expression in Normal Tissue 

 

Samples of normal tissue were provided for each array.  For the T-BO-1, T-CL-1 and T-Pr-1 

arrays, sections derived from identical tissue samples were used and the immunostaining 

achieved was reproducible.  Glut-1, with few exceptions, showed differential expression 

between malignant and benign tissue.  Figure 1 shows that Glut-1 staining in normal 

cerebellum is restricted to vascular endothelium, which coincides with Glut-1 present in the 

blood-brain barrier (Takata, 1996) (D), and is absent in normal colon (G);  whereas Glut-1 

staining is present within tumor tissue in glioblastoma (E) and colorectal tumors (H). For 

normal tissue, Glut-1 was expressed in significant quantities in the spleen and peripheral 

nerve. Bone marrow also expressed Glut-1, which may have been restricted to maturing 

erythrocyte precursors. There was no Glut-1 protein detected in normal endometrium (F), 

testis (I), lung, breast or prostate.  Interestingly, there was also no observable Glut-1 

expression in the kidney or liver, and a section of ovary and liver obtained commercially 

(Abcam Laboratories), also showed no Glut-1 expression.   
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Distribution of Glut-1 Staining According to Tumor Type and Pathology 

 

TARP-4 Array 

 

Tumor samples staining positively for Glut-1 included 9/34 (26%) lymphomas, 6/12 (50%) 

melanomas, 5/16 (31%) CNS, 14/37 (38%) ovarian, 12/48 (25%) breast, 14/50 (28%) colon 

and 1/41 (2%) prostate tumors.   

 

 T-BO-1, T-CL-1 and T-Pr-1 Arrays 

 

Glut-1 expression was determined in colon, lung, breast and ovarian tumors according to 

pathology and, where appropriate, degree of differentiation and oestrogen receptor status.  

Details of Glut-1 staining according to tumor subtypes are shown in table 1.  Samples from 

54 lung tumors and 45 colon tumors of mixed pathology were included in the T-CL-1 array.  

Although a high proportion of lung tumor samples stained positively for Glut-1 (43/54 

(80%)), squaemous cell carcinomas showed the greatest proportion of cases with heavy Glut-

1 staining.  Data describing the grade of differentiation was provided for 28 tumors, although 

in this series, there was no correlation with the grade of Glut-1 protein expression 

(Spearman’s rank r = 0.034, P = 0.865, n = 28).   For colon tumors, 22/84 (26%) samples 

showed Glut-1 protein expression.  However, of these, 12/22 showed light and 10/22 heavy 

glut-1 staining.  The T-BO-1 array included samples from 40 breast and 60 ovarian tumors.  

For breast tumors, only 6/40 (15%) samples stained positively for Glut-1, and all but one of 

these showed only light Glut-1 staining.  Information on oestrogen receptor status was 

available for 10 tumors, of which 7 were oestrogen receptor positive.  Of these, 3 tumours 

expressed Glut-1, whereas Glut-1 was absent in the 3 oestrogen receptor negative tumors.  

The ovarian tumors included serous and mucinous histologies, of which 23/60 (38%) stained 

positively. Of these, the serous type histology (serous papillary adenoma and serous 

adenocarcinoma) showed the highest proportion of Glut-1 positive cases.  Data describing the 
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grade of differentiation was available for 27 tumors of mixed pathology.  However, there was 

no significant correlation between differentiation and the level of Glut-1 expression 

(Spearman’s rank r = 0.106, P = 0.599, n = 27).  The T-Pr-1 array provided 57 samples of 

prostate adenocarcinoma and 55 samples of normal tissue.  Only one tumor sample showed 

Glut-1 protein expression, which was classed as heavily stained and appeared to be peri-

necrotic.  Unfortunately, the matched normal tissue sample was not available for this sample.  
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Discussion 

 

The use of TMA’s to evaluate the expression of a biomarker is clearly advantageous over 

individual studies of several tumor types.  Although the data obtained in this study was 

limited by issues associated with preparation, including limited sample size, missing and 

poorly preserved tissue cores, these problems are countered by the number of samples 

analyzed, the economy, ease and rapidity with which the study is carried out. Another 

consideration is that, contrary to studies involving samples of biopsy or resected tumour 

material from cohorts of patients, extensive ethical procedures are not necessary.  

Additionally the material is collected from a large number of institutions with only standard 

tissue handling protocols. To test the true merit of this method, it is necessary to compare the 

results obtained in this present study with those provided by past studies of Glut-1 

expression, and to investigate the hypothesis that similar conclusions have been drawn by the 

use of TMA’s as have been from a multitude of studies involving conventional analyses of 

clinical samples taken from large numbers of patients.  In terms of the distribution of Glut-1 

expression according to tumour type, these data compare favourably to previous studies.   

