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1. ABSTRACT

The puzzle of the origin of life is grand. A majdrallenge is to understand the transition from a

mixture of molecules into an entity with basic Ifculties, such as a protocell, capable of self-
replication and inheritance. Two major schools ladkis problem: the genetic, or replicator-
first approach, and the metabolism-first approaie replicator-first approach focuses on a
single self-perpetuating informational biopolymeirg., RNA, as the first step, and it is thus often
referred to as the “RNA world”. In contrast, thetatmlism-first approach focuses on a network
of chemical reactions among simpler chemical corepts that became endowed with some
reproductive characteristics as the first step thdtto a protocell. The lipid world scenario,
largely initiated by our laboratory, delineatespadfic example of metabolism first. It suggests
that spontaneously forming assemblies of relativeijmple molecules, such as mutually
interacting lipids, that resemble primitive metabwi, are capable of storing and transmitting
information similar to sequence-based polymeric RN#xcept that in this case it is
compositional information that is at work.

This thesis is about further exploration of thediprorld scenario, showing in more detail how a
relatively simple chemical system can acquire fiestisuch as selection and evolution. This was
accomplished by studying dynamical aspects of ttaeleyl autocatalysis replication domain
(GARD) computer-simulation lipid world model, preusly developed at our laboratory. GARD
simulates the homeostatic growth of a compositicaalphiphile assembly by reversible
accretion from a buffered heterogeneous externall gdnis process is governed by a network of
mutually catalytic reactions, and exhibits quasatishary compositional states termed
compotype, that may be regarded as GARD species.

| have demonstrated that that such GARD speciebiextositive as well as negative selection,
an important prerequisite of a minimally living ssm. | further showed that when the catalytic
network becomes dominated by mutual catalysis, @®osed to self-catalysis, selection is
enhanced. When studying the dynamics of large popuns of GARD assemblies under
constant population conditions, | rewardingly fouhdt they exhibit dynamics similar to natural
ecosystem populations, e.g. similes of competitorpredator-prey dynamics. | was able to
establish relationships between a compotype’snatenolecular parameters (e.g. its molecular
diversity) and population ecology behavior. In paate vein, | have developed a new approach
towards observing open-ended evolution, which essabtking whether there is an optimal level
of open endedness in prebiotic evolution. Findllywas able to show clear similarities between
GARD compotypes and quasispecies in the Eigen-Shuwodel for evolution, further
underlining GARD’s capacity as an alternative to RN orld. Taken together, these results



uncover quantitative aspects of the GARD model thic turn contribute towards our
understanding of the origin of life via the lipicbvid scenario.
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2. LIST OF KEY SYMBOLS AND ABBREVIATIONS

LUCA
GARD
Composome
Compotype
p

QSS

Nc

Ng

Nmax

NmoI

Last universal common ancestor

Graded autocatalysis replication domain

A set of consecutive faithfully replicating asserasl
Composome type

Network of rate-enhancement values

Quasi stationary state

Compotype count

Size of environmental molecular repertoire

Assembly pre-fission size

Compositional similarity

Compotype intrinsic molecular repertoire size

Compotype intrinsic growth rate

Compotype carrying capacity

Competition parameter

The eigenvector @3, with the largest real eigenvalue



3. INTRODUCTION

The conundrum of how life began has captivated nmahfor ages. The question is how life

could arise from non-living matter, which might bee of the most important questions in
science, still unanswered. The origin of life fieldlempts to answer this question, by combining
supramolecular and prebiotic chemistry with theoagtbiology and complex systems research,
otherwise known as a systems chemistry approaahs, the origin of life is perhaps the most
exhaustive systems chemistry “experiment” [61, 1(2)].

The origin of life is about the emergence of thstfentity with minimal life faculties, and can be
delineated to have occurred along the followingetime. At the accretion of planet Earth, some
4.5 billion years ago, it was a hot molten bodyajpable of sustaining life. Once the planet
cooled and hydrated by cometary infall some 4.lobilyears ago, the conditions for the origin
of life were in place [146, 150]. Jumping forwatde oldest widely agreed upon cellular fossil
record is dated to about 3.5 billion years ago [1Ilie exact time is disputed, as older cell-like
fossils have been reported [15], which seem tomnége cyanobacteria by size and appearance
[91]. However, there is no concrete knowledge @nrttolecular consistency of such fossils.

A term often used in the context of life’'s origia ithe “last universal common ancestor”
(LUCA), an organism which is at the common baseth® phylogenetic tree of life, and
possessing molecular machinery fundamentally sinbdigpresent-day life, i.e. genome, genetic
code and ribosome-like translation apparatus, disasgroteins, including enzymes that control
an elaborate biosynthetic metabolism [39, 62]. éaking at fossils does not reveal the inner
structure, it is extremely difficult to use the lo#dr fossil record to time the emergence of
LUCA. It is however absolutely obvious that LUCA stuhave emerged by a lengthy
evolutionary process in a continuum way, passinguph intermediate forms likely to have
been different, and much simpler than LUCA. Suctermediate LUCA ancestors are often
loosely referred to as protocells [17, 105, 13(&]Bigure 1).

Concepts about life’s origin strongly depend og’$ifdefinition. A widely accepted definition of
minimal life comes from NASA: life is a self-sustaig system capable of undergoing
Darwinian evolution [9], and other definitions aften similar [139]. This definition is general,
hence a minimally living entity needs not be a eslwe know it, i.e. LUCA, but could be a
much simpler protocell, i.e. container with some&assary molecular content. In this thesis |
consider a NASA-consistent entity that is even mprenitive than a protocell, such as a
compositional lipid micelle or very small vesicleithout any content.

The state of earth surface during the origins t# Is often referred to as “primordial (or
prebiotic) soup”, a term coined by Oparin [94]. §epresents a body of water with organic

chemical building blocks. The source of earth’sexvatould be adsorption during the planet’s
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accretion [26], or from icy comets [75]. The souoderganics could be comet infall, which has
been suggested to occur at a significant rate guwanly earth [18]. Alternatively, organics could
be synthesized on early earth from inorganic comge20]. In a seminal experiment, Miller
showed how in an environment similar to the assusath’'s early atmosphere, a plethora of
organics, including amino acids, could form [54, B&]. So, most researchers agree that
prebiotic earth contained water teaming with singalebon-based molecules. The big question is
how the transition from prebiotic soup to a funitigy protocell occurred, which is elaborated in

the next sections.

-4.5 -4.0 ? -3.5 ?
Earth’s Life's Protocells Oldest LUCA
formation  conditions fossil

Figure 1. A general timeline of life on Earth. Time is given in billions of years from the

present (year 2014).

3.1.0rigins of life scenarios
The path from the organic mixtures in the primordiaup to life- has been dominated by two
views: “replicator-first”, influenced by the preseday genetic machinery, and “metabolism-
first”, stemming from a molecular network similar present day metabolism. While the first
scenario necessitates the early appearance oalwhgelatively complex information carrier, i.e.
self-copying or self-perpetuating biopolymer, tlee@end can go a long way with early chemistry
that includes only mutually interacting simple chesh components such as carbohydrates,

amino acids, peptides and lipids.

3.1.1. The RNA world

A detailed and widely accepted example of replicéitst is the RNA world. It assumes that a
molecule identical or very similar to present dayARplayed the role of the self-perpetuating
biopolymer [36, 37, 43, 55]. The “free-floating” eurface-adsorbed mixture of such molecules
iIs assumed to have later evolved both a metabetiwaork and an encompassing container. The
wide appeal of RNA as a precursor molecule is wtdadable, as RNA is capable of both
information storage and propagation and the mataifies of certain catalytic activities typical
of metabolism. One of the earliest supports for RMA world was Spiegelman’s experiment,
which demonstrated that RNA can be copied in vidided by a simple viral enzyme @RNA

replicase [87, 88, 131]. Later, a key finding sopimg the RNA World concept was that
8



concrete demonstration that RNA can manifest aedatalytic activities. Such catalytic RNA is
termed ribozyme [66]. The first ribozymes discovevneere capable of self-splicing and cleavage
[16, 41, 110]. This finding was so surprising bessawp until then it was believed that only
proteins were capable of catalytic activities, amked such a finding led to the awarding of the
1989 Nobel prize in chemistty Recent experiments demonstrate more and morerakeb
features of ribozymes. In one example, two R3C RINAses with complementary sequences
were modified such that each was able to catalljgeother’'s synthesis in a potentially self-
sustained manner [76]. In another example, thersplicating Azoarcus ribozyme was modified
in two ways, one where tagged copies of itself &raatalyze other copies and another where the
tagged copies catalyze their own replication [480]11t was found that the system with the
mutually interacting ribozymes outperforms theisklbnes. Thus, the wide appeal of the RNA-
world is understandable, though such experimert®est put in perspective using Spiegelman’s
own words: “When you create a living object thespaption is that the object didn't exist
before. This | did not do. Working with simple cheal compounds, | take a primer of a living
object and | generate many living objects frorfi it"

The “holy grail” of the RNA world is a ribozyme by able to replicate itself from a pool of its
constituting nucleotide monomers. This has not ktained yet. A criticism of the RNA world
scenario is that demonstrating the formation oflentcde monomers under abiotic conditions is
challenging. This is because nucleotide synthesimiires the binding together of phosphate,
sugar and a nitrogenous base, thought recent stst@wv that it may be synthetically possible
[2, 103]. Another synthetic challenge is the polyixetion of such nucleotides to form long
hetero-polymers, which also recently has been sigddo be synthetically plausible [14, 50].
So, the RNA world is not without problems, whictmdae generally put as requiring complex

initial conditions [11, 96]. The metabolism-firsbtion attempts to overcome this

3.1.2. The metabolism-first scenario
The metabolism-first scenario suggests that thg frest life precursors are likely to have been
relatively elaborate molecular networks of simpfgamic molecules [4, 27, 79, 118, 123]. The
reverse citric acid cycle (reverse Krebs cycle)jruwhich carbon compounds are formed from
carbon dioxide and water, is one example. Krebdecy® a common mode of oxidative
degradation in eukaryotes and prokaryotes, whigs esght different enzymes and some of the
steps are catalyzed by the interim products [148ls, demonstrating the reverse citric acid

cycle under plausible prebiotic conditions is impat for understanding the origin of life, not

! The Nobel Prize in Chemistry 1989 was awardedljpto Sidney Altman and Thomas R. Cedbr'their
discovery of catalytic properties of RNA
2 Taken from: Profiles in Science by the Nationdirary of Medicine (http:/profiles.nim.nih.gov).
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just because it represents an autocatalytic cygde below), but also because it is a source of
carbon molecules necessary for a cells’ survival 2, 114]. Another example is the formose
reaction, during which sugars are formed from fddehyde. It has been shown to occur under
diverse prebioticaly plausible conditions [19, @88, 109, 122]. Oparin, one of the first to
suggest a possible chemical pathway for the emeegei life, proposed that it could be
manifested by the molecular reactions of relativ&iyple organic molecules in the primordial
soup, interacting with each other to spontaneousiyn colloidal molecular assemblies
(coacervates) [73, 92, 93].

3.2 Mutual catalysis

Regardless of the specific details of the replicéitst and the metabolism-first, both scenarios
acknowledge the need for reliable information sjerand transfer, assisted by self-replication. It
was Orgel who highlighted the relationship betwesslecular replication and the concept of
autocatalysis or self-catalysis [95]. Kauffman [8@fined a set of mutually catalytic compounds
as "collectively autocatalytic" if within this sethe reaction producing any of the set's
components can be catalyzed by at least one meafbiye set. Thus the entire set is self-
sustaining and may be considered as undergoingegeibduction, as long as input of energy
and molecular building blocks is provided [49, 69]. The notion that mutual catalysis (cross-
catalysis) is an important facet of self-replicatidraws from these aforementioned ideas.
Collectively autocatalytic systems resemble preslagtliving cells, which harbor self-catalytic

polynucleotides as well as a plethora of mutuahlgats that constitute the metabolic pathways.
This is exemplified by the famous hypercycle, adfeself-replicating polynucleotides, coding

for and acted upon by catalytic enzymes [30]. Lilsew Autopoiesis [142] and the Chemoton

[35] are example models of collective autocatalyise also harbor self-replicators.

3.3.The lipid world
An example of metabolism first is the lipid worldhere specific types of small molecules, i.e.
lipids, are assumed to form catalytic networks,hwihe advantage that such molecules
spontaneously accrete to form kinetically-contmblldistinct supramolecular structures. Our
laboratory was one of the pioneers of the lipidld/scenario for the origin of life, attempting to
generate a synthesis between the replicator firdt rmetabolism first approaches [118, 120]
(Figure 2). The main point of strength of this sm@m is that it suggests an entity that can
undergoe self-reproduction of a set of relativetyde molecules, without any self-templating
biopolymer. This happens via a specific mechanisgembling that at work in collectively

autocatalytic systems.
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The lipid world scenario considers non-covalentersible accretion of amphiphiles, e.g. lipids,
to form assemblies such as micelles and vesicigoitantly, these assemblies are considered to
store information in the form of non-random molerutompositions. These are passed to
progeny via homeostatic growth accompanied bydissit is suggested to draw an analogy
between the transmission of compositional infororato the copying of sequential information
by templating biopolymers. The importance of amph@gs in this origin of life scenario derives
from concepts similar to those of Oparin’s coactasaThis is because lipids and similar
amphiphiles spontaneously form distinct assembtiee to hydrophobic and hydrophilic
interactions. These assemblies, in a way, comhbiopepties of container structure, metabolism

and information transfer [119].

A B
RNA
chemistry ..O @ Z Self-

n :i}‘. @ assembly
@ of lipids
Molecular
self-replication @

:-~>\

' "% Compositional
"< _ self-
?) replication

Evolution
and internal
' self-organization

Lipid vesicles
appearance

Proteins
appearance

Protocell

Figure 2: The lipid world attempts to generate a synthesis between the replicator first
and metabolism first approaches. Figure taken from [120].

