18 research outputs found

    Adaptive strong-field control of chemical dynamics guided by three-dimensional momentum imaging.

    Get PDF
    Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H22+→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule

    Incorporating real time velocity map image reconstruction into closed-loop coherent control

    Get PDF
    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an “onion-peeling” (also known as “back projection”) method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented

    Design of observer based compensators: The polynomial approach

    Get PDF

    PUHEEN TUOTTAMISEN KUVAAMINEN PARAMETROIMALLA KÄÄNTEISSUODATUKSELLA ESTIMOITU GLOTTISHERÄTE

    Get PDF
    Soinnillisen ÀÀnteen herÀtesignaali, vÀrÀhtelevien ÀÀnihuulten vÀlistÀ purkautuvaglottisherÀte, voidaan estimoida kÀyttÀmÀllÀ ns. kÀÀnteissuodatusmenetelmÀÀ. Puheen tuottamisen analyysi muodostuu tÀllöin tyypillisesti kahdestavaiheesta: (a) glottisherÀtteen laskennasta kÀÀnteissuodatuksella ja (b) saatujenvirtauspulssijonojen parametroinnista. JÀlkimmÀisen vaiheen tarkoitus onkuvata puheen tuoton herÀtesignaalin oleellisin informaatio numeerisessamuodossa. TÀssÀ artikkelissa tarkastellaan niitÀ menetelmiÀ, joita on kehitettyglottisherÀtteen parametrointiin. MenetelmÀt kuvataan jakamalla ne aika- jataajuusalueen tekniikoihin, ja jokaisen parametrin kohdalla on koostettutietoa niiden kÀyttösovellutuksista ja tyypillisistÀ arvoista. Lopuksi vertailIaantunnetuimpien tekniikoiden kÀytettÀvyyttÀ ÀÀnitutkimuksessa.Avainsanat: puheen tuottaminen, kÀÀnteissuodatus, glottisherÀte, parametrointiEstimation of the source ofvoiced speech, the glottal volume velocity waveform, withinverse filtering involves usually a parameterisation stage, where the obtained flowwaveforms are expressed in numerical form. This stage of the voice source analysis, theparameterisation of the glottal flow, is discussed in the present paper. The paper aims togive a review of the different methods developed for the parameterisation and it discusseshow these parameters have reflected the function of the voice source in various voiceproduction studies.Keywords: speech production, inverse filtering, glottal excitation, parameterisatio

    Modeling Pitch Perception With an Active Auditory Model Extended by Octopus Cells

    Get PDF
    Pitch is an essential category for musical sensations. Models of pitch perception are vividly discussed up to date. Most of them rely on definitions of mathematical methods in the spectral or temporal domain. Our proposed pitch perception model is composed of an active auditory model extended by octopus cells. The active auditory model is the same as used in the Stimulation based on Auditory Modeling (SAM), a successful cochlear implant sound processing strategy extended here by modeling the functional behavior of the octopus cells in the ventral cochlear nucleus and by modeling their connections to the auditory nerve fibers (ANFs). The neurophysiological parameterization of the extended model is fully described in the time domain. The model is based on latency-phase en- and decoding as octopus cells are latency-phase rectifiers in their local receptive fields. Pitch is ubiquitously represented by cascaded firing sweeps of octopus cells. Based on the firing patterns of octopus cells, inter-spike interval histograms can be aggregated, in which the place of the global maximum is assumed to encode the pitch

    Light-matter interactions

    Get PDF
    Understanding light-matter interaction is important to control the electron and nuclear dynamics of quantum-mechanical systems. The present work investigates this in the form of angular dependent tunnel ionization and different control mechanisms for nuclear, electron and coupled dynamics. With the help of close collaboration with experimental groups several control mechanisms could be examined and explained. The refined methods and models for these studies can be expanded for different experiments or more general concepts. The first part of this thesis focuses on tunnel ionization as one of the fundamental quantum-mechanical light-matter interactions while the second and third part investigates the control of nuclear and electron dynamics in depth. The angular dependent tunnel ionization of small hydrocarbons and the impact of their field dressed orbitals are researched in chapter 3. Advanced quantum chemical methods are used to explain experimental findings that could not be recognized by only looking at the Highest Occupied Molecular Orbital (HOMO). The so studied molecules show the importance to consider field dressed instead of field free orbitals to understand the light-matter interaction, to replicate experimental findings with theoretical models and to predict the behavior of different molecules. The influence of Rydberg character in virtual orbitals, that can become populated in a field dressed picture, can explain the difference in the angular dependent tunnel ionization for two similar derivates of Cyclohexadiene (CHD) and the lobed structure for C2H4 . This chapter also shows the success of adapting a previous used model for diatomic systems to polyatomic systems. The second part (chapter 4) investigates the deprotonation and isomerization reaction of acetylene (C2H2) and allene (C3H4) and the potential control with laser pulses over theses reaction. The first control mechanism utilizes the light field to suppress the reaction barrier, which allows molecules with lower energy to undergo isomerization and therefore increase the rate of the reaction. The second scheme controls the asymmetry of the reaction, so that either the left to right or right to left isomerization is preferred. This control is exercised by directly manipulating the nuclear wave packet with the Carrier–Envelope–Phase (CEP) of the laser pulse. The mechanism relies on forming a superposition of different normal modes that are excited by different means and therefore have a phase difference. One or more normal modes are excited by the light field and get the CEP imprinted in their phase while the other important normal modes are indirectly excited by the ionization process. This enables directional control of the nuclear dynamics in symmetric molecules. The concept of forming the superposition is general enough to be used in different reactions and molecules. In the last part (chapter 5) the control of electron dynamics with laser pulses is studied. The test case is the selective population of dressed states (SPODS) in the potassium dimer (K2). There a first pulse will populate an electronic superposition between the ground and first excited state. Depending on the relative phase of the second pulse to the oscillating dipole created by the electronic wave packet, the upper or lower dressed state will be populated. Excitation from the two different dressed states leads to two distinguishable final states. Although the scheme focuses on the control of the electron dynamics, the whole mechanism is also heavily influenced by the associated nuclear dynamics