Glut-1 has previously been found to be heavily expressed in squamous cell carcinomas of the 

lung relative to adenocarcinomas (Younes et al., 1997, Ito et al., 1998), observations that are 

similar to the present study.  Also, in a previous investigation involving a large series of 

breast tumors a notable majority (approximately 96%) showed no Glut-1 staining or 

expression in less than 50% of tumor cells (Younes et al., 1995), an observation that is 

echoed in this study.  These differences in Glut-1 expression may be compensated by 

expression of alternative facilitative glucose transporters such as Glut-5 (Zamora-Leon et al., 

1996) and Glut-12(Rogers et al., 2003).  However, the TMA’s did not include non-invasive 

breast tumors e.g. ductal carcinoma in situ, so that no effective comparison can be drawn 

with another study carried out on a series of invasive ductal carcinomas of the breast which 
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all expressed Glut-1 protein (Brown and Wahl, 1993). Both the present and previous studies 

show that a relatively large proportion of colorectal tumors express Glut-1.  However, in 

previous studies variation of Glut-1 expression with depth of invasion was shown to be an 

important determinant of prognosis in early stage tumors (Furudoi et al., 2001, Sakashita et 

al., 2001), highlighting the point that any array design must include representative samples of 

this parameter as well as different histological subtypes.  The T-Pr array adequately reflected 

the lack of Glut-1 expression observed in previous studies involving conventional 

immunohistochemical analysis of prostate tumors.  In this case, although Glut-1 may have 

prognostic value in tumors of the prostate, where it correlates with Gleason Score and is 

differentially expressed in benign prostatic hyperplasia and prostate cancer (Stewart et al., 

2008), in this study Glut-1 expression in malignant prostate tissue was absent.   

  The expression of Glut-1 in normal tissue is well characterised and occurs prolifically 

in the blood-brain barrier (Pardridge, 1991) and the plasma membranes of erythrocytes 

(Thorens, 1996), with smaller levels expressed alongside the isoform Glut-4 in muscle (Klip 

and Paquet, 1990).  Such expression was clearly identified in this present study, in the 

endothelial tissue of the cerebellum, the tongue and in areas of haemorrhage in normal as 

well as tumor tissue samples.  Despite this, in both the present and previous studies (Medina 

and Owen, 2002), Glut-1 expression is extremely low or absent in a wide range of normal 

tissues, such as breast, colon and lung.  Interestingly, no Glut-1 was detectable in normal 

liver or kidney in the present study.  In contrast, although the expression of glucose 

transporter isoforms is tissue-specific (Joost and Thorens, 2001), Glut-1 has been found in 

normal liver and kidney in previous studies, however this may be a consequence of non-

malignant but pathological states such as diabetic nephropathy (Haneda et al., 2001, Rhoads, 

1994).  

It is clear that in squamous type tumors in particular, Glut-1 protein consistently 

occurs around necrosis, reaffirming its connection with tissue hypoxia.  However, the use of 

Glut-1 as an intrinsic marker of hypoxia remains controversial.  Significant correlations have 

been found with both direct (by Eppendorf Histography) and indirect measurements (using 
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the bioreductive marker pimonidazole) of tumor hypoxia (Airley et al., 2001, Airley et al., 

2003), although one later study found no correlation between direct oxygen measurements 

and Glut-1 expression detected in biopsies taken from along the oxygen electrode  track 

(Mayer et al., 2005).  This may reflect the presence of different populations of hypoxic cells, 

where oxygen electrodes detect both acutely and chronically hypoxic cells, but de novo 

synthesis of Glut-1 takes place only after chronic hypoxia via the HIF-1 transcription factor 

(Zhang et al., 1999).  The depth and duration of hypoxia assumes importance when 

considering the treatment modality.  For example, response to radiation therapy is now 

thought to be attenuated by acute hypoxia (Denekamp and Dasu, 1999), whereas outcome 

after surgery or chemotherapy may be more dependent upon changes in gene expression 

observed in chronically hypoxic cell populations.  Therefore, a comprehensive validation of 

an intrinsic marker of hypoxia must consider correlations with clinical outcome data as well 

as other methods, in a variety of tumor subtypes receiving different treatment modalities. 

Inclusion of material representing these parameters in a TMA would facilitate this type of 

study.   Another alternative approach in the search for hypoxia markers is the hypoxia 

metagene, where a gene signature composed of a wide range of hypoxia-inducible genes, e.g. 

Glut-1, CA9 and VEGF, is characterised using cDNA microarray analysis and related to 

prognosis.  This has shown potential in breast, head and neck cancers (Winter et al., 2007). 