As for the question of where the monomer builditmcks come from, prebiotic syntheses have

been shown to include the formation of lipid-likenghiphilic molecules with long-chain

hydrocarbons [40, 44, 101, 112]. In parallel, Ipa@re found in carbonaceous meteorites, and it
11



has even been shown experimentally that such imfathmphiphiles are capable of forming
vesicle-like boundary structures [24, 100]. Finadyrudimentary role of membrane composition
was recently shown experimentally, where it waserited by daughter vesicles and affected

daughter fission [3], supporting the plausibilitytioe lipid world.

3.4The GARD model

The graded autocatalysis replication domain (GARI@del quantitatively describes the details
of the lipid world [119]. GARD is a systems-chemystkinetic model which entails
supramolecular assembly of amphiphiles and elabsrsdme of its evolution-related attributes,
with an implied route to minimal protocells [52,,571, 124, 125, 126, 127, 128]. The model is
based on a catalytic network whose nodes and edgpsctively represent molecular types and
catalytic events, including autocatalysis (selfabagis) and cross (mutual) catalysis. In Equation
2 below these catalytic terms are respectivelyasgmted as the diagonal and off-diagonal terms
of a matrixf3, hence the termf*network”. The model assumes that molecules fronuféeted
environment join and leave an assembly in a rebkersnanner. Once an assembly reaches a pre-
defined maximal size, N a random fission action is applied to produce pnagenies of same
size which can grow again and again in growth-dissiycles (Figure 3). Importantly, the system
is kept away from thermodynamic equilibrium by asbly fission. GARD’s dynamics displays
species-like quasi-stationary states (QSS) in camipoal space called composomes [119].
GARD is thus a kinetic model which describes thewgh and fission of a molecular assembly
[80, 119].

The composition of an assembly is given by thearact

v:{nl...ni ...nNG}

Equation 1
Where N; is the number of molecular types (environmentallemwar repertoire) and;n
(i=1..Ng) is the current (time dependent) count of molecdige i within the assembly.
Assembly growth is controlled by its molecular casgpion and the dynamics are described by a

set of ordinary differential equations:

FECPURN (5 R

Equation 2
Where nis as in Equation Ig; is its environmental concentration (equal formatilecule types)
andfj is the catalytic rate-enhancement exerted by senalsly molecule of type j on incoming

or outgoing molecule of type i kand k are the basal forward and backward rate constants
12



(joining and leaving, respectively) and N is cutressembly sizef; values are based a
lognormal distribution, drawing from the experimaiyt derived receptor affinity distribution
[69, 70, 119]. The model does not assume a predation betweerp; andp; values. It was
previously found that whefy; values obey such a distribution, faithful transfémformation to
progeny is augmented [121]. Different randomly dra@ networks may be viewed as

representing different environmental chemistries.

Homeostatic growth

e

\ J

4-7

C.O..
0@®0
oX |

F|SS|on / Split
Figure 3: A cartoon representation of the GARD model cell-cycle. Molecules from the
environment form and accrete to an assembly, biased by the § network (matrix). Once
an assembly reaches a pre-determined maximal size it undergoes fission. Different

colors represent different molecular types.

3.5GARD Composomes and compotypes

The similarity between two assemblies, at genematjoands, was defined as the dot product of

their compositions vectors [119], typically caldeld at assembly size

X \/°
=
Equation 3

A faithfully replicating assembly was previouslyfided as an assembly which is highly similar
to predecessor and successor (H>0.9 for generagidnandy+1) [126]. A set of subsequent
faithfully replicating assemblies is termetbmposome(a term originally derived from
compositional genome) [119]. A composome is a Q$%he Ns-dimensional compositional
space, when the trajectory of GARD dynamics isofe#d. The dynamics can also be presented
as a ‘carpet’: a two-dimensional matrix showing &ues for all assemblies encountered during
a simulation [119] (Figure 4). A composome appears dense area with high H near the main

diagonal in a carpet, signifying consecutive geti@na where a composition was transferred
13



with high fidelity. A compotype(composome type) is subsequently defined as orsewéral
clusters computed out of all assemblies that betongny of the composomes in a simulation
[126]. This is as contrasted with “drift” — assemblthat belong to no composome.

GARD’s composomes (more specifically — compotypas treated as its species. This is
because composomes are made out of a series afldssethat share similar composition and
faithfully replicate, making them persistent in énand on average appearing more than other
compositions (i.e. drifts). The idea that that enpositional assembly of lipids (i.e. a vesicleais
distinct species with distinct properties is suppadrby experiments that show that different
binary and ternary composition of vesicles shovied#dnt features such as permeability [82] or
boundary structure [144].

Time [generations]
Auepwis uonisodwon ‘H

150 200 250 300 350
Time [generations]

100

Figure 4: Similarity ‘carpet’ shows the degree of compositional similarity (H, Equation 3)
between all assemblies in a GARD simulation. Red is high similarity. Composome
appear as a dense red area near the main diagonal.

3.6.Spontaneous chiral symmetry breaking in early moladar networks
This work was done in collaboration with Dr. RanfKk&rom Harvard Medical School, and was
published as a M.Sc. thesis [56] and a peer-reviepaper [58].
An important facet of early biological evolution tee selection of chiral enantiomers for
molecules such as amino acids and sugars. Thenasigthis symmetry breaking is a long-
standing question in molecular evolution [13]. A maaggeneral kinetic formalism for early

14



enantioselection, based on the GARD model, has bleseloped (Chiral-GARD, C-GARD
[58]). The key is applying symmetry constraints foby considering an environment with
asymmetric molecules in a racemic mixture. All 2xMolecular types are treated as different
compounds with different kinetic parameters, kegpm mind that they actually constitutesN
enantiomer pairs (Figure 5).

The ensuing dynamics shows spontaneous chiral symnrbeeaking, with transitions towards
composomes enriched with one of the two enantiorfersome of the constituent molecule
types (Figure 6). A global analysis of the deperdeaf weak-enantioselection on molecular
enantiodiscrimination finds that increasing theadiaenhances the probability of assemblies to
have high enantioselection, yet even for the higkaantiodiscrimination studied here there is
an almost even chance for assemblies to show higgwoenantioselection (Figure 7). This may
indicates a stochastic effect: high enantiodiseration is necessary, but not sufficient to lead to
symmetry breaking.

It follows that chiral selection may be an emergemmsequence of early catalytic molecular

networks rather than a prerequisite for the indgrabf primeval life processes.
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Figure 5: An illustration of a 2Ngx2Ng B and the value of enantiodiscrimination (Bj).

Note that the two blocks along each diagonal have identical values of the affinities
(BLL=Boo and BLp=PoL).
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Figure 7: Probability distribution of Ww (see Figure 6 legend) at different values of
enantiodiscrimination-related parameter (green=low, red=intermediate, blue=high).
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4. METHODS

4.1 Computer simulations
Computer simulations were run using MATLAB versiah6-7.13. The GARD10 code package
was prepared to be delivered upon request [80fei@ifit simulations were run using different
underlying B matrices, which were generated by the MATLAB MersaTwister
pseudorandom number generator with different selediseachp, a set N’ random numbers
(labeled Z) was drawn from a normal distributioname0 and standard deviation=1.0, and
converted to a set Q of lognormally distributed fbem by the following transformation:
Q=exp(+cZ), wherep and o are respectively the lognormal mean and standaxdation.
GARD is subjected to a kinetic Monte Carlo simulatbased on Gillespie’s algorithm [38]: in
each iteration, a set of 2Nrate values is generated based on Equation 2f¢thneard and
backward parts in Equation 2 are treated sepajaaely then one reaction is randomly picked
and executed, where the chance of picking a reaidirectly proportional to the reaction rate.
It is assumed that the time passed is the invefdbeorate of the reaction picked. This is
repeated for each assembly until its size reachgg (Nr O, and then the simulation terminated)
and then random fission applied. Fission is pertatratochastically, whereby one progeny was
created by selecting, one by one, molecules froenpirent and placing them in this progeny.
The chance to select a molecule of type i is pribguoal to its current count in the parent
assembly, and this is continued until the sizehtg progeny is Na/2 and the other progeny
assumes the remainder of the parent.

Unless otherwise mentioned, the parameters uskhisithesis are given in Table 1 [80].

Ng 100
Nmax NG

Ks 10°
Kp 107
Pi 1/NG
i -4

S 4
Lpop | 1000

Table 1: Simulations parameters used in this thesis.

4.2 Compotypes
Compotypes were found by K-means clustering allgorjt using 1-minus-cosine type of
silhouette [126, 132]. Clustering was repeateckfdt,3,... number of clusters and the k with the
highest silhouette was picked as the compotype tcNg) of this simulation (for k=1, the

silhouette is calculated as the average H betwkassemblies in the simulation). A compotype
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is represented by a compositional vector constiguthe center of mass of all its member
assemblies.

In chapter 5.4 the size of a compotype’s intrinsiolecular repertoire (N,), its replication
fidelity (Frep) and time () are measured and employed. These parametersfresupy and the
GARD dynamics, as they are reflected in each coypeotNy is calculated as the number of
molecule types (out of the totakNypes) whose fractional counts in a compotypeearenit mass
are bigger than 1.0..& and [, are assessed using the following method: an adgenith
exactly the same composition as in the compotyperger of mass (rounded to nearest integer)
is used as parent. This parent than undergoes apmliteach of the two progeny is grown
according to its idiosyncratic composition (Equat) until it reaches M size. This is repeated
for 4,000 times, each time beginning with the sgraeent, giving a total of 8,000 fully grown
progeny of this compotype..&s of a compotype is than defined as the averagetiteam the
fully grown progeny to the parent. This is an esten to a previous analysis, where the fidelity
was assessed based only on the split action [E2Lth event of a molecule joining (or leaving)
the assembly has a rate, and the total growth efheach progeny is the sum of 1 over each of
these rates,¢, of a compotype is than defined as the averagetprome of all grown progeny

who are highly similar to this compotype.

4.3 Selection
This part mainly relates to chapter 5.1. Selecpenformed by applying a selection pressure
towards the center of mass of a specific targetpaiype, T [80]. This was done by biasing the

growth of an assembly towards the target (Equdijoria a growth bonus parameter:
G, = sH(v*,T)
Equation 4
Manifested as a temporary enhancement of the quneling; values, as suggested [143],
where s>1 is a fithess gain, embodying a seleclisdeantage, and for consistency with a
previous work [143] Equation 4 is calculated ateassly size N,n, that is, at the beginning of
the growth cycle.

The modifiedB;’ is obtained at each generation according to:

o i orjev?

Ay ={Gb-,8ij iandj ev”

Equation 5
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Where i and j are indices of molecular types, Bpdnodification is effected for all i,j (and j,i)
pairs contained within the current assembly Thus, the network is perturbed only at edges
present within the current assembly according te &imnilar to current assembly is to the target.
The selection excess (SE) is defined as the ratwden the frequencies of the target in a
simulation performed with and without selection @&tjon 6), while the probability of allele

fixation is proportional to 1 over the total popiuda size [97].

SE=
fT
Equation 6

4.4 Population dynamics
This part mainly relates to chaptgéd. The chemical dynamics ofds GARD compositional
assemblies in a reactor under constant populatmmlitons are simulated in a buffered
environment (Figure 8). Each simulation starts legding the reactor with pby, random
assemblies, each at size,N Assembly growth is controlled by its moleculamygmosition
(Equation 2). Each time an assembly reachggk Bl random fission was applied and one of the
progeny replaced the parent while the other replaceandom assembly among the othgy-IL,
thus keeping the population size constant. Thisopm is based on the classical Moran process
[89]. Each simulation is performed for 50,000 sphents in the reactor, typically sufficient to
reach steady state, and data is saved every 1@sphts. The composition of each assembly at
each time point is assessed as belonging to otleedft compotypes characterizing a specffic

(H>0.9 to the compotype center of mass) or to @Figure 9).

A —(D

Aom | =

A—eA =

Figure 8: A heuristic representation of population dynamics, under constant population
condition. One an assembly reaches Nnax Size, it undergoes a split, where one progeny

replaces the parent while the second progeny replaces a random assembly.
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Figure 9: An example of GARD’s population dynamics (for brevity only 100 assemblies

are shown). In this example Nc=3. The color of an assembly represents it compotype

assignment (white means drift).

4.5] ogistic equation and fit to population data
The fractional counts of assemblies belonging themmpotype (¢ in a population are plotted
and analyzed according to the multi species lagistodel (r-K or Lotka-Volterra competition
model) [34, 133, 141]:

Nc
K -C-)>» «a,C,
dC, i i ; ij 7]
T riCi
dt K,
Equation 7

Where t is time, measured in the number split esvé¢hat occurred in the population. For
compotype species i, is its intrinsic growth-rate, Kts carrying capacity and; is the extent of
competition exerted by compotype j on compotyp&hie entire carrying capacity of a given
environment iy K;. The entire set of; values of a given simulation represents a qudivita

food-web network [138], whose nodes and edgesesmectively compotypes ang values.
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Fitting between the time dependent frequencies thrdlogistic equation is performed using
MATLAB’s Isqcurvefitandode functions for least-squares fitting and numerioégration of

ordinary differential equations, respectively. Tiigprocedure is as follows:

[EEN

. Ci(t) data of each compotype is smoothed 100 times Bypoint moving average.

2. In order to avoid over sampling of the long timegrothe short times, the fit time window is
until twice the time the variance of the data @ach time point, the variance is calculated
until that point) drops below half its maximal sizgus 100 points along the tail in equal
intervals. This is calculated for each compotypdiviidually and then the largest window is
picked.

3. Compotypes with <& <0.01 are ignored and their assemblies classigedrift.

4. For simulation with N=1, if the time curve exhibits a plateau lower thha maximum by
more than 20%, then this simulation is ignored.

5. MATLAB Isqcurvefitis used to perform least-squares curve fittinghwtite following
function parameters (the rest are at their defaalues): TolFun=1e-10; TolX=1e-10;
MaxFunEval=200*N*(N c+1); MaxIter=1000.

