179 research outputs found

    Model Predictive Control of HVAC Systems: Design and Implementation on a Real Case Study

    Get PDF
    The final aim of this work is to design, implement and test a controller on a real testbed kindly provided by KTH. The control paradigm presented in this thesis is a MPC that aims at saving energy as well as keeping the temperature and the CO2 concentration in a comfort range that guarantees the wellness of room occupants. To improve the knowledge of the plant, we also study the problem of modeling both the dynamics of of the system to be controlled and of the dedicated actuation syste

    Control of HVAC System via Implicit and Explicit MPC: an Experimental Case Study

    Get PDF
    Analysis and Implementation of different control strategy for an HVAC System. The thesis analyze two different approaches for the thermic control of building comparing them to simpler practice. In particular an Implicit MPC controller is implemented and studied, then, in order to reduce the online computation is designed and implementedope

    Data-Driven Control and Data-Poisoning attacks in Buildings: the KTH Live-In Lab case study

    Full text link
    This work investigates the feasibility of using input-output data-driven control techniques for building control and their susceptibility to data-poisoning techniques. The analysis is performed on a digital replica of the KTH Livein Lab, a non-linear validated model representing one of the KTH Live-in Lab building testbeds. This work is motivated by recent trends showing a surge of interest in using data-based techniques to control cyber-physical systems. We also analyze the susceptibility of these controllers to data-poisoning methods, a particular type of machine learning threat geared towards finding imperceptible attacks that can undermine the performance of the system under consideration. We consider the Virtual Reference Feedback Tuning (VRFT), a popular data-driven control technique, and show its performance on the KTH Live-In Lab digital replica. We then demonstrate how poisoning attacks can be crafted and illustrate the impact of such attacks. Numerical experiments reveal the feasibility of using data-driven control methods for finding efficient control laws. However, a subtle change in the datasets can significantly deteriorate the performance of VRFT

    Parameter-Invariant Monitor Design for Cyber Physical Systems

    Get PDF
    The tight interaction between information technology and the physical world inherent in Cyber-Physical Systems (CPS) can challenge traditional approaches for monitoring safety and security. Data collected for robust CPS monitoring is often sparse and may lack rich training data describing critical events/attacks. Moreover, CPS often operate in diverse environments that can have significant inter/intra-system variability. Furthermore, CPS monitors that are not robust to data sparsity and inter/intra-system variability may result in inconsistent performance and may not be trusted for monitoring safety and security. Towards overcoming these challenges, this paper presents recent work on the design of parameter-invariant (PAIN) monitors for CPS. PAIN monitors are designed such that unknown events and system variability minimally affect the monitor performance. This work describes how PAIN designs can achieve a constant false alarm rate (CFAR) in the presence of data sparsity and intra/inter system variance in real-world CPS. To demonstrate the design of PAIN monitors for safety monitoring in CPS with different types of dynamics, we consider systems with networked dynamics, linear-time invariant dynamics, and hybrid dynamics that are discussed through case studies for building actuator fault detection, meal detection in type I diabetes, and detecting hypoxia caused by pulmonary shunts in infants. In all applications, the PAIN monitor is shown to have (significantly) less variance in monitoring performance and (often) outperforms other competing approaches in the literature. Finally, an initial application of PAIN monitoring for CPS security is presented along with challenges and research directions for future security monitoring deployments

    Integration and optimal control of microcsp with building hvac systems: Review and future directions

    Get PDF
    Heating, ventilation, and air-conditioning (HVAC) systems are omnipresent in modern buildings and are responsible for a considerable share of consumed energy and the electricity bill in buildings. On the other hand, solar energy is abundant and could be used to support the building HVAC system through cogeneration of electricity and heat. Micro-scale concentrated solar power (MicroCSP) is a propitious solution for such applications that can be integrated into the building HVAC system to optimally provide both electricity and heat, on-demand via application of optimal control techniques. The use of thermal energy storage (TES) in MicroCSP adds dispatching capabilities to the MicroCSP energy production that will assist in optimal energy management in buildings. This work presents a review of the existing contributions on the combination of MicroCSP and HVAC systems in buildings and how it compares to other thermal-assisted HVAC applications. Different topologies and architectures for the integration of MicroCSP and building HVAC systems are proposed, and the components of standard MicroCSP systems with their control-oriented models are explained. Furthermore, this paper details the different control strategies to optimally manage the energy flow, both electrical and thermal, from the solar field to the building HVAC system to minimize energy consumption and/or operational cost

    Model-predictive control for non-domestic buildings: a critical review and prospects

    Get PDF
    Model-predictive control (MPC) has recently excited a great deal of interest as a new control paradigm for non-domestic buildings. Since it is based on the notion of optimisation, MPC is, in principle, well-placed to deliver significant energy savings and reduction in carbon emissions compared to existing rule-based control systems. In this paper, we critically review the prospects for buildings MPC and, in particular, the central role of the predictive mathematical model that lies at its heart; our clear emphasis is on practical implementation rather than control-theoretic aspects, and covers the role of occupants as well as the form of the predictive model. The most appropriate structure for such a model is still an open question, which we discuss alongside the development of the initial model, and the process of updating the model during the building’s operational life. The importance of sensor placement is highlighted alongside the possibility of updating the model with occupants’ comfort perception. We conclude that there is an urgent need for research on the automated creation and updating of predictive models if MPC is to become an economically-viable control methodology for non-domestic buildings. Finally, more evidence through operating full scale buildings with MPC is required to demonstrate the viability of this method

    Transition UGent: a bottom-up initiative towards a more sustainable university

    Get PDF
    The vibrant think-tank ‘Transition UGent’ engaged over 250 academics, students and people from the university management in suggesting objectives and actions for the Sustainability Policy of Ghent University (Belgium). Founded in 2012, this bottom-up initiative succeeded to place sustainability high on the policy agenda of our university. Through discussions within 9 working groups and using the transition management method, Transition UGent developed system analyses, sustainability visions and transition paths on 9 fields of Ghent University: mobility, energy, food, waste, nature and green, water, art, education and research. At the moment, many visions and ideas find their way into concrete actions and policies. In our presentation we focused on the broad participative process, on the most remarkable structural results (e.g. a formal and ambitious Sustainability Vision and a student-led Sustainability Office) and on recent actions and experiments (e.g. a sustainability assessment on food supply in student restaurants, artistic COP21 activities, ambitious mobility plans, food leftovers projects, an education network on sustainability controversies, a transdisciplinary platform on Sustainable Cities). We concluded with some recommendations and reflections on this transition approach, on the important role of ‘policy entrepreneurs’ and student involvement, on lock-ins and bottlenecks, and on convincing skeptical leaders
    • …
    corecore