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TUMOR LOCALIZATION IN TISSUE MICROARRAYS USING ROTATION INVARIANT
SUPERPIXEL PYRAMIDS
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?School of Computing, University of Dundee, Dundee, UK
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ABSTRACT
Tumor localization is an important component of histopathol-
ogy image analysis; it has yet to be reliably automated for
breast cancer histopathology. This paper investigates the use
of superpixel classification to localize tumor regions. A su-
perpixel representation retains information about visual struc-
tures such as cellular compartments, connective tissue, lumen
and fatty tissue without having to commit to semantic seg-
mentation at this level. In order to localize tumor in large
images, a rotation invariant spatial pyramid representation is
proposed using bags-of-superpixels. The method is evaluated
on expert-annotated oestrogen-receptor stained TMA spots
and compared to other superpixel classification techniques.
Results demonstrate that it performs favorably.

Index Terms— tumor classification, superpixels, spatial
bag-of-words, rotation invariant spatial pyramid

1. INTRODUCTION

Tissue microarray (TMA) spots such as shown in Fig. 1(a) en-
able relatively high-throughput inspection of various cancers
for multiple molecular markers [1]. They are used for val-
idation of diagnostic markers in annotated clinical samples,
testing new antibodies and probes, or determining optimal
staining conditions. The growth of tissue banks has lead to
an increased workload for pathology experts, exceeding the
manual skills available. Furthermore, expert pathology re-
view suffers from inter- and intra-observer variations.

Tumor localization is an important component of histo-
pathology image analysis such as immunohistochemical
(IHC) scoring and has not been reliably automated in breast
TMAs. It is challenging because breast tissue has complex
visual structure; currently no detailed guidelines exist on how
to visually identify tumor regions.

One approach to automate tumor analysis is to first explic-
itly detect and segment cells or subcellular components and
then build a feature representation based on these detected
objects [3, 4]. However, in the images considered here, cel-
lular compartment boundaries other than those of nuclei are
not often apparent. Nuclei detection is non-trivial because of

(a) (b)

Fig. 1. (a) A tissue microarray spot with annotated tumor re-
gions. (b) An image patch (top) and a SLIC [2] superpixel im-
age with each superpixel rendered as the average RGB value
of the pixels contained in it (bottom).

the different cell types, varied appearance, and often heavily
clustered nuclei. An alternative approach is to treat the prob-
lem as one of texture segmentation, without explicit detection
of objects [5,6]. However, statistical texture descriptors com-
puted directly from the pixels may fail to capture structural
aspects of tissue.

We investigate features based on superpixels to localize
tumor regions. Fig. 1(b) shows a superpixel representation.
The intuition is that a superpixel-based representation can
retain information about visual structures such as cellular
compartments, connective tissue, lumen and fatty tissue with-
out having to commit to semantic segmentation at this level.
Superpixels have previously been applied in histopathology
for cell nuclei segmentation [7] and tumor classification [8].
Here, we use features from superpixels in a Bag-of-Words
(BoW) framework, called Bags-of-Superpixels (BoS).

We make the following contributions in this paper. (i) In-
corporation of spatial information in BoS (iii) extension of the
spatial pyramid [9] to build a Rotation Invariant Superpixel
Pyramid (RISP) (iv) an adaptation of the autocorrelogram in-
corporating superpixels. Tumor localization is formulated as
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Appearance Mean RGB, greyscale mean and variance,
13 Haralick texture features (f1 − f13).

Geometry Compactness, eccentricity, area, perimeter.
Neighbors Number of immediate superpixel neigh-

bors, variance of superpixel perimeter
shared with neighboring superpixels.

Table 1. Features extracted from each superpixel.

a superpixel classification problem and is evaluated on expert-
annotated oestrogen-receptor stained TMA spots.

2. METHODS

2.1. Superpixel Features

A superpixel image representation is an over-segmentation in
which similar pixels are grouped into perceptually consistent
units, regularized to be compact and of similar size. We use
SLIC [2] to construct superpixels as it is computationally ef-
ficient and retains tissue structure. The number of superpixels
is assigned such that the area of a single superpixel rarely ex-
ceeds the area of a cell nucleus. Many cell nuclei are assigned
two or more superpixels. An example SLIC representation of
a breast TMA patch is shown in Fig. 1(b) in which the aver-
age superpixel area is 223 pixels (σ = 33). An expert pathol-
ogist considered such superpixel images to retain the impor-
tant structure of the tissue; tumor regions are still identifiable
as are structures such as ducts and lobules.