6. ode45 and odel5sordinary differential equation solvers are usedntamerically solve
Equation 7, and the fit with the lowest residuasconsidered. The following function
parameters are used and the rest are at theirldeddues: AbsTol=1e-10; RelTol=1e-10.

7. Initial parameter guesses arg=kax(G); 8;=0.1;r; = %¢29dC;/100 (dG is approximated
by 5" order numerical differentiation);;©)=mean[1..100)].

8. Constraints are;>0, <Ki<1.0, 6<g;<10.0, GC;i(0)<max(G).

For each simulation, the quality of the fit was ems®d using root-mean-square-difference
(RMSD):

RMSD= <iNzcl‘4[fi (t)—C.(t)]>2

Equation 8

Where fis the fitted curve and <...> denotes an average al/&me-points in that simulation.
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5. RESULTS
The results presented in this thesis show howipiet World scenario and the GARD model have
several characteristics of living systems, and afatie some advanced features of the GARD

model.

5.1 Excess mutual catalysis is required for effectivevelvability
An important prerequisite from any living systentasbe able to respond to selection and thus
undergo evolution [9, 139]. In GARD, it is of spalamportance to demonstrate this attribute, as
it is a non-standard model and it is not obviouy\ahd how its species (compotypes) should
respond to a selection pressure. This chapter zemlthe selection behavior of compotypes in
order to address this issue. This is done by censigl the change in the abundance of a
compotype, in a given simulation, as a mimic tesgbn. It is found that GARD’s compotypes
can indeed portray selection. Further, a fundanhealation between the general structureof
and this selection behavior is discovered: the drigihe mutual catalysis level i is, the
stronger the selection response portrayed, i.eaggeb change in the abundance. The argument
that GARD’s selection should be studied with resper compotypes is addressed in
chapter 5.4.6.1, which also helps understand itfierehce in results with a recent erroneous

criticism against GARD’s evolvability [143].
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Excess Mutual Catalysis Is Required
for Effective Evolvability

Abstract It is widely accepted that autocatalysis constitutes a
crucial facet of effective replication and evolution (e.g., in Eigen’s
hypercycle model). Other models for eatly evolution (e.g., by
Dyson, Gidnti, Varela, and Kauffman) invoke catalytic networks,
where cross-catalysis is more apparent. A key question is how
the balance between auto- (self-) and cross- (mutual) catalysis
shapes the behavior of model evolving systems. This is
investigated using the graded autocatalysis replication domain
(GARD) model, previously shown to capture essential features
of reproduction, mutation, and evolution in compositional
molecular assemblies. We have performed numerical simulations
of an ensemble of GARD networks, each with a different set of
lognormally distributed catalytic values. We asked what is the
influence of the catalytic content of such networks on beneficial
evolution. Importantly, a clear trend was observed, wherein only
networks with high mutual catalysis propensity (pmc) allowed

for an augmented diversity of composomes, quasi-stationary
compositions that exhibit high replication fidelity. We have
reexamined a recent analysis that showed meager selection in

a single GARD instance and for a few nonstationary target
compositions. In contrast, when we focused here on compotypes
(clusters of composomes) as targets for selection in populations
of compositional assemblies, appreciable selection response was
observed for a large portion of the networks simulated. Further,
stronger selection response was seen for high pp, values. Our
simulations thus demonstrate that GARD can help analyze
important facets of evolving systems, and indicate that excess
mutual catalysis over self-catalysis is likely to be important for the
emergence of molecular systems capable of evolutionlike behavior.
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The fundamental question of how primitive life emerged on the prebiotic Earth has drawn consider-
able scientific attention throughout the centuties [2, 5, 14, 15, 22, 42, 59, 64]. The path from organic
mixtures (i.e., the primeval soup) to reproducing lifelike protocells has traditionally been dominated by
two different views: the genetic, or rplicator-first, approach, and the metabolism-first approach [2, 42]. Both
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acknowledge the need for reliable information storage and transfer, assisted by self-replication. The
replicator-first approach suggests that life began with a single self-perpetuating biopolymer (e.g.,
RNA) [14, 15, 18, 19, 22, 37, 42, 64], which later evolved into multimolecular networks under the
replicatot’s control. Orgel [41] has highlichted the relationship between molecular replication and
the concept of autocatalysis or self-catalysis. The metabolism-first approach suggests that the very first
life precursors must have been relatively complex molecular networks arising via spontaneous accre-
tion of simpler organic molecules [3, 9, 24, 25, 34, 48, 51, 53, 60]. In this scenario, it is further pro-
posed that faithful reproduction directly stems from certain network attributes. Therefore, one should
better understand the network properties of the implicated molecular assemblies [1, 47, 57, 66] if one
can merge the two seemingly conflicting scenarios for prebiotic evolution.

One embodiment of the metabolism-first view is the lipid world scenario, which considers non-
covalent assemblies of amphiphiles, such as micelles and vesicles formed by lipids [8, 39, 48, 50,
53, 69]. These are assumed to store information in the form of nonrandom molecular composi-
tions, and pass it to progeny via homeostatic growth accompanied by fission [49]. The graded auto-
catalysis replication domain (GARD) kinetic model for prebiotic evolution quantitatively describes
the details of such a process. It elaborates some of its evolution-related attributes [10-12, 27, 30,
44, 50, 58, 62, 67, 68], with an implied route to minimal protocells [8, 45, 49, 63, 65]. The model
is based on a catalytic network, usually presented in the form of a matrix 3 with autocatalysis (self-
catalysis) and cross (mutual) catalysis terms. Importantly, the system is kept away from thermo-
dynamic equilibrium by assembly fission [49]. Key in GARD dynamics are compotypes—clusters of
replication-prone quasi-stationaty states (composomes, a term derived from the notion of composi-
tional genomes [49]), proposed to play a crucial role in the GARD’s evolutionaty behavior. Introducing
substantial inhibition in B is expected to result in net catalysis because an inhibitor of an inhibitor is
an activator [20].

Catalysis, the enhancement of reaction rate by an external chemical component, was recognized
as eatly as 1836 by Berzelius, and Ostwald applied the term awutocatalysis in 1890 to reactions that gain
speed as they proceed [26, 44]. In the genetic approach to life’s origin, tesearchers invoke one or
several autocatalytic molecules as the core of a prebiotic entity. This is exemplified by the hyperycle, a
set of self-replicating polynucleotides, coding for and acted upon by enzymes [10, 30, 58]. In the
metabolism-first domain, autopoiesis [67] and the chemoton model [12] are examples of collective
autocatalysis [25].

Collectively autocatalytic systems feature a central role not only for self-catalysis, but also for
mutual catalysis. In this, they arguably resemble present-day living cells, which harbor self-catalytic
polynucleotides as well as a plethora of mutual catalysts that constitute metabolic pathways. Here we
utilize a metabolism-first simulator to examine the relative importance of the two catalytic modes
(self- and mutual catalysis). Previously [11], an abstract chemistry model has been used to demon-
strate that self-maintaining organizations arise only once self-catalysis is completely inhibited [11, 62].
We attempt to extend such results in the realm of the GARD kinetic model, asking what features
of the B network contribute to the evolution of the ensuing compositional assemblies. It is shown
that excess mutual catalysis is a necessary, though not sufficient, condition for displaying several
evolutionlike characteristics, including a high number of composome types, higher evolvability scores,
and a significant response to selection.

Recently, it has been argued that collectively autocatalytic metabolic networks, such as the GARD,
do not allow for fitter compositional genomes to be maintained by selection. Vasas et al. [68] compared
the frequency ranking of random GARD compositional assemblies before and after selection, and
found that the relative ranks changed only slightly. This was taken as evidence for an inherent evolu-
tionary limitation of metabolism-first scenatios. Here it is demonstrated, based on a large number of
simulations, that when quasi-stationaty composomes rather than arbitrary compositions serve as selec-
tion targets, GARD networks ar capable of a significant response to selection. Importantly, this
can happen chiefly when a high proportion of mutual catalysis is present in a GARD network. The
results highlight the potentially important role of mutual catalysis, as compated to self-catalysis, in the
emergence of early lifelike systems.

244 Artificial Life Volume 18, Number 3
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2 Model and Methods

2.1 GARD Formalism

The regular GARD formalism describes the time-dependent dynamics of a molecular assembly,
by following the fate of a compositional vector whose elements are the molecular counts #; within
the assembly:

V:{i’lhﬂz,...,ﬂ[\"c} (Zzl,,N(,) (1)

The vector dynamics is governed by mutually catalytic interactions among the invariable number of
constituent molecule types, Ng. The assembly grows by accretion of environmental molecules, and
once a limiting size Ny, is attained, random fission is applied, producing two progeny of the same
siz€, Nmin = Nimax/2, one of which grows again, generating growth-fission cycles of consecutive
generations. GARD dynamics is described by a set of ordinary differential equations

dn; Ne 7 Ne
= (Aep,N — ko) | 1+ Z L’)yﬁj v N= Z iy (2)
J=1 i=1

whete dn;/dt is in units of the individual reaction rates at which the counts of elements are chang-
ing [49], and £ and 4, are respectively the basal forward and backward rate constants (joining and
leaving the assembly). Typically £&¢ > 4y, reflecting a high equilibrium constant £¢/ £, for sponta-
neous amphiphile accretion (Table 1). Here p; is the buffered concentration of molecule type 7 in
the environment (assumed here to be equal for all 7 values), N is the assembly current size, and 3, is

Table I. Simulation parameters. N is the number of molecular types (repertoire size); N.x is the assembly pre-fission size;
k¢ and ky, are the respective basal forward and backward rate constants; p; is the buffered environmental concentration of
molecule type i; L and o are the respective mean and standard deviation of the lognormal distribution of (3; values (Appendix A.1,
Equation 12); GEN is the duration of a simulation; Lognormal random seeds is the range of random seeds used for simulations;

L,op is the constant size of the population in the population GARD.
Ng 100
Nimax Ng
ke 10
Ko 1o
i 1/Ng
n -4.0
o 4.0
GEN 5,000
Lognormal random seeds 1-10,000
Lpop 1,000
Artificial Life Volume 18, Number 3 245
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the non-negative matrix element signifying the rate enhancement exerted by an assembly molecule
of type j on an incoming or outgoing molecule of type 7

) ) ksz(l+Bi/) ) )
Tout +]in P = lin +/in (3)

.f><(1+[’>,/)

The chemical reaction in Equation 3 embodies the notion that molecular catalysis equally affects the
forward and the backward rates, obeying the constraint that a catalyst may not change the equilibrium
constant of the reaction it affects. This means that even under catalytic action, the relationship &¢ > &,
prevails.

The matrix B represents a network of self-catalytic (diagonal elements) and mutually catalytic
(off-diagonal elements) catalytic interactions (Figure 1), with self-catalysis represented by the case
J = 7 (Appendix A.1, Equation 13). The matrix elements are randomly drawn from a lognormal
distribution (Appendix A.1 and Equation 12) [49].

2.2 GARD Simulations

The model is subjected to a kinetic Monte Catlo simulation based on Gillespie’s algotithm [16, 17,
51] using parameter values similar to those employed in previous studies (Table 1). Simulations are
run using MATLAB versions 7.6—7.10 (the GARD10 code is available upon request). A set of
10,000 GARD simulations is generated, all with the same parameters, and each with a different
matrix 3 generated by the MATLAB pseudorandom number generator with seeds 1-10,000. The
validity of the conclusions drawn here is ascertained by repeating the simulations with smaller data
sets, with seeds 1-2,000 and 2,001—-4,000, striving to verify that the entire 10,000-strong data set
adequately represents the GARD simulation space. The random sampling of 3 values may be per-
ceived as representing different possible GARD environmental chemistties.

The relative mutual catalysis power

N¢ Ng
2. B
== N¢
Pwe =—F N2 (4)
By
g=1

(a) (b)

Figure |. Network representation of GARD’s 3 matrix. Two cartoon networks are shown, one with excess mutual catalysis
(2) and the other with excess self-catalysis (b). In the electronic version, colored circles represent different molecular
types, and arrow thickness represents catalysis strength (Equation 3). Self-catalysis is the shortest closed loop, containing
one molecular type (see Appendix A.l, Equation |3).
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is defined as the sum of all rate enhancements divided by the sum of self-catalysis rates (diagonal
elements). Because there are only N, diagonal elements and the total number of elements is N, an
appropriate correction is introduced. Thus, the excess of mutual catalysis is represented by pye > 1,
while the excess of self-catalysis (or autocatalysis) is portrayed by pp,. < 1.

2.3 Compositional Similarity and Compotypes
The similarity between the compositions v* and v° of the respective assemblies at generations X and
0 is defined as the dot product H (see Equation 5) of their composition vectors [49], typically cal-
culated at assembly size Ny, (end of the growth cycle).

X

H(x,8) = H(v,»") R

(5)

GARD dynamics is visually portrayed by a siwilarity carpet, showing H between any pair of parent
assemblies during a simulation (e.g., Figure 10 in Appendix A.4). Composomes, appeating as dense
areas with high similarity near the main diagonal, are defined as any two consecutive generations
where H(X, X + 1) = 0.9 [56]. Inter-composome similarity is viewed by off-diagonal examination.
The time duration of different generations (Equation 2) is different due to different growth path-
ways; hence a certain level of selection is already achieved by the matrix B causing composomes to
appear more frequently than random compositions [49].

All the compositions belonging to composomes in the entire simulation undergo £-means cluster-
ing [56, 61], and the centers of mass of the resulting clusters ate defined as compotypes.

2.4 Similarity Autocorrelation
The similatity autocotrelation function, ¢(A4), akin to a Fourier transform of the compositional
similarity time series, is defined by

(A7) = CH(X, %) - H(X,8)) = (H(X,5)) (6)

where {---) denotes averaging over all generation pairs fulfilling & — X = Az This function is history
independent, that is, no conditions are imposed on the events occurting between generations X and 8.