    Improving speaker recognition by biometric voice deconstruction

    Get PDF
    Person identification, especially in critical environments, has always been a subject of great interest. However, it has gained a new dimension in a world threatened by a new kind of terrorism that uses social networks (e.g., YouTube) to broadcast its message. In this new scenario, classical identification methods (such as fingerprints or face recognition) have been forcedly replaced by alternative biometric characteristics such as voice, as sometimes this is the only feature available. The present study benefits from the advances achieved during last years in understanding and modeling voice production. The paper hypothesizes that a gender-dependent characterization of speakers combined with the use of a set of features derived from the components, resulting from the deconstruction of the voice into its glottal source and vocal tract estimates, will enhance recognition rates when compared to classical approaches. A general description about the main hypothesis and the methodology followed to extract the gender-dependent extended biometric parameters is given. Experimental validation is carried out both on a highly controlled acoustic condition database, and on a mobile phone network recorded under non-controlled acoustic conditions

    Light-matter interactions

    Get PDF
    Understanding light-matter interaction is important to control the electron and nuclear dynamics of quantum-mechanical systems. The present work investigates this in the form of angular dependent tunnel ionization and different control mechanisms for nuclear, electron and coupled dynamics. With the help of close collaboration with experimental groups several control mechanisms could be examined and explained. The refined methods and models for these studies can be expanded for different experiments or more general concepts. The first part of this thesis focuses on tunnel ionization as one of the fundamental quantum-mechanical light-matter interactions while the second and third part investigates the control of nuclear and electron dynamics in depth. The angular dependent tunnel ionization of small hydrocarbons and the impact of their field dressed orbitals are researched in chapter 3. Advanced quantum chemical methods are used to explain experimental findings that could not be recognized by only looking at the Highest Occupied Molecular Orbital (HOMO). The so studied molecules show the importance to consider field dressed instead of field free orbitals to understand the light-matter interaction, to replicate experimental findings with theoretical models and to predict the behavior of different molecules. The influence of Rydberg character in virtual orbitals, that can become populated in a field dressed picture, can explain the difference in the angular dependent tunnel ionization for two similar derivates of Cyclohexadiene (CHD) and the lobed structure for C2H4 . This chapter also shows the success of adapting a previous used model for diatomic systems to polyatomic systems. The second part (chapter 4) investigates the deprotonation and isomerization reaction of acetylene (C2H2) and allene (C3H4) and the potential control with laser pulses over theses reaction. The first control mechanism utilizes the light field to suppress the reaction barrier, which allows molecules with lower energy to undergo isomerization and therefore increase the rate of the reaction. The second scheme controls the asymmetry of the reaction, so that either the left to right or right to left isomerization is preferred. This control is exercised by directly manipulating the nuclear wave packet with the Carrier–Envelope–Phase (CEP) of the laser pulse. The mechanism relies on forming a superposition of different normal modes that are excited by different means and therefore have a phase difference. One or more normal modes are excited by the light field and get the CEP imprinted in their phase while the other important normal modes are indirectly excited by the ionization process. This enables directional control of the nuclear dynamics in symmetric molecules. The concept of forming the superposition is general enough to be used in different reactions and molecules. In the last part (chapter 5) the control of electron dynamics with laser pulses is studied. The test case is the selective population of dressed states (SPODS) in the potassium dimer (K2). There a first pulse will populate an electronic superposition between the ground and first excited state. Depending on the relative phase of the second pulse to the oscillating dipole created by the electronic wave packet, the upper or lower dressed state will be populated. Excitation from the two different dressed states leads to two distinguishable final states. Although the scheme focuses on the control of the electron dynamics, the whole mechanism is also heavily influenced by the associated nuclear dynamics
    corecore