1,659 research outputs found

    Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry

    Get PDF
    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

    Systems-chemistry approach to prebiotic evolution

    Get PDF
    The puzzle of the origin of life is grand. A major challenge is to understand the transition from a mixture of molecules into an entity with basic life faculties, such as a protocell, capable of self-replication and inheritance. Two major schools tackle this problem: the genetic, or replicator-first approach, and the metabolism-first approach. The replicator-first approach focuses on a single self-perpetuating informational biopolymer, e.g., RNA, as the first step, and it is thus often referred to as the “RNA world”. In contrast, the metabolism-first approach focuses on a network of chemical reactions among simpler chemical components that became endowed with some reproductive characteristics as the first step that led to a protocell. The lipid world scenario, largely initiated by our laboratory, delineates a specific example of metabolism first. It suggests that spontaneously forming assemblies of relatively simple molecules, such as mutually interacting lipids, that resemble primitive metabolism, are capable of storing and transmitting information similar to sequence-based polymeric RNA, except that in this case it is compositional information that is at work. This thesis is about further exploration of the lipid world scenario, showing in more detail how a relatively simple chemical system can acquire features such as selection and evolution. This was accomplished by studying dynamical aspects of the graded autocatalysis replication domain (GARD) computer-simulation lipid world model, previously developed at our laboratory. GARD simulates the homeostatic growth of a compositional amphiphile assembly by reversible accretion from a buffered heterogeneous external pool. This process is governed by a network of mutually catalytic reactions, and exhibits quasi-stationary compositional states termed compotype, that may be regarded as GARD species. I have demonstrated that that such GARD species exhibit positive as well as negative selection, an important prerequisite of a minimally living system. I further showed that when the catalytic network becomes dominated by mutual catalysis, as opposed to self-catalysis, selection is enhanced. When studying the dynamics of large populations of GARD assemblies under constant population conditions, I rewardingly found that they exhibit dynamics similar to natural ecosystem populations, e.g. similes of competition or predator-prey dynamics. I was able to establish relationships between a compotype’s internal molecular parameters (e.g. its molecular diversity) and population ecology behavior. In a separate vein, I have developed a new approach towards observing open-ended evolution, which enables asking whether there is an optimal level of open endedness in prebiotic evolution. Finally, I was able to show clear similarities between GARD compotypes and quasispecies in the Eigen-Schuster model for evolution, further underlining GARD’s capacity as an alternative to RNA World. Taken together, these results uncover quantitative aspects of the GARD model which in turn contribute towards our understanding of the origin of life via the lipid world scenario

    The Fuzziness in Molecular, Supramolecular, and Systems Chemistry

    Get PDF
    Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book

    Systems Chemistry and Parrondo’s Paradox: Computational Models of Thermal Cycling

    Get PDF
    A mathematical concept known as Parrondo’s paradox motivated the development of several novel computational models of chemical systems in which thermal cycling was explored. In these kinetics systems we compared the rates of formation of product under cycling temperature and steady-sate conditions. We found that a greater concentration of product was predicted under oscillating temperature conditions. Our computational models of thermal cycling suggest new applications in chemical and chemical engineering systems

    Dynamic Combinatorial Libraries: From Exploring Molecular Recognition to Systems Chemistry

    Get PDF
    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines

    Building complexity in chemical systems

    Get PDF
    This thesis presents a few contributions to the field of systems chemistry, ranging from dynamic combinatorial chemistry to photoizomerization. In the preface and the first chapter the reader is introduced to the general concepts and recent developments in systems chemistry. In Chapter 2 the concept of antiparallel dynamic covalent chemistry is introduced as a new kind of interaction between different combinatorial chemistries, and also as a tool to control the behaviour of dynamic combinatorial libraries. In Chapter 3 the interface between dynamic combinatorial chemistries is again explored, as well as a new kind of interaction between different combinatorial chemistries – in particular the catalysis of E/Z-isomerization of hydrazones by thiols. In Chapter 4 a long standing problem of slow hydrazone exchange is tackled. In particular, using UV irradiation as a means of introducing energy into system enables faster exchange due to the presence of reactants richer in energy. In Chapter 5 UV irradiation is used to establish photostationary states between two isomers of a hydrazone distributed between two immiscible solvents. Such a system is very easy to prepare, and yet shows complex emergent behaviour. In the final chapter all results are summarized and put in the perspective of possible future developments

    Molecular Networks in Dynamic Multilevel Systems

    Get PDF
    Dynamic multilevel systems can be assembled from molecular building blocks through two or more reversible reactions that form covalent bonds. Molecular networks of dynamic multilevel systems can exhibit different connectivities between nodes. The design and creation of molecular networks in multilevel systems require control of the crossed reactivity of the functional groups (how to connect nodes) and the conditions of the reactions (when to connect nodes). In recent years, the combination of orthogonal and communicating reactions, which can be simultaneous or individually activated, has produced a variety of systems that have given rise to macrocycles and cages, as well as molecular motors and multicomponent architectures on surfaces. A given set of reactions can lead to systems with unique responsiveness, compositions, and functions as a result of the relative reactivities. In this Concept article, different molecular networks from synthetic systems that can be produced by combinations of different reaction types are discussed. Moreover, applications of this chemistry are highlighted, and future perspectives are envisioned.Fil: Orrillo, Alfredo Gastón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Escalante, Andrea Marta. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Martinez Amezaga, Maitena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Cabezudo, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; ArgentinaFil: Furlan, Ricardo Luis Eugenio. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Miller–Urey spark-discharge experiments in the deuterium world

    Get PDF
    We designed and conducted a series of primordial-soup Miller-Urey style experiments with deuterated gases and reagents to compare the spark-discharge products of a “deuterated world” with the standard reaction in the “hydrogenated world”. While the deuteration of the system has little effect on the distribution of amino acid products, significant differences are seen in other regions of the product-space. Not only do we observe about 120 new species, we also see significant differences in their distribution if the two hydrogen isotope worlds are compared. Several isotopologue matches can be identified in both, but a large proportion of products have no equivalent in the corresponding isotope world with ca. 43 new species in the D world and ca. 39 new species in the H world. This shows that isotopic exchange (the addition of only one neutron) may lead to significant additional complexity in chemical space under otherwise identical reaction conditions
    • 

    corecore