«(A?) is fitted with a single exponential with parameters T and Hy using a least squares fit (see
Appendix A.2, and Figure 12 in Appendix A.4):

(A7) = (1 = Hy) exp (—é’) + Hy (7)

The parameters T and H, are used to define a measure of evolvability (Section 3).

2.5 Selection in GARD

For each simulation, the most frequent compotype is chosen as a target, 1. A selection-GARD simulation
is then run, whereby the growth of an assembly at generation X is biased toward T via a growth bonus
parameter

G, =5 - H@WX,T) (8)

manifested as a temporary enhancement of the corresponding (3, values, as suggested [68], where s > 1 is
a fitness gain, embodying a selective advantage, and for consistency with previous work [68] H(X,T)
is calculated at assembly size Ny, that is, the beginning of the growth cycle.
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The modified matrix element Bj; is obtained at each generation according to

B, iotj & vX
’ — 7
Bi(X) - { G/, . B//’ 7 andj = VX (9)

where 7 and j are molecular type indices, and ; modification is effected for all 7,7 (and /) pairs
contained within the current assembly. Thus, the network will be perturbed only at edges present
within the cutrent assembly according to how similar the current assembly is to the target. In the
selection-GARD simulation, a compotype T” is identified as having the highest H value with respect
to T. An unambiguous identification of T” is afforded by the fact that the mean similarity between T
and T’ in the entire data setis H = 0.9933 + 0.0217. The selection excess is subsequently defined as

SE :f;’_r (10)

where f;+ and fr-are the fractions of generations belonging the respective compotype (before and
after selection). Selection excesses =1.05 and <0.95 are respectively taken to represent positive and
negative target selection; the rest are taken to signify no selection.

2.6 Selection Dynamics in a Population of Compositional Assemblies

An initially random population of a fixed number of assemblies, I,.p, is allowed to simultaneously
grow according to Equations 1 and 2 and its idiosyncratic composition. When one of the assemblies
reaches the limiting size N, it divides by random fission, and a randomly chosen assembly from
among the other I, — 1 assemblies is removed, thus keeping the population size constant. This is
repeated for GEN splits (Table 1). This protocol is based on the classical Moran process [36, 68, 70],
and to some degree reflects an eatlier attempt to simulate GARD populations [38].

The frequency of the target in each population is defined as the number of assemblies that are
highly similar (H = 0.9) to the target compotype taken from regular GARD for the same 3 network
(Figure 13 in Appendix A.4). Selection is exerted by performing a simulation with the same parameters,
biasing the growth of assemblies toward a target compotype as for regular GARD (Equations 8 and 9).
The selection excess is defined as in Equation 10, where f1+ and fr-are respectively the fractions of
assemblies within the population belonging to the target compotype before and after selection.

3 Results

3.1 Selection in GARD

We used GARD simulations to ask what is the selection response of compositional assemblies. A
value for the selection excess was obtained for each of 10,000 simulations, using a modest value of
the fitness gain, s = 1.1, in line with previous work [68]. Figure 2a shows the cortrelation between the
frequencies of the target compotype with and without selection (examples of regular GARD carpets
before and after selection are given in Figure 14 in Appendix A.4). An overall skew is seen here
toward positive selection. The figure also demonstrates that significant positive selection, as well
as negative, occurs over most of the range of f:

Figure 2b shows the distribution of selection excess values for the entire data set (Equation 10).
Importantly, a considerable percentage of the simulations (33%) show positive selection, with a mean
selection excess of 1.38 for selection excess >1.05, and as much as 10% shows selection excess >1.5.
Interestingly, 31% of the cases showed negative selection, with a mean selection excess of 0.775 for
selection excess <0.95, and about 36% were neutral to the selection pressure. Similar to the skewness in
Figure 2a, there is a slight bias in favor of positive selection, as indicated by an overall mean selection
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Figure 2. Selection in GARD. (a) The correlation between the frequencies of the target compotype in the basal simulation
(fr) and its frequency after applying selection (fr). In the electronic version, color represents probability out of the entire
data set of 10,000 simulations, and positive and negative selection are respectively seen above and below the diagonal
(selection excess = 1.0, solid black line). The dashed and dotted lines respectively mark selection excesses of % and %
(b) Selection excess histogram for the entire data set. Simulation parameters are given in Table .

excess equal to 1.05. Notably, higher mean selection values positively correlate with the number of other
compotypes coexisting with the target compotype in a given system (Figure 15 in Appendix A.5).

GARD simulations are used to see how attributes of the catalytic network embodied in the matrix
govern the evolution-related dynamics of compositional assemblies. It is asked how the mutually cata-
lytic power pn,. (Equation 4) influences the selection response. A clear trend appears here, whereby
strong positive or negative selection is found almost entirely for pp,. higher than 1 (Figure 3b).

The main trends appear also at lower simulation counts, barring small-number fluctuations at high
Pme (Figure 3a). For example, for the range of py,. > 100, a meaningful p-value with 5% significance
level is achieved only after performing more than 2,500 simulations (Table 3 in Appendix A.6). The
other two evolution-related parameters withstand similar scrutiny (below).

3.2 Populations of GARD Assemblies
The foregoing simulations of the regular GARD model addressed the case in which at each time
point only one GARD assembly is considered. To enhance the capacity to draw conclusions about
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Figure 3. The dependence of selection excess (SE) on mutual catalysis power (pmc). (2) Mean SE versus logjopmc, collected
from 10,000 GARD instances (solid black line, smoothed) or from two subsets of 2,000 instances, random seeds |—2,000
(ovals) and 2,001—-4,000 (crosses). (b) Density plot of SE versus log|opmc. In the electronic version, color represents prob-
ability of finding instances with specific (SE, pmc) values in all 10,000 GARD instances. Data is the same as in Figure 2.

selection in GARD, 1,000 simulations were performed, each for a population of 1,000 assemblies, under
the constant population conditions. Figure 4 shows an example of the dynamics for one of
the networks. Starting from a population of random assemblies, the population frequency of the target
compotype gradually grows over the first 10,000 split events, reaching a plateau with fluctuations,
signifying the compositional preference imposed by the matrix B towards this compotype. When
selection toward this compotype is applied (Equation 9), this general behavior is retained, with a faster

T — . -
06 | = Mo selection 1
o | —— Under selection
c 05 ; =
[ F]
=
E 0.4 = =
a
> 03k
(=]
g 0z
C 01 -
o | ] 1 l
1] 2 4 5] ] iC
Time [splits] % 10"

Figure 4. An example of the development of a compotype in population dynamics, without and with selection. This figure shows the
fraction of assemblies in the population that are highly similar to a given compotype (see Section 2 and Figure |3 in Appendix A.4)
over a large number of splits. Simulation parameters are lognormal seed = 3, GEN = 100,000, and the rest are given in Table I.
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growth and a higher plateau, that is, showing positive response to selection. Similar to Figure 3b, strong
positive or negative selection is much more prevalent for py,. values higher than 1 (Figure 5b).

The effect of selection pressure on the frequency of the target compotype for all 1,000 networks is
presented in Figure 5a. Similarly to Figure 2a, an overall skew toward positive selection is seen (about
50% of cases), with some cases of negative (about 15% of cases) or no response to selection, and with
a mean selection excess of 1.254 + 0.804. Significantly, the ratio of the number of simulations showing
positive selection to that showing negative selection increased more than threefold, from 1.06 in the regular
GARD to 3.33 in the population-GARD. In line with previous work [68], the growth bonus was calculated
when the assembly size was N, (Equation 8). When the bonus was calculated for all time points between
Npin and N, (for a smaller set of 100 population-GARD simulations), the overall selection response
seems to become even more positive (70% of cases), with a higher selection excess value of 1.399 + 0.997.

3.3 Compotype Diversity

The influence of p,,,. on one of the attributes of GARD diversity, the mean number of different com-
potypes appearing in a simulation, is now analyzed. It is found that as p,,,. increases, so does the mean

] q
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Figure 5. Selection in population-GARD. Figure details for (a) and (b) are as in Figures 2a and 3b, respectively. Data set is
1,000 population-GARD simulations, whose parameters are collected in Table I.
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Figure 6. The dependence of compotype count (NC) on p,,.. Details are as in Figure 3.

number of compotypes, reaching a maximal value of nearly 3 at p,,,. = 100 (Figure 6a). Furthermore,
in the realm of excess self-catalysis (py < 0.5), one compotype appears in an overwhelming majority
of the cases (91%) (Figure 6b). In contrast, compotype counts between 2 and 6 are almost entirely
confined to the domain of excess mutual catalysis (pp, > 2). Curiously, even among the ~5,000
simulations that show only one compotype, a large majority have p,. > 2, suggesting that high mutual
catalysis is a necessary but not sufficient condition for a high number of compotypes.

3.4 GARD Evolvability

The similarity autocorrelation function (Equation 6) and its derived parameters (Equation 7) are
employed to obtain information on the evolutionlike dynamics of GARD assemblies. One possible
interpretation of the value of T is a depiction of the whole-simulation average of the assembly composi-
tional lifetime. Longer T may be taken to represent better average maintenance of compositional similarity
between consecutive GARD generations, symbolizing bettet reproduction fidelity. Likewise, 1/T may be
thought of as related to the compositional mutation rate. Indeed, effective compositional preservation is
implicated by the most frequent number of generations, T & 3, with a non-negligible probability for T >
10 (Figure 7a). Note that T does not represent the composomal lifetime. In fact, the most probable target
compotype lifetime (taking for simplicity the maximal time from each simulation) is 30, and the average is
434 generations (Figure 7¢). The other similatity autocorrelation parametet, Hy, is interpreted here as
showing the residual compositional similarity among assemblies along many generations in the entire
simulation. Thus, 1 — Hj is taken as proportional to the overall compositional diversity of assemblies
across the entire simulation. Note that H, is not strongly correlated with the compotype count (Figure 16
in Appendix A.5, correlation coefficient —0.049, /* = 0.89) and therefore constitutes a rather independent
diversity assessment attribute. The most probable Hy value is ~0.5, with a smaller probability peak at
Hy = 1. The latter stems from simulations in which a single compotype tends to dominate.
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Figure 7. Distributions of 7, Hp, and composome duration. (a) A histogram of 7: unit is number of generations, and the

rightmost bin represents all data with InT > 3. (b) A histogram of Ho, unitless. (c) Distribution of the longest appearance
of target compotypes. Data in panels is the same as in Figure 2.
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Figure 8. The dependence of the evolvability score (EV) on pp,.. Details are as in Figure 3.

A score is defined, which could arguably assess a GARD system’s evolvability:
EV =7(1-Hp) (11)

A larger evolvability score will typically arise when the system concomitantly displays appreciable
trans-generation compositional preservation and higher overall compositional diversity. This compound

80 T T T
ﬁﬂ - —
[1H]
(=]
z
1=
4]
o
20— =
g 05 Kl 2

Nouas / N
Figure 9. The percentage of regular-GARD instances exhibiting extreme evolution-related parameters as a function of
maximal assembly size (Ny,ax). In the electronic version, the values taken are: compotype count >2 (blue), evolvability

score >| (green), and selection excess >| (red). All parameters, except N,.,, are as in Figure 3b. Full histograms and
their related data are given in Appendix A.6 (Figure 17 and Table 3).
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measure reflects similar definitions of evolvability [7, 43]. Similar to the selection excess and number of
compotypes, a clear trend appears, whereby high evolvability scores are much more prevalent for pp,.
values higher than 1 (Figure 8).

3.5 The Effect of Assembly Size

The effect of the assembly pre-fission size Ny, on GARD’s evolutionlike behavior was studied by
performing two additional sets of 10,000 simulations, each with the same parameters as in Table 1 except
for N = N¢/2 and 2N, (Figure 9; Appendix A.6 Figure 17 and Table 3). While for the smaller N,
value, the percentage of beneficial outcomes seems to be even higher than for the nominal Ny, = N, a
larger Ny, value appears to have a disruptive effect because the system is neating the equilibrium steady
state [23]. This is especially seen for the compotype count and the evolvability score.

4 Discussion

4.1 The Significance of Mutual Catalysis

One of the dominant concepts in prebiotic evolution research is the replicator-first scenario [10, 32,
40]. Based on the concept that molecular replication is related to self-catalysis [41], such views may be
perceived as related to the RNA-first scenario, positing that life began with a unique self-replicating
polyribonucleotide. In this realm, it is argued that more complex interaction networks have arisen
only at later stages, as when precursors for the autocatalytic molecule have been exhausted [31].
Our simulation results demonstrate an advantage for a network-first scenario, in which a large number
of molecular components mutually interact. While arising from a metabolism-related framework,
such results may be taken as relevant to the question of whether life’s eatly precursors were a set
of replicators or a metabolic network. Note that the present work makes a direct comparison between
a metabolic network with frequent self-catalytic interactions and a metabolic network with frequent
mutually catalytic interactions, and therefore has only indirect relevance to the question of the validity
of replicator models. It is conceivable that future work incorporating templating biopolymers together
with mutually catalytic networks will better resolve this issue.

Awidespread argument against metabolism-like entities being the first seed of life is the assertion
that metabolic networks cannot store and propagate information. The GARD model may be viewed
as a counterexample, as it is endowed with a (limited) capacity to store and propagate compositional
information. This has implications for a set of previously proposed models involving networks of
molecular interactions. Two of the eatliest relevant concepts are Ginti’s chemoton [12, 13, 63] and
Maturana and Varella’s autopoietic systems [35, 67]. Autopoiesis chatacterizes a spatially confined
network of molecular components, whose mutual interactions continuously regenerate the network
itself. The chemoton is described as a system of three subnetworks: metabolite generation, template
copying, and membrane synthesis. We prudently suggest that GARD may be viewed as a special case
of autopoietic-chemoton-like models, where template copying and compartmentation are embodied
in one entity, and a continuous supply of metabolites is afforded by the spontaneous accretion of
lipids from the buffered environment.