For each superpixel, we obtain a set of features to de-
scribe its geometric and photometric properties as well as its
adjacency relationship to neighboring superpixels (Table 1).
These features are normalized and concatenated to form a de-
scriptor per superpixel.

2.2. Bag-of-Superpixels (BoS)

To perform superpixel classification, one approach is to use
the features directly. However this produces poor results due
to lack of context. To incorporate context, we use superpixel
features in the BoW framework.

Extracted superpixel descriptors are quantized using a K-
means dictionary to give visual words. A circular window
with radius r is positioned at the centre point of the super-
pixel to be classified. Visual words of superpixels within
the circular window are histogrammed, resulting in a Bag-of-
Superpixels (BoS). To provide complementary local features,
the superpixel descriptor for the centre superpixel is concate-
nated with BoS.

2.3. Spatial Bag-of-Superpixels (S-BoS)

Whilst BoS is a simple yet powerful representation, its main
drawback is lack of spatial information. Here, we model the

Input: Image I , radius r, no. of rings Q, codebook C,
no. of superpixels M ;
Run SLIC on I to generate superpixels, s = [s1...sM ];
Extract superpixel features, F = {f1...fM} ;
for each superpixel, si, in s do

Identify superpixels t within circular window with
radius, r, centered at si;
Initialize spatial BoS histogram, Hi;
for each superpixel, tj , in t do

Lookup codeword, vj for ftj in C;
Compute d = ||c(tj)− c(si)||, c returns the
centre point of a superpixel;

Increment Hi(vj ,
⌊
Qd
r

⌋
);

end
Normalize Hi;

end
Algorithm 1: Spatial Bag-of-Superpixels (S-BoS)

spatial distribution of each visual word in a spatial Bag-of-
Superpixel (S-BoS) histogram. Spatial information is cap-
tured in the form of equally spaced rings within the circular
window in BoS (Algorithm 1). This approach has some sim-
ilarities to [8], however we analyze neighboring superpixels
from their visual words instead of RGB values. The resulting
histogram captures the BoS representation within Q rings.

2.4. Rotation Invariant Superpixel Pyramid

Spatial pyramids partition an image repeatedly to compute
a BoW histogram per cell or sub-region. In [9], sub-regions
consist of square grids and the representation is not rotation
invariant. Instead we use a Rotation Invariant Superpixel
Pyramid (RISP) in which S-BoS histograms are computed
per level (Fig. 2). The number of rings grows exponentially
with p in each level. By utilizing circular rings, histograms
computed from each ring are rotationally invariant. Previ-
ous work [10] has used a technique similar to this for cell
classification. However, here we use superpixel visual words
and describe a generalisable multi-level pyramid applicable
to other computer vision tasks.

S-BoS histograms are concatenated for each level to form
a multiscale representation, RISP. We evaluate RISP and the
S-BoS histogram, varying Q.

2.5. Superpixel autocorrelogram

In previous work on scene categorization, spatial information
between interest regions has been modeled in the form of a
codebook correlogram [11]. To improve computational costs
by reducing the dimensionality of the correlogram, Huang et
al [12] proposed the color autocorrelogram. We propose a su-
perpixel autocorrelogram which captures spatial information
between pairs of superpixels. Similarly to [12], only identi-
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Fig. 2. Levels 0, 1 and 2 of RISP. The BoW representation is
as level 0 after which partitions are applied iteratively accord-
ing to p. In the above, p = 2. Therefore for each ring in level
l, two more are created in l + 1.

cal pairs of codewords are counted. However we opt to use
circular windows instead of a regular grid to retain rotation in-
variance. The distance distribution between superpixel centre
points is captured resulting in a two-dimensional autocorrel-
ogram. In reported experiments, 5 spatial bins were used.

3. EVALUATION

A data set of 32 TMA tumor spots subjected to nuclear stain-
ing for estrogen receptor (ER) was used. Spots were 0.6mm
(3000 pixels) in diameter. Tumor regions were annotated by
a highly experienced pathologist using a Bamboo tablet and
stylus at 40x objective (Fig. 4).