The expression pattern of Glut-1 in hypoxic tissue may also be dependent upon tumor type, 

as well as other factors, including differentiation, proliferative potential and oncogene 

expression.  For example, in studies investigating Glut-1 expression in advanced carcinoma 

of the cervix, the typical architectural pattern representing chronic hypoxia was clearly 

apparent, where peri-necrotic, membranous Glut-1 staining became less intense and more 

cytoplasmic distal to patent blood vessels, which themselves were indicated by the presence 

of Glut-1 expressing erythrocytes (Airley et al., 2003).  However, in a different study of Glut-

1 expression in oral squamous cell carcinoma, there were two distinct patterns of staining- 

either peri-necrotic, or in the basal and parabasal layers (Oliver et al., 2004).  Therefore, 

although TMA’s are useful in that they contain multiple tumor types, to provide data 
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comparable to conventional immunohistochemical analysis of tumor hypoxia, they must also 

contain sufficient material to enable study of different spatial patterns of hypoxia marker 

staining.  

Finally, in this study, no correlation was found between Glut-1 and grade of 

differentiation, which contradicts previous studies, where Glut-1 appears to correlate with the 

histological differentiation of lung (Ito et al., 1999), colon (Fogt et al., 2001) and ovarian 

(Cantuaria et al., 2000) and breast(Younes et al., 1995) tumours.  Although only a limited 

number of tumors were available for analysis based on differentiation, it is very unlikely that 

including additional tumors would have changed this, owing to the inclusion of samples from 

a wide range of histolopathological locations, which may have an impact on differentiation 

that is independent of necrosis and Glut-1 expression.  

Overall, TMA’s have provided useful data on Glut-1 overexpression and spatial 

pattern of staining that is comparable to previous studies and may be used in initial studies of 

novel biomarkers to provide rapid assessments of differential expression patterns between 

normal and malignant tissue, and to indicate hypoxia-inducible expression. However, to 

obtain statistically significant assessment of the prognostic significance of a biomarker, 

comprehensive annotation of TMA’s with clinical characteristics, as well as greater numbers 

of samples within a tumor type is necessary. 

In our laboratory, we are currently validating Glut-1 as a novel therapeutic target.  

These data may prove useful in identifying tumour types that show differential expression 

between normal and malignant tissue, and therefore those that may benefit from any Glut-1-

linked strategy. 
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Table 1: Distribution of Glut-1 staining according to tumor site and subtype, using T-BO, TCL and T-Pr 

tissue microarrays.  

 

                                           Grade of Glut-1 Immunostaining 

Pathology  0 (%) 1 (%) 2 (%) 

                                                           Lung: Total = 54 

NSCCa  0 (0) 5 (63) 3 (38) 

Squaemous Cell Ca  3 (12) 6 (24) 16 (64) 

Adenocarcinoma 6 (35) 5 (29) 6 (35) 

Bronchioalveolar Ca 0 (0) 1 (50) 1 (50) 

Bronchioalveolar Adenocarcinoma 2 (100) 0 (0) 0 (0) 

                                                          Colon: Total = 84 

Adenocarcinoma 19 (46) 12 (29) 10 (24) 

Mucinous Adenocarcinoma 4 (100) 0 (0) 0 (0) 

                                                           Breast: Total = 40 

Ductal Adenocarcinoma 26 (81) 5 (16) 1 (3) 

Lobular Adenocarcinoma 7 (100) 0 (0) 0 (0) 

Adenocarcinoma 1 (100) 0 (0) 0 (0) 

                                                           Ovary: Total = 60 

Mucinous Adenoma 5 (100) 0 (0) 0 (0) 

Serous Papillary Adenoma 15 (58) 6 (23) 5 (19) 

Clear Cell Carcinoma 4 (67) 0 (0) 2 (33) 

Clear Cell Adenocarcinoma 4 (80) 1 (20) 0 (0) 

Serous Adenocarcinoma 5 (42) 4 (33) 3 (25) 

Endometrial Adenocarcinoma 3 (60) 2 (40) 0 (0) 

Poorly Differentiated Carcinoma 1 (100) 0 (0) 0 (0) 

                                                           Prostate: Total =  112                            

Adenocarcinoma 56 (98) 0 (0) 1 (2) 

Matched Normal Tissue 55 (100) 0 (0) 0 (0) 
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Figure Legend 

 

Figure 1: Glut-1 expression frequently appeared in peri-necrotic areas, which are likely to 

coincide with chronically hypoxic regions in malignant tissue.  Glut-1 showed a pattern of 

staining typical of chronic or diffusion-limited hypoxia in malignant tissue from A: lung; B: 

breast and C: ovarian carcinomas, where arrows show oxygen gradients between vascularised 

stroma and necrotic regions.  Differential Glut-1 staining was observed between normal 

cerebellum (D), where Glut-1 staining occurred in the vascular endothelium (shown by 

arrow), and glioblastoma, which was positive for Glut-1 staining (E); as well as between in 

normal (G) and malignant (H) colon. Glut-1 expression was undetected in many normal 

tissues, including endometrial (F) and testicular (I) tissue.  Magnification x 125. 
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