4.2 The Effect of Mutual Catalysis on GARD Diversity and Evolvability

An important result of this work is that networks within a certain range of kinetic parameters,
namely those that exhibit excess mutual catalysis, lead to enhanced diversity and evolvability of
GARD compotypes. The compotype count is a direct indication of the degree of composomal di-
versity. This result is related to an important aspect of eatly evolution: Self-catalysts tend to propa-
gate their own identity and suppress processes essential for the increasing complexity necessaty for
transitions from eatly seeds of life toward systems resembling present-day life. The presently dem-
onstrated importance of mutual catalysis echoes the notion of systems prebiology [21, 57], whereby it
is suggested that life began its trajectory from complex chemical mixtures obeying network behavior
similar to that of metabolism in present-day cells.
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4.3 Compotypes as Selection Targets

One of the unique corollaries of the GARD model is the emergence of composomes, dynamic states
of compositional assemblies that embody both metabolism-like characteristics and a rudimentary
capacity to store and propagate molecular information [49]. Composomes may be considered as
forming bridges between seemingly disparate views of the eatly seeds of life: metabolism first
and replicators first. Compotypes are further defined as centers of mass of composome clusters,
which may be regarded as analogous to species or quasi species [6]. This is due to the fact that
a compotype is a distinct entity, with distinct physical properties and hence fitness encoded in its
compositional information, different from those of other compotypes but still harboring consider-
able internal variability of constituents. Therefore, compotypes are considered as natural targets of
selection, as compared to randomly chosen compositions, as previously pursued [68]. Note that
here we have a measure of selection inherently present in the GARD model even in the absence
of external selective pressure, due to the fact that different composomes have different average
growth rates. This is seen in the present population GARD simulations, which are seeded with a random
population, but show a gradual increase of the population frequency of a specific compotype even in the
absence of externally imposed selection. This increase comes at the expense of other compositions be-
cause of the constant population condition.

4.4 Selection in a GARD
The present results show that GARD assemblies can exhibit positive or negative selection toward a
compotype target, as well as no selection at all. While in regular GARD the overall average selection
excess is merely 1.05, it is noteworthy that as many as 10% of the simulations show high selection
excess, >1.5. Importantly, these general results are borne out both in simulations of the regular
model and in simulations involving populations of assemblies. Previously, GARD population dy-
namics has been studied by addressing various emergent properties, including a comparison of finite
and infinite chemical environments [38]. Another study [70] showed that compositional inheritance
also emerges in the GARD model variants involving assembly populations and spatial proximity
interaction effects, and that it emerges in both a thermodynamic and a kinetic interaction regimen.
Analyzing GARD, both positive and negative selections can be observed in practice only when
the undetlying network exhibits mutual catalysis excess. This conclusion is strengthened by its dem-
onstration in two different simulation modes: in the regular model and in populations. Notably, pos-
itive selection is observed appreciably more often in population GARD simulations, perhaps
reflecting the advantage of addressing populations of competing entities with different reproductive
rates. Furthermore, this selection response tends to be augmented as the number of coexisting com-
potypes incteases in a given simulation, which may indicate a capacity of selective forces to provide an
edge to the target compotype in inter-compotype competition. Further in-depth analyses (currently
underway) of the ultrastructure of the B network, as well as subnetworks (quasi compartments [68]),
could lead to a better understanding of the influence of py,. and the compotype count on selection.
The present method for biasing the growth rate of a GARD target composition is in principle
similar to that used previously [68]. In both cases, modifications are in effect introduced to 3 matrix
elements. However, the previous analysis utilizes an interim formalism, the Eigen equation, for
replication-mutation dynamics [10], and the selection-related modification is exerted by multiplying
the growth rate by fH, defined in the same way as in Equation 8. The method utilized here involves
direct modification (Equation 9), a possible explanation for the discrepant results obtained by the
two reports. There are, however, additional significant differences between the two studies: (a) a pre-
fission value Ny, = 100 used here, as compared to Ny, = 6 used previously, an obligatory small
value requited for the realistic application of Eigen’s formalism with the available computing power;
(b) a large difference in repertoire size (N = 100 here versus N = 10 in the eatlier study); (c) the
performance here of 10,000 random simulations, considered essential for proper statistical rigor, as
compared to only a single simulation done previously. Both points (b) and (c) provide a significant
edge to the present simulations in sampling the (3 interaction space, which allows drawing conclusions
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with higher certainty. In the future it will be interesting to consider additional methodologies to exert
external selection. One could be a variant of the presently used method, whereby the B network will be
biased by a constant factor and not employing target similarity-oriented bias. Another could be biasing
the environmental concentration p, (Equation 2) by a constant factor based on the molecules that are
contained in the target compotype.

5 Conclusion

The GARD model embodies the inheritance of compositional information in the realm of a lipid
world scenario for eatly evolution [20, 21, 23, 27, 48, 49, 51, 55—57]. The GARD has recently been
pursued in several additional publications [20, 39, 68, 70] and has been chosen as an archetypal
metabolism-first realization [68]. This suggests that despite being a simulated toy model, the
GARD has sufficient complexity to shed light on some important questions in the field of prebiotic
origins. In the present work an attempt is made to shed further light on some of the GARD’s
evolutionary features. It is expected that the present insights will become instrumental in further
efforts to extend the GARD beyond the monomer world [54], as has been preliminarily explored
[55]. This might be necessaty to reveal the capacity of the GARD model to capture the much-
needed open-ended attributes of natural selection and evolution.
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Appendix

A.l Distribution and Sampling of the GARD Matrix 3

While not much is known about the values of the rate enhancement between prebiotic molecules,
there is a need to consider such values by a physically reasonable method. 3, values are randomly
generated based on a lognormal distribution

P = — e ( (in By — ) ) 12)

€ 2
pov2T 20°

where p and o are the mean and standard deviation, respectively, which can be considered as a

“natural” distribution [33], in accordance with the receptor affinity distribution formalism [28, 29,

46], and it was also shown that a lognormal B increases the reproduction fidelity over the normal 3

in GARD [52]. Each randomization of the 3 network may be thought of as representing the relative

rates of the N molecules as they might ensue from different possible GARD environments.
Self-catalysis in GARD is represented by

i . .
Z.out + Z'in [_> lin + lin (13)
Often self-catalysis is written as [4]

Bxy

X+YSvy4+y (14)

The seeming dichotomy between the notations B,; and Pxy-is clarified on noting that in the GARD,
molecules have two states, 7z and ouf, which behave as distinct chemical species. While it is possible
that more complex pathways would also be autocatalytic [44], this work refers to self-catalysis as the
simplest closed subnetwork of the B network, containing one element (Figure 1).

A.2 Fitting the Similarity Autocorrelation Function

The fitting procedure is as follows: (1) Calculate Hy as the mean of ¢(A#) in the interval [GEN/4,
GEN/2]. (2) Guess T* as the first instance ¢(A7) drops below Hy. (3) Smooth the ¢(A#) tail by forcing:
o(Ar > 1) = H,,. (4) Fit an exponential (Equation 7) to the smoothed ¢(A7), using nonlinear least
squares with a tolerance of 107,

Examples are given in Figure 12 in Appendix A.4.
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A.3 p-Values

See Table 2.

Table 2. Student’s t-test statistical analysis for the selection excess of p networks exhibiting pp,c > 100 (Equations 4 and
10). Test was run using MATLAB function ttest, against the null hypothesis that the data are a random sample from a
normal distribution with mean 1.0, per specific ranges of lognormal random seeds.

Random-seed range Pme > 100%* Selection excess' p-Value

50-300 3 0.973 £ 0.0395 3.57 x 107!
300-800 5 1311 +0.389 149 x 107
1,000-3,500 40 1.100 + 0.325 595 x 107
5,000-10,000 70 I.119 +0.248 1.45 x 107
1-10,000 143 1.105 £+ 0.272 803 x 10

"The number of networks exhibiting high p. value.
TMean and standard deviation of the selection excess of these networks
(under regular GARD simulations).

A.4 Examples

See Figures 10-14.

Generation

() Ampuung

Generation

Figure 10. Example of carpets from two regular-GARD simulations with lognormal seeds 42 and 41 (a and b, respectively)

and the rest of the parameters as in Table 2. Compotype counts are 4 and 2, respectively. 3 matrices are presented in
Figure 11, and functions c(At) in Figure 12.
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Figure I'l.  matrices for the two simulations in Figure 10. py,c values are 1.98 and 0.81, respectively. To better express the
richness of the 3 matrix, catalytic values are scaled according to p; = 2 logl0 £ - 4 (values of B‘,-j)« are generated according to
Equation 12).

—Cpad = 42
0.8 —Zged =41

C (At)

o 100 200 300 400 50C
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Figure 12. Functions ¢(At) for the two simulations in Figure 10. Insert shows initial decay on a log-log scale. Fitted parameters
for Equation 7 are T = 2.57, Hy = 0.49 (seed = 41), and 7 = 6.32, Hy = 0.50 (seed = 42).
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Figure 13. Example histograms of similarity between the target compotype from a regular GARD simulation, for a popula-

tion of 1,000 assemblies, with and without selection. A cutoff of H > 0.9 (dashed line) is imposed to identify the frequency of
the compotype in the GARD population. Simulation details are lognormal seed = 3, GEN = 5,000, and the rest as in Table 2.
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Figure 14. Regular-GARD similarity carpets before and after selection. (a) Similarity carpet of the GARD instance gen-
erated with lognormal seed | 14. The frequency of the target compotype is fr = 0.27. (b) The same carpet as (a), after
applying selection pressure, whereby the new frequency of the target is fr = 0.34. (c) Similarity carpet of the GARD
instance generated with lognormal seed 168. Here fr = 0.82. (d) The results after applying selection pressure. Here
fr = 0.74. Simulation parameters are in Table I.

Artificial Life Volume 18, Number 3 263

43



O. Markovitch and D. Lancet Excess Mutual Catalysis Is Required for Effective Evolvability

A.5 Selection Excess and the Number of Compotypes

See Figures 15-16.

Selection excess

1 z 3 4 5 <]
Mumber of compotypes (before)

Figure 15. The dependence of selection excess on the number of compotypes (before selection). Black solid line plots
the average selection excess per compotype count. Figure details are as in Figure 2a.

Probability (In scale)

MC
(b)

Figure 16. The weak dependence of Hy on the number of compotypes (NC). (a) Average Hy versus NC after 5-point
moving-average smoothing. Fitting the smoothed data to a linear curve gives a slope of —0.0485 with r? = 0.89. (b)
Density plot of the probability to have a simulation with a pair of Hy and NC values. In the electronic version, the color
represents the normalized probability to find a network with such a pair (in scale; red means that about 300 simulations
fall in this bin). Simulation parameters are as in Figure |I5.
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A.6 Assembly Size

See Figures 17 and Table 3.
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Figure 17. Histograms of the three evolution-related parameters, per N, values. (a) Number of compotypes (NC). In

the electronic version, blue bars are with N,,., = Ng/2, green bars are with N, = Ng, and red bars are with N,,,., = 2Ng.
The rest of parameters are as in Figure |5. (b) Evolvability score (EV). (c) Selection excess (SE).

Attificial Life Volume 18, Number 3 265

45



O. Markovitch and D. Lancet Excess Mutual Catalysis Is Required for Effective Evolvability

Table 3. Mean values collected from Figure |7. Number in parenthesis refers to the percentage of simulations that show
positive or negative selection.

Mean value

Number Nmax = 2Ng Nmax = Ng Nmax = Ng/2
NC 1.20 2.03 3.38

EV 0.72 111 1.35

SE 1.01 1.05 1.04

SE > 1.05 1.36 (8%) 1.38 (33%) 1.28 (48%)

SE < 0.95 0.85 (13%) 0.77 (31%) 0.71 (30%)
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5.1.1. Network motifs and their effect on selection in GAB
This work was done with collaboration with Prof. iUklon and Dr. Avi Mayo from the
Weizmann Institute.
The result above, that mutual catalysis excessrégjaired condition for effective evolvability,
demonstrates an advantage for a network first thiantkee origin of life, and calls for a more
detailed analysis of the inner structure3of
To this end, is analyzed under the scope of network motifs sidateraction patterns that
recur throughout biological and other networks [Ofe goal is to understand how the spectrum

of motifs in a giverf affects the selection behavior observed.

5.1.1.1. Binarizing B
As motifs are typically considered in binary netirvhile  is graded (an edge in the former
can only have a weight of 0 or 1, whereas in thierat can acquire a range pf values)f is

binarized using a cutoff which determine the mirlifhavalue to be considered:
1 B, =cutoff->» B,

— l’J
ﬂij o /Bij < CUtOff'Zﬂu
ij

Equation 9
In eachp, the counts of the 13 commonly studied tripletifedtl] are found by finding which
molecular types exhibits which triplet motif (with total of Ny/3!(Ng-3)! possible triads for
cutoff=0), and the count of a given motif ifsas standardized according to:

standardscore(x, ) = Coum(x,(,ig— #(X)
o

Equation 10
Where x is the motif index (x=1..13) apdandc respectively represents the mean and standard
deviation of its counts across §l networks studied. This extends an earlier studytren
structure of3 [128].

5.1.1.2. The motif spectrum of 8
Figure 10 shows the overall motif counts for diéier cutoff values, which is the underlying
motif spectrum. The shape of the spectrum doesdepend on the exact cutoff used. The
relative counts of the different motifs, especidhpse with the same number of edges, can be
understood when considering the graded to binagsttion (Figure 11). When there is no
cutoff, any three nodes will be maximally connectitat is motif #13, becaugl values are
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always positive as they are picked from a lognormatribution. As the cutoff gradually
increases, removal of any single edge from mot8 #dll lead into #12. By removing another
edge (e.g., by increasing the cutoff further), #10, #8 or #6 have equal probability to form,
depending on the exact edge removed. This canmtenaed further, giving rise to shape of the
motif spectrum. Thus, the general structure of tyifiais constant on average, and the counts of

motifs depend on the exact value of the cutoff.
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Figure 10: The underlying network motif spectrum of 3, under different cutoffs

(Equation 9). Data is averaged over 1,000 networks. Default cutoff used = 1e-5.

Figure 11: Network motifs hierarchy. When no cutoff is applied, any three molecules
exhibit motif #13 by definition (see text).
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5.1.1.3. Motifs in selection

In order to understand how does the motif spectaffact selection, networks are grouped
according to their selection outcome (positive,@onnegative) and the average motif spectrum
is calculated for each group (Figure 12). Netwonrksch exhibit positive selection show over
representations of two out of the three doubly-emted motifs (i.e. motifs with only two
edges), #1 and #2, while deficient with the thindo{if #4). An opposite behavior is observed
with networks exhibiting negative selection. Preabty, a network with more of motifs #1 and
#2 is more connected, i.e. existence of more pathsecting distant parts a network, because
each edge in these motifs poinis a different molecular type, whereas #4 reduces the
connectivity because the two edges point to theesawiecular type. It is suggested that a highly
connected network exhibit positive selection beeaitiss possible to have an increased flux
towards the compotype when applying the selecti@msgure. Additionally, networks with the

average spectrum exhibit no selection (Figure 12).
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Figure 12: Average motifs standard scores (relative to data in Figure 10), collected for
simulations showing positive, none and negative selection (blue, yellow and red,
respectively). Positive selection is defined as selection-excess>1.05 (SE, Equation 6),
negative selection as SE<0.95 and the rest is no selection.

5.1.2. A completely selfishp
It is interesting to do a thought experiment, asthte outcome of a simulation based on a
completely selfisi$3, e.g. for #j ;=0 andf; values drawn from a lognormal distribution. In
such a case, the value of the mutual-catalysis-p@aesmeter will assume its lowest value =

Ng® (pme. Equation 4 in [80]). It is suggested that in sacbase the most frequent compotype in
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the simulation will be composed almost entirely ofithe molecular type with the highdst
value as it will act as an exponential replicatéwditional compotypes may appear composed
majorly out of a single molecular type yet withfdrent levels of additional molecular types
depending on the ratios @f values, due to the stochastic nature of GARD. [@muases have

indeed been encountered (the left most bin in Ei@krin [80], for example)
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5.2 Chemistry biased fission
GARD'’s fission is a stochastic process, on averaigating two equal progeny, without regard to
mutual molecular interactions within the splittiagsembly. This fission behavior may not be
true to reality. Therefore, it was examined howidtng from this rule effects GARD behavior.
A new fission action proposed, with aim to allownare realistic budding-like split in GARD by
invoking a process with dynamics analogous to daissembly accretion. This type of fission is
referred to as “chemistry biased fission”.
A major drawback of random fission is that it codkestroy the composition the parent assembly
transfers to progeny, thus hampering its abilityaithfully replicate. The idea of the new fission
was guided by the notion that if a molecule of typeas drawn into an assembly by molecules
of type j (as directed by the value @f) then i and j will also favorably interact withthe
assembly and are likely to be located spatiallelwithin the assembly towards fission. This
involve a concept derived from the study of preskay cellular membranes, namely rafts, i.e.
membrane microdomains that are more ordered ahtiytigacked than their surrounding bilayer
[10, 77]. Rafts are related to the membrane funcéis they influence membrane fluidity and
trafficking [64, 99] and even relate to signal sduaction [33]. In GARD, chunks from a parent
assembly, strongly connected by a network of icteya in 3, are budded together during
chemistry biased fission and transfer as a singie akin to a raft, to a progeny.
Two types of new split action developed and studessnpetitive and non-competitive biased
fission. In competitive biased fission, moleculgpds which are connected by a strghgate
enhancement value have a higher propensity to bigeisame progeny. This means that fission
Is governed by a process analogue to how assemblysgut of the environment. The assembly
is treated as the (non-buffered) environment apdbgeny is grown out of the parent according
to a modified version of Equation 2, were at edejp & molecule is picked out of the parent and
placed into a progeny, until the parent diminished the size of each progeny reachgg.N
Thus, the two progenies simultaneously grow andpsienon the same set of limited resources,
i.e. the parent. In contrast, non-competitive kdaBssion describes a case whereby only one
progeny is grown out of the parent as best asnt wdiere the second progeny is left with the
'leftovers'. These are in contrast to random figsio which a progeny is created by selecting,
one by one, molecules from the parent and pladiegitin one of the progeny. The chance to
select a molecule of type i is proportional todtsrent count in the parent assembly, and this is

continued until the size of the progeny igiN

5.2.1. Chemistry biased fission algorithms

The algorithm for chemistry-biased-fission is:
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1. Select a random molecule from the parent assendnlyedch progeny (labeled childA &
childB).
2. Continue until the parent assembly has 0 molecpk$orm for childA:
2.1.Select 1 molecule from the parent assembly by uBEiqgation 2 with k=0. p; is the
current concentration of molecular type i in thegod assembly,jns the current count
of molecular type j in childA and N is the curresite of childA.
2.2.Update the parent and childA according to 2.1 abf@ecrease and increase by 1 the
relevant molecular type from the parent and indjlrespectively).
2.3.Perform 2.1-2.2 above for childB.
The algorithm for non-competative-biased-fission as chemistry-biased-fission, with the
following changes:
2. Continue until the size of childA assembly reacNgg.
2.3. This operation is canceled.

3. ChildB receive the remaining composition of thegudyr

5.2.2. Analyzing GARD'’s fission behavior
The effect of different fission actions on the danty autocorrelation (Equation 7 in [80] and
chapter 5.1) was studied. The similarity autodatien is akin to a Fourier transform of the
compositional similarity time series. Its deriveargmetersy and H, were employed to obtain
information on the evolution like dynamics of GARiI3sembliesz depicts whole-simulation
average of compositional lifetime, where longerepresents better average maintenance of
compositional similarity between consecutive getiens, hence I/ is related to the
compositional mutation rate.qHlepicts the residual compositional similarity am@ssemblies
along many generations in the entire simulationsth lower H represents a higher overall
compositional diversity.
Figure 13 presentsand H distributions for the three fission actions, ptaks around 1.0 with
competitive biased fission and is narrower thardoam fission, while the second peak is larger
and shifted to smaller values. With non-competitbiased fission (while always choosing the
preferred progeny) the first peak is almost twoesnhmigher than competitive biased fission, and
its second peak is about one third than that of pmditive biased fission. This suggests that
competitive biased fission increases assembly sityercompared both to random fission and
non-competitive biased fission. For the lattersitimteresting to note that despite having an
overall lower probability for a high diversity,dbes allow in general for slightly higher diversity
than random fissionc distribution is practically identical with randofission and competitive
biased fission, with essentially the same powertai(Table 2). With non-competitive biased
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fission, t distribution peaks at smaller values than comipetibiased fission and has a power-
law factor of about three fourths of competitiveaded fission. Competitive biased fission
distribution is very similar to that of random fi®s. Non-competitive biased fission distribution
is different than competitive biased fission, pegkat slightly lowerr and is below competitive
biased fission untik~50, after which non- competitive biased fissiomhability is always
higher than competitive biased fission and randissidn.

Thus, removing the competition during fission résih a lower number of composomes, some
of which can reproduce more faithfully than if costipon existed, yet including competition

during fission significantly contributes to increagdiversity.
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Figure 13: Probability distributions of Hy (left) and t (right) for the three fission actions.

Abbreviations are: random fission, RF; competitive biased fission, cBF; non-competitive

biased fission, nBF-1. Right panel insert shows data on a log-log scale.

Fission | A B R

Random | 144 | 2.435 0.96
cBF 96.1 | 2.306| 0.96
nBF-1 951 | 1.683| 0.92

Table 2: Parameters of fitting the data of Figure 13 right panel to: P = Az "®, for the

three fissions actions. Fit interval is 10<t<250.
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5.3 A physiochemical realistic GARD model
This work is done with collaboration with Prof. Regel Zidovetzki and Dr. Don Armstrong from
University of California at Riverside, while Rafsied the Weizmann Institute of Science.
Understanding how vesicles replication rates dep@mdphysicochemical parameters can open a
new direction in the study of prebiotic vesicledday the groundwork for experimentally
studying the lipid world. To this end, a new modekl-GARD (R-GARD), was developed [6].
In the new model, replication and thus evolutionlipid vesicles is based on semi-empirical
foundation using experimentally measured kinetidues of selected extant lipid types,
comprising present-day animal cell. The conce@®-@&ARD draws from the regular-GARD as
it models molecular accretion rates.
Four lipid families were considered: phosphatidglaie, phosphatidylethanolamine,
phosphatidylserine and sphingomyelin, and cholektéespectively PC, PE, PS, SM and
CHOL, see Figure 14). The physiochemical propertiessidered for each lipid family were
seven carbon chain lengths (12-24 carbons) wite pessible degrees of unsaturation (0-4
double bonds). This gives a total environmentalergre size of N=141 (=4x7x5+1)
molecular types. R-GARD rate equation (Equation Kl)Yifferent than GARD’s equation
(Equation 2), as in the former the rate also dep@mdthe average properties of the vesicle and

in the latter it is based on interactions betweglividual molecules.

d[C, ] i i
dtw = kfiK? J[Cmi ]S_ kbiKt? J[Cvi]
Equation 11
C.i and G, respectively are the concentration of moleculeetypn the current vesicle and
environment, k and lg; respectively are the forward and backward ratestzont of molecule

o . K ad K 2
type i, S is vesicle surface area, and and "

are the respective forward and backward
functions that are a function of vesicle physicalperties. Composomes are found to emerge in
R-GARD, similarly to GARD (Figure 15). This supp®rthe possibility of experimentally
observing faithful replication of lipid vesiclesh& fact that composomes appear weaker in R-
GARD than in GARD is attributed to the usage ofisti@ molecules, suggesting that in reality
differences in mutual catalysis values are expetielde distributed more uniformly than in a

lognormal distribution as usually employed in GARD.
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Figure 14: Schematics of the lipids structure used in R-GARD.
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Figure 15: (a) R-GARD ‘carpet’ [6]. Composomes are marked by square boxes on the
diagonal; similar composomes are colored with the same color. As a similarity measure,
the Euclidean distance between the property-vector is used (as opposed to the
composition vector, Equation 1). (b) GARD ‘carpet’ with the standard similarity measure
between the composition vectors (H, Equation 3). Color code for both panels is: Red
marks most similar (values of 0 in R-GARD and 1 in GARD), blue marks least similar
(values of 3 in R-GARD and 0 in GARD) and white marks being outside of the range [0,
3] in R-GARD. Both simulations were run with Ng=20 and Npax=100.
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It is further found that vesicle replication ratelargely influenced by variations in the chain
length, unsaturation and relative environmentalceotrations of molecular types (Figure 16),
and as expected, the initial vesicle compositioasduot affect the final vesicle composition. The
decrease of replication time with chain length osaturation is a consequence of the defects
created in the plane of the bilayer by the mismatcthese characteristics, as expressed in its
rate equations. These defects allow for molecudeset accreted into the vesicle. Interestingly,
the effect of lipid variation on vesicle’s replicat rate can be considered as a further support to
the previous finding that the higher,Mof a compotype is the faster it replicates (chapi4.2),

as a higher No represents a higher molecular variation. A cotiaha of environmental
concentration of lipid types with average replioatitime is best seen in the case of PC, a
consequence of the larger surface area of PC wharkases vesicle surface size for a given
number of lipids in the vesicle coupled with théeef of additional PC concentration reducing
the concentration of the other species.
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Figure 16: Dependence of average replication time (ART) on various properties and
lipid species [6]. Circles represent simulations with starting vesicle composition with
binomial distribution and environmental composition of gamma distribution with sizes
from 10° to 10° molecules and 20 to 141 species. (a) ART vs. the standard deviation of
the length of species. (b) ART vs. the standard deviation of the unsaturation of species.

(c) ART vs. the environmental molar concentration of PC. Linear correlations for the
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three panels produce: (a) R=-0.61, slope=-0.56; (b) R=-0.39, slope=-1.73; (c) R=-0.28,
slope=-0.80.

An ongoing investigation with this model, studiespplations under a limited environment, in
contrast to the simulations performed in chaptdr In this investigation, the system is seeded
with a single vesicle and the reactor contains ghamolecules to form 4096 vesicles (i.e. 12
generations). The rest of parameters are idertbiddlose employed [6]. Interestingly, it is found
that vesicles of newer generations show a bigg#erdnce between growth-time of same
generations (Figure 17B). This suggests an evaluforesicles towards an optimal composition
which enables for faster growth, i.e. higher fithe&n overall increase in the growth-time is due
to the decreasing environmental concentration dieoubes (Figure 17A). This phenomenon is

currently under study.
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Figure 17: Vesicles growth time vs. vesicle generation, under a limited environmental
concentration of molecules. (A) Average growth-time of all vesicles that belong to each
generation. (B) The ratio of the fastest to slowest growing vesicles in each generation.
The first vesicle that was seeded in the system is generation=1. This figure is based on

20 simulations.
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5.4 Ecological dynamics of GARD population
This chapter describes work which has been accefwedpublication at the Journal of
Theoretical Biology.
Thus far, GARD was typically studied by focusingiadividual assemblies. The present paper
studies GARD population in a rigorous way by usstendard ecological tools. When simulating
populations of GARD assemblies, compotypes exhibinpetition similarly to that seen for
natural species, and it analyzable by a commoni mspéicies logistic formulation. With that, it
becomes possible to relate compotypes’ chemicanpaters to population ecological behaviors,
and to predict GARD’s behavior based on compotygasicture. Further, GARD’s assemblies
until now have been treated as information caryigositing the lipid world as an alternative to
the RNA world. This paper adds another layer to ARy considering3 as a rudimentary
metabolic network and a compotype as a rudimerdaggnism.
Prebiotic models have often focused on evolutiopapulations of self-replicating molecules,
without explicitly invoking the intermediate moldatrto-supramolecular-to-ecology transition.
Of note, a similar transition has been studied im@del of RNA-like replicators, in which
supramolecular entities (traveling waves) were tbtoplay a role in the ecology and evolution
of replicators [136]. Present life portrays a twar-fphenomenology: molecules compose self-
replicating supramolecular structures such as cetlsorganisms, which in turn portray
population behavior, including selection, evolutioand ecological dynamics. Thus,
understanding how molecular mixtures gave risevtving entities which in turn gave rise to
simple ecological niches will greatly contributedior understanding of the origin of life and to a
degree akin to the on-going pursuit to understand predict the dynamics of ecological
populations from the, often complex, metabolic engtic networks of the underlying species
[7].
An admitted shortcoming of GARD is the paucity afperimental verification of many of its
predictions. A proof-of-principle experiment shoalddress the question of whether vesicles are
capable of homeostatic growth and even rudimerttarnysfer of compositional information to
fission-generated progeny. Such experiments wowduire complex setups, accurate
compositional monitoring of individual amphiphilessemblies, not yet fully elaborated. A
promising lead would be the recent experimentalaafon of multi-component vesicles [82,
144]. Another critique of GARD asserts that it slates abstract molecules without specified
chemical properties. This point has been recendlyressed in an extension of the simulated
model to incorporate realistic physicochemical grtips of amphiphilic molecules, showing

that a measure of compositional heredity may bemesl ([6] and chapter 5.3).
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GARD simulations are used in this chapter to quatntely follow population-ecological
dynamics of composmal species. In the foregoindyaaa a multivariate logistic equation is
used to relate systems chemical parameters of GAgemblies, including chemical diversity,
replication fidelity and compositional similarity tspecific ecological measures such as the

carrying capacity, the intrinsic growth rate and dompetition parameters.

5.4.1. GARD population exhibit natural-like dynamics
Different simulations with different underlying networks result in widely different dynamic
behaviors, such as delayed growth, different plegesnd “takeover” of a fast-rising compotype
by a slower one (Figure 18). Such dynamics arec&pof natural ecosystems that harbor
multiple species with competition or predator-preyationships. The resulted dynamics are
analyzed by a multi species logistic model for dapan ecology (r-K or Lotka-Volterra
competition model, Equation 7) [34, 133, 141].
That equation has a steady staf8=&;-Y 0;;C;>* and can be solved analytically only for the case
of a single species @¥1). For each simulation, the logistic parametersail Nc compotypes
are obtained by least square fitting and numenitafration, as detailed in chapter 4.5. Notably,
an adequate fit to such equation was observe fwtipally all GARD simulations performed,
with average root mean square difference=0.01940f04 the entire set of 1,000 simulations
performed. In contrast, several other models wiithilar overall characteristics gave an inferior
fit (chapter 5.4.5). Next, analyses are perfornadehed at relating the chemistry-base molecular

parameters of GARD to the ecology-related parametithe logistic equation.

5.4.2. Compotype intrinsic molecular repertoire
Each GARD compotype contains a subsehq{Nchapter 4.2) of the totaldNmolecular types
present in the environment. Such repertoire reginemerges as a result of the intermolecular
catalytic interactions i and in the present simulations an average 3465 is observed
(Figure 19). The effect of this chemical diversggrameter, No, on the K and r values of
individual compotypes is examined (Figure 20)sltaund that K values are inversely correlated
with N, @and in contrast, r values show a weak positiveetation. Thus, compotypes with a
large Nnho Will tend to have a larger growth rate and a senathrrying capacity. For cases with
negligible competition parameters this will amouata steeper ascent and a relatively low
plateau in cases of large,h
The dependence of K and r on,JNmay be explained considering the random naturthef

processes involved and the fact that external adret®ons of all molecular types are equal. A
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higher value of Mo increases the probability that a randomly impiggmolecule will be part of

the compotype’s intrinsic molecule repertoire, ardiag homeostatic growth rate.
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Figure 18: Examples of GARD simulations and fit to logistic growth. Simulation data is
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broken line and fit is solid line. Fitted parameters are collected in Table 3.
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Panel | B seed K |r[splits™] 4 c(0)
=1 =2 [=3 |j=4
AL |18 |=1 |0572] 2.06E-03 3.58E.03
A2 |30 |i=L | 0.937 | 7.70E-04 5.68E-02
. |10 |FL |0843] 8.48E02 1518 7.86E-11
=2 | 0538 | 1.28E-02| 0.633 6.80E-02
> laen |°L | 0548 240603 0.000 4.15E-02
=2 [0.273 | L.OOE-03 | 0.170 2 25E-02
=L | 0.555 | 4.90E-03 1.487 ] 0.486 1.94E-02
Cl1 |45 [i=2 | 0494 | 4.30E-03| 0.788 0.557 3.10E-03
=3 | 0.724 | 2.00E-03| 1.260 0.00D 5.46E-02
=1 | 0.462 | 4.80E-03 0.601 | 0.359 1.00E-03
c2 |7 =2 [0.734 | 5.30E-03 | 1.018 0.663 3.50E-02
=3 | 0.828 | 3.60E-03 | 0.000 | 1.919 3.13E01
=1 | 0.348 | 7.10E-03 0274 | 2.094] 0414 1.57E-02
=2 |0.448 | 3.20E-03| 0.585 1.014 | 0.456] 140E-03
Pt N3 o113 25102 0281 0038 0.130 | 1.59E-11
=2 | 0581 | 6.20E:03| 1.292 0000 5277 2 15E-01
=1 | 0.518 | 2.40E:03 7.198 | 1.814 | 0.000 | 1.46E-01
=2 | 0.342 | 1.06E-02 | 0.002 2.034 | 0.791 | 1.91E-06
P2 |1 35187 850803 0,101 | 0.855 0.334 | 1.20E-03
=4 | 0.341 | 2.70E-03 | 1.266 | 4.141 | 0.304 4.10E-03

Table 3: Fitted parameters of the simulations given in Figure 18.

Conversely, low Mo means that on average every molecular type exisitde the compotype in
higher counts, so when split occurs there is a&bettance that a progeny will contain the same
composition as the parent.

One may ask, whether there could be a parallelsrariy of these results in present day life. An
interesting analogous trend was observed in exeetiah data for 113 bacteria, whereby a
negative correlation was seen between measuredinigtime and metabolic network size [32].
However, direct comparison between compotype dyosrand present-day metabolism might
not be possible, as the latter is controlled byenogne, centralized informational entity acting

via a complex hierarchy of interactions [46, 116].
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Figure 19: Distribution of intrinsic molecular repertoire size (Nn) values for all

compotypes.

5.4.3. Compotype replication fidelity
The relation between K and the replication fide(fep, chapter 4.2) is analyzed in this section.
Frep measures the average degree of compositionaksitpibetween an assembly representing a
compotype and its progeny, both in fully-grown stdt, the carrying capacity, represents the
maximal number of individuals of a given speciest thhay be sustained in an ecological niche.
In the original Verhulst formalism, death was inlnoed to counter the Malthusian exponential
growth. Later, the r-K logistic formalism defined=Kirth/death [34]. In GARD, a positive
correlation between K andgkis observed (Figure 21). Unfaithful replicatioow Fep) means
that the progeny has lost its compotype stategeitthh another compotype species or to drift,
somewhat comparable to death of the species intiqnedhis may rationalize the somewhat
unexpected positive correlation between an emengehécular parameter such agpfand an
ecological one — the carrying capacity. Other reteships explored, between r ang,Fand
between K and r and the replication-timgy(tshowed no appreciable correlations (Figure 22
and Figure 23).
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Figure 20: The dependence on Nno. Data are binned according to N, values and
vertical lines represent standard error of the mean. Black solid line is a linear fit. (A) K
vS. Nmoi. Linear fit: K=—0.0371*Nmo+1.052, R?=0.978; (B) r vs. Nimo. Linear fit:
r=8.46*10"*No—1.06*10-3, R*=0.946.
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Figure 21: K vs. Frep. Blue and red dots are compotypes taken from simulations
exhibiting Nc=1 and N¢>1, respectively. Black solid line is linear fit to Nc=1 data:
K=9.23*F¢p-8.23, R*=0.876.
5.4.4. Takeover

In this section, the molecular mechanism behind ebelogical takeover is addressed. This
phenomenon is exemplified in panel B1 of Figure g,the observation that compotype C
shows a much faster ascent, reaching a 538 foldsexaver ¢ at time 990. Subsequently; C
increases substantially, becoming 5.82 fold monendbnt than € at steady state. This was
examined by analyzing an extended set of BXfetworks that exhibit 2. Two parameters,
MP and PP, were defined to quantify takeover bealravMP=Max(Gon)/Plateau(Gaw),
PP=Plateau(tgn)/Plateau(Gew), Where G, is the compotype with the lower plateau (Figurg 24
Two subgroups were examined: one showing cleaotade with MP>2 and PP>5, and another
in which no takeover occurs, with MP<1.5 & PP<4 rfrol). The inter-compotype
compositional similarity for pairs that exhibit &dver is found to be significantly lower than for
control pairs (Figure 25). These two behavior typesalso seen to be partially segregated in a
principle component analysis of the 6 fitted loigigharameters {r r;, Ky, Ko, aq2 and op1)

(Figure 26 and Figure 27). Intriguingly, the matpiof the variance in this plot is contributed by
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the competition parametew; (Figure 27). Work is underway to study the molacuhechanism

that governs across-compotype competition.
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Figure 22: K and r vs. t,p of all compotypes (A and B, respectively). Linear fit: K vs.
log10(trep) gives R°=0.48; log10(r) vs. log10(t.ep) gives R*=0.007.
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Figure 23: r vs. Fp Of all compotypes. Linear fit: log10(r) vs. Frep gives R?=0.10.
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Figure 24: Takeover in simulations exhibiting Nc=2. Additional simulations performed
for this part, giving a total of 316 such simulations. Takeover is represented by MP>2 &
PP>5 and control is MP<1.5 & PP<4 (each group consists of 40 and 87 simulations,
respectively). Max(C) is the value at the highest point and Plateau(C) is the average

value along the plateau.
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Figure 25: Compotype similarity in the takeover and control groups. Average cross-
compotype similarity (H) for the takeover group is lower than for the control group
(0.33+0.09 vs. 0.40+0.12; supported by a two-sample Kolmogorov-Smirnov test with p-
value=1.3*107).
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Figure 26: Principle component analysis (PCA) of the 6 fitted parameters (ry, r2, K1, Ky,
a2 and opg), performed using MATLAB princomp routine. The first two components are

responsible for 96% and 3% of the variance in the data, respectively.
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sample Kolmogov-Smirlov test found that the takeover group have higher apign iow Values

than the takeover (p-value=3.2*10%).

5.4.5. On the choice of specific logistic formulation
It was found above that the fit between the stashdaulti species logistic equation to GARD'’s
population dynamics data is very good. Howevers iunclear if this is due to a profound
similarity between the GARD model dynamics and-weatld ecology. It may very well be that
the good fit is due to the fact that this equatia@s many parameters, as even von Neumann is
said to say: “With four parameters | can fit anpbélant, and with five | can make him wiggle his

trunk™

[28]. To address this, several other multi spelagsstic formulations were tested, asking
whether they can similarly fit the data.

Any equation tested must include cross specieslicauaswell (i.e. the existence of at€rm in
dG/dt), because when multiple compotypes exist inoauftion they sometime exhibit a
coupled behavior such as takeover. The subsetlo&itdulations with a compotype coung=Hp
was used, being the simplest multi-species case.

Table 4 shows the additional equations tested hegether with the original equation (marked
V0). V5a is taken from [68] and V5b is a variatiohit. V2a and V4a are manually generated
based on V0. These four equations are fitted wdémitical procedure to that of which the
original logistic equation was fitted (chapteb), while they are similarly written in the omgil

form (form | in Table 4). The preferential statustlie specific logistic formulation used in this

® Demonstrated in: http://www.johndcook.com/blog/2@6/21/how-to-fit-an-elephant. Th& Harameter it time.
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thesis is apparent when the average root-meanegiearations (RMSD, Equation 8) from the

fit to VO is smaller than the in the fit to the ethd variations (Figure 28).

Additional equations were also tested. When VOrigten in a polynomial-like form (form Il in

Table 4), it is possible to systematically varyhile keeping a power of 2 present (e.¢f @

CiCj). This gives variations V3a-V3e. These were fitiadthis polynomial-like form, with

exactly the same procedure as before, yet thadittbutine was unable to converge in these 5

cases. No convergence was obtained also when looseergence criteria were used. As this is

potentially alarming, the fitting code functionglitvas verified, by comparing the ecological

parameters obtained for VO when it is fitted intbdorm | and Il. As expected, this gave

identical parameters values in both forms (for epl@nz=a;.r1/K1). The origin of this issue

requires further investigatién

Overall, these results support the usage of thggnali logistic formulation, which is commonly

used to describe natural phenomena, thus contputi recognizing GARD as a model of a

natural phenomenon.

Table 4 (below): Additional differential equations tested against the population data,

written for Nc=2. VO is the original equation. a) Grey cell represents that this form has

been fitted (see text). b) Number of free parameters for Nc=2 (in brackets for any Nc

value). ¢) Mean RMSD (Equation 8), when fitted against the dataset of 141 simulations

with NC:2.
Form P Form IP Parametefs| <RMSD>
Vo | 4 K —C —q.C dC, ) 6 0.0215+
d—Ctl = r1C1£ 1 ]k 12 2] F = xlcl _chl - ZlC1C2 (NCZ+NC) 00125
1
9 _x,c,-v,c2-z,0cC
dCZ:I‘C K,-C,-a,C, dt 2 — 1o, 212
—d'[ 22 K,
Voa q K —C +a.C dCl ) 6 0.0291+
e rlcl( K J o T maC% Teng [ o.o1es
1
d
dC, _ . [KZ -C, szCDJ TCtz: X,C, =Y,C; ~Z,C.Co
dt 22 K
2 Co =L, —C —-C,
Co =L, —-C,—-C,

“When | asked colleagues in Israel and aroundltiteegshould | be surprised when get such a goaxhfit to one
specific variation of the logistic equation, eveiggle one told me that | should not, though noas able to
provide further information as to the reasoningibelthis...
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Vaa ~ dc, 5 0.0414%+
K -C, —«,C _ 2
({1—?‘ 101[ < 2] o e T ACG TNk 0.0278
dC, 2
60, (K -CpmaG )| ar e TN - HEE
dt 2 K
V5a | dc, . 2 8 0.0644+
dt={bl(cl+(llzczj_dl}01 thl (NC2+2NC) 00586
O'Cz_{bz( <, J o|2}c2 h,C2
dt C, +a,C,
V5b | dc, C +a,.C, , 8 0.0331+t
dt:{bl_d{ : J}Cl—hlcl (N*+2No) | 0.235
dig_ _ C2 +a21C1 _ 2
=[5 o ne
V3a| g C dC 6
T(il = C{Xl —Ylé— Zlczj d_'[l =X,C, -YC,-ZCC, (ZNCZ-NC)
dC,
=X,C,-Y,C, -Z,CC
d—C2:C2 Xz_Yz&_chl at 2%z = Yol = Lol
dt C,
Vab| 4 c? dc 6 (2N
aG =C| X,-Y,=%-ZC, at = XC,-YC; -ZCC, Nc)
t C, t
2 dG, _ 2
dC2 _ C2 X2 —YZ&—chl F - X2C2 _Y2C1 - 22C1C2
dt C,
V3c | ¢ C2 dC, 6
_(il:cl(xl_chl Z ZJ E = x1C1_Y1C12 _21(:22 (Nc*+Nc)
1
2\ | d
ds, =C,| X,-Y,C, ZZ& = = X,C, -Y,C; - Z,C!
Vad | 4 C d °
_Clzcl Xl_chl_Zl_Z _q = X1C1_Y1C12 —21C2 (NC2+NC)
dt C t
dc, c,) | 96 2
—=2_C|X,-Y.C -z 2| | —==XC -YC, -2C
at 2( 27 Tl 2C2j dt 22 7 1% 2%1
V3e dc, C C? dC 2 6
E:C{X“Yl C, ZFJ P =XGYC-ZC | enetg
dc, C c2) | dG 2
2 _clXx -y 2_z>x || —=2=X.C,-Y,C-2ZC
; 2( 2~ Vee ZCZJ dt 22 T T T Ao
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Figure 28: Distribution of RMSD values of 4 variations of the logistic equation and of

the regular form (VO, blue color).

5.4.6. Broadening the analysis of selection in GARD
GARD populations were considered in two paperghe earlier one it was an addition to the
main selection and mutual catalysis analyses @8@] chapteb.1), and in the later one, where
ecology was studied, it was a natural part of tlekw(the present chapter). The selection
behavior focused on only the most frequent compotypd in this section and the following one

the selection behavior when focusing on other abBesnand compotypes is addressed.

5.4.6.1. Testing on drift assemblies
When selection was studied, for the first time iARD [80], only compotypes were considered
as they are treated as GARD'’s species (and in endi their quasispecies nature is revealed).
In this section, the selection response of drifteasblies is analyzed and compared to that of
compotypes, in order to further understand thereatfiselection in GARD. Additionally, it was
argued that GARD lacks evolvability by studying gedection response of a particular GARD
system and drift assemblies [143]. One of our amgpisiagainst those conclusions is that those
authors did not designate a compotype as the smldeirget, and studying the selection of drift
(non-compotype) assemblies resolves this point.
Drift assemblies selection is studied similarly thee selection of compotypes, whereby the
change in abundance of a given target is considemimic to selection (chaptdt3). In each

simulation under a givef§, the drift assembly which is the least similaraib of the N
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compotypes centers of mass is picked as the téwgesklection. This is done in order to make
proper comparison, as drift assemblies analyzed bmudifferent from compotypes and must be
related to their own chemical environment charasties (represented bf). The reason for
picking the drift from the simulation and not gesigrg one at random is that it may very well be
that the structure of drifts is somehow relate@td’he reason for picking the assembly least
similar to the compotypes is that it may very wbk that composome and compotype
identification algorithm is not perfect, so theree assemblies that might be considered as
compotypes, if only they were slightly more simitarthem (i.e. similarity threshold slightly
reduced). For each of 1,0@0used in this section, under regular-GARD simulatithe average
similarity between the target drift picked to the dbmpotypes centers of mass is 0.220+0.129,
signifying that a substantial difference indeedstxbetween compotypes and the drifts picked.
The superior selection of compotypes over driftagparent, where only 34% of cases exhibited
negative selection (selection excess<0.95, SE, tifoua) vs. 76% in drifts (Figure 2).
Compotypes also exhibit a higher tendency for pasgelection (SE>1.05), where 29% of cases
exhibiting it vs. 21% in drifts.

Thus, designating compotypes as selection targetep to be a central point when addressing
GARD'’s selection.
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Figure 29: Selection excess (SE, Equation 6) of compotypes and drifts. The rightmost
bin collects SE>2. Compotype data is taken from Figure 2b in [80].
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5.4.6.2. Testing on every compotype in a population
Previously, the selection response of only a singlepotype out of each simulation, under a
given 3, was studied. This section will briefly presenspselection dynamics when all of the
compotypes in a given simulation are addressedabadime. Further, in light of the results that
GARD population exhibit ecological behavior similay natural systems (chapter 5.4), this
section will focus on the changes in populationaiyits as a result of the selection. As a ‘proof
of principle’ only a single case was analyzed, sndlescribed in this brief section.
The B studied exhibits N=3. Therefore, four simulations performed: one wiih selection
pressure (“wild type”) and three were in each &edint compotype was designated as selection
target. Each simulation’s data is fitted with tbgistic equation (chapter 4.5) and the ecological
parameters are extracted. Additionalty, values are used to construct a food-web network
whose nodes and edges are respectively compotypes; aalues [138].
Selection alters the dynamics of the entire popriatather than just of the targeted compotype (
Figure30). This was quantified by examining the valueshaf €cological parameters before and
after selection (Figure 31). Interestingly, wheleseng for a compotype, its own K and r values
typically did not change with respect to the wijgh¢. When selecting for C1,,Kncreased by
almost 100% and; by more than 50%. When selecting for C2, its maximncreased by about
50% and its plateau by almost 100%, thoughtaKd p did not change. This is indicative for a
change in the food-web as a result of the sele¢liable 5). Interestingly, the food-web does not
change when selecting for C3 (Table 6). Selectomgfl alters the food-web the most, and it is
more similar to the food web when selecting fortan for the wild type.
Thus, applying selection towards a compotype ingbpulation alters the food web but keeps
this compotype’s parameters constant (r and K)s Than interesting result that requires further

inspection.

5.4.7. Network motifs and their effect on ecological dynants
When the inner structure @fwas decomposed into network motifs (see chapfiefld), it was
found that they are useful in predicting GARD’ses#iion response. In this section, it will be
asked if the motif spectrum can also be used terstand some of the ecological behaviors.
WhenB’s are grouped according to theig Nalues, it is found that the more compotypds a
exhibits, the lower are the counts of all motifssitows. This can be understood when first
considering that the size of a compotype intrimsmecular repertoire (i) was found always
be much smaller than the environmental ong.Ng. See Figure 19). This means that a

compotype is a distinct subpart [of Therefore, the higher the counts of all motif§ exhibits,
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the more it is connected and thus the lesser taraoghit will exhibit more separated subparts, i.e.
a lesser chance for a higheg Malue.

The structure of th@ can also be used to predict cross-compotype catppetynamics in
GARD populations. This is seen whejp values are presented as food-web, and binarizéeein
same way a$. For brevity, this analysis focuse on cases wigrNand 3 only, because the
food-webs in such cases is simple and exhibits ardingle mode of interaction — only a single
motif (Figure 33). In general, when the competitlwetween pairs is one sided (i.e—~L;), B
exhibits less motifs. Interestingly, forcN3, when all three pairs exhibit reciprocal comjeti
(i.e. GG B shows less motifs than when only two pairs argorecal and the third is one-
sided. The scores are overall negative becausdatioms with Ne>1 show negative scores to
begin with (Figure 32).

Thus, the connectivity ¥ affects both the number of species and their gamdbinteractions.
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Figure 30: Example of selection in a population with multiple compotypes (lognormal
random seed=45) and the fit to logistic growth (Equation 7). (a) Wild type population
dynamics when no selection applied, (b-d) Population dynamics when selection target is
C1, C2 and C3, respectively.
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Figure 31: Ratios of values (carrying capacity, K; growth rate, r; maximum; plateau)
after selection, compared to no selection (wild-type). A ratio >1.0 represent an increase

in the value due to selection with the target stated on the X axis.

None i=1 =2 =3 C1 i=1 =2 =3
o, (1=1) - |079 | 126 | (=1) | - |0.48 |1.10
o, (=2) 149 | - |000 | (G=2) j0.00 | - |100
o, (=3) |049 |056 | - |« (=3) |051 |0.25 | -
Cc2 i=1 =2 =3 C3 i=1 =2 =3
o, (=1) - 1097 155 |o, (=1) | - [1.25 |1.35
a,(=2) |0.00 | - |246 | (=2) |279 | - |0.14
o (=3) |o068 |054 | - |« (=3) |0.00 |0.83 | -
Table 5: Values of competition parameters (o) before and after selection for different
targets.
None | C1 C2 C3
None 0.10 | 0.47 | 0.95
Ci 10.1 0.85 | 0.11
C2 290 |7.58 0.37
C3 1.50 10.3 | 3.72

Table 6: Similarity between the food-webs (Table 5) under different selections. Upper
diagonal shows H (Equation 3) and lower diagonal shows Euclidean distance.
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Figure 33: Average motif spectrum, collected for different food-webs. (top) All
simulations with Nc=2. One-sided (i.e. Ci—C;) and reciprocal (i.e. Ci«>C) competitions
are respectively blue and green lines. (bottom) All simulations with Nc=3. Blue line is

when all three compotype pairs show reciprocal competition (i.e. motif #13). Green line
is when only two pairs are reciprocal and the third is one-sided (i.e. motif #12). Red line

is when only one-sided competition exists (C1-C2—C3—Cl).
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5.4.8. Discussion
In a majority of the cases the logistic (or Lotkakérra) formalism is used for cases such as
predator-prey or inter-species competition for teses. Should one use such formalism in the
case of GARD populations?. These populations asrackerized by a different dynamics,
whereby species interconvert into each other, sasin resembling macro-evolutionary
dynamics. Indeed, there are reports of utilizingkaeVolterra equations for such systems [22].
In GARD analyses, some of the ecological paramedegsthus interpreted differently than in
classical ecology. The carrying capacity (K) isatetl to the chance that a compotype will
produce progeny belonging to the parent’'s compofgpe not to drift, or another compotype).
Hence, K is related to the replication fidelity afgiven species, independent of environmental
parameters. Specifically, in the simulations préseéere there is no competition for resources
as the environment is buffered. GARDY)g parameter measures the extent of species inter-
conversion, made possible by the fact that evergpmtype is a sub-network of the glolfal
network. Thus, the forgoing results could seed #ebeunderstanding of early evolution,
whereby protocellular entities were sufficientlyllaable so as to reveal aspects of evolutionary
ecology.
We utilize here the logistic equation to fit thendynic behavior of GARD compotypes. This
equation can show oscillations for certain parametages [83, 106, 107]. Notably, in 1000
different sets of fitted logistic parameters heoeascillatory behavior observed. It is important,
though, that such parameters are derived from a@mate-enhancement values embodied in
beta. Future analyses could give insights intocthralitions for the existence of stationary states

vs. oscillations.
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5.5 Compotypes are quasispecies
This chapter describes work done by Renan Grossjnamer student | closely supervised, in
order to answer a key question | posed regardindRGA behavior and its similarity to a widely
used evolutionary model, the quasispecies model.
Here, the GARD model dynamics are compared to skeahming from Eigen’s quasispecies
theory, seeking to unravel the quasispecies natuf@ARD’s compositional assemblies, as an
archetype of a system replicating and evolving aitha hierarchical genome. Sequential and
compositional information are intrinsically differe which makes it appealing to study the
guasispecies nature of compositional replicatoosthE best of our knowledge, this has not been
done before.
Eigen’s quasispecies theory was first proposedesxiibe error-prone replication of primitive
macromolecules carrying information at the origitlife [30]. It referred to information carriers
that undergo self-replication with errors, and egid the classical concept of a species to
include not only the main replicating sequence, dsb its closely connected mutants [12, 29,
30]. A quasispecies is a steady-state populatiorvasfants (“cloud”) around the master-
sequence, which are linked through mutations afidatively contribute to the characteristics of
this cloud. The master-sequence is referred thh@sequence with the highest fitness and it is
thus the dominant sequence amongst the distributithin the cloud. It is typically the wild-
type sequence from whose erroneous replication gs@eo other mutants.
Perhaps the best example in nature of quasispisckRNIA viruses, which have low replication
fidelity with measured high mutations rates [25, 42, 115, 147]. While in the past it was
argued that RNA viruses’ evolution does not folldwe quasispecies theory [53], this is largely
disputed [72, 111]. Two additional examples of ratguasispecies, are the genome of Chinese
hamster ovary which has genetic diversity due to-standardized cloning [149] and catalytic
RNA molecules [5, 67].
The quasispecies equation describes a populaticselétreplicating genotypes (Equation 12)
[12, 29, 30]. Due to replication errors, a genotpgpeduces not only offspring of its own kind,
but might also produce offspring of other genotyéss is represented by the transition matrix
(Q) which denotes the probability that a certainaggpe will produce an offspring of another
genotype. Thus, the