Tumor localization was evaluated using 8-fold cross-
validation. A balanced training set was used with identical
number of positive and negative samples. A linear support
vector machine (SVM) classifier was implemented in the LI-
BLINEAR framework. Grid search was performed to obtain
an optimal cost parameter. 50, 000 SLIC superpixels were
extracted from each TMA spot image with the compactness
parameter set to 5. For a 3600x3600 pixel image, 50, 000
SLIC superpixels can be computed in 29 seconds on an Intel
i5-2410M 2.3GHz processor. A circular window with a ra-
dius r = 100 pixels was used. TMA spots were segmented
manually to reduce background interference.

Figure 3 shows precision-recall curves for superpixel fea-
tures with no context (SF), Bags-of-Superpixels (BoS), spatial
Bags-of-Superpixels (S-BoS), Rotation Invariant Superpixel
Pyramids (RISP), superpixel autocorrelograms (Corr) and an
implementation of a method described by Gorelick et al [8]
which encapsulates RGB values in rings (Gorelick). Results
are shown for 2 and 4 S-BoS rings and a 3-level RISP. Fea-
tures from the central superpixel were concatenated to each
reported method to complement contextual information ex-
tracted from the circular window. There is a clear improve-
ment in classification performance between BoS and S-BoS
with 2 rings, showing the benefits of incorporating spatial in-
formation. 3-level RISP which incorporates 7 (1+2+4) rings
also shows a small improvement compared to S-BoS; how-
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Fig. 3. Precision-recall curves for RISP, BoS, S-BoS, super-
pixel features (SF), method as described in [8] (Gorelick) and
the superpixel autocorrelogram (Corr) with 200 codewords.

Number of Codewords
25 50 100 200

BoS 0.623 0.644 0.670 0.676

S-BoS Q = 2 0.638 0.657 0.680 0.688
Q = 4 0.656 0.672 0.671 0.687

RISP 2 levels {0, 1} 0.656 0.676 0.685 0.690
3 levels {0, 1, 2} 0.645 0.676 0.686 0.692

Table 2. F1 measures for BoS, S-BoS and RISP.

ever increasing the number of rings in S-BoS results in minor
improvement. Both RISP and S-BoS show significant im-
provement compared to the superpixel autocorrelogram and
the method described in [8].

Table 2 shows F1 measures for RISP for various numbers
of codewords. As the number of codewords increases and
as more levels are incorporated in RISP, the accuracy contin-
ues to increase; differences between 100 and 200 codewords
are marginal. Compared to BoS (i.e. level 0), RISP shows
improvement for all dictionary sizes. For comparison, our
previous method [13] using pixel-level features including dif-
ferential invariants up to 2nd order and intensity spin features,
results in an F1 measure of 0.569 with a linear SVM. Com-
pared to 3-level RISP this is a decrease of 0.123. Examples
of results achieved with RISP are shown in Fig. 4.

A closer look at the difference images in Fig. 4 suggests
most disagreements occur near the annotation boundary. To
test this theory, a distance transform was applied to binary
manual annotations. Tumor probabilities obtained using RISP
were thresholded at 0.5. The distribution of distances to the
closest boundary for pixels in disagreement with the pathol-
ogist’s annotation is shown in Fig. 5. A large proportion of
disagreements lies within a short distance of nearby tumor
regions; 41% of disagreements are within 20 pixels (approxi-
mately one cell diameter). This confirms most disagreements
between the pathologist’s and automated annotations occur
around the tumor boundary.
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Image Annotation RISP Difference

Fig. 4. TMA images are shown on the left alongside man-
ual annotations. The third column shows tumor probabilities
(3-level RISP, 200 codewords). The last column contains dif-
ference images where bright pixels are false positive and dark
pixels are false negative errors.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

distance (pixels)

p
ro

p
o

rt
io

n
 o

f 
p
ix

e
ls

 p
e
r 

s
p
o

t

 

 
Disagreement pixels

All pixels

Fig. 5. Distribution of distances to the closest boundary for
pixels within disagreement regions. The black line shows the
distribution of distances for all pixels.

4. CONCLUSION

Superpixel classification algorithms were proposed for the
problem of tumor localization in breast tissue. The bag-
of-words framework was adapted to incorporate essential
spatial information. Results show spatial information in the
form of circular rings improves classification performance
compared to Bags-of-Superpixels (BoS). When compared to
Gorelick [8], the proposed Rotational Invariant Superpixel
Pyramid (RISP) performs favourably.

Most disagreements between the pathologist and auto-
mated segmentation occur near the tumor boundary. It is
unlikely that hand-drawn manual annotations are accurate to
the pixel-level, therefore future work will consider how to
deal with annotation uncertainty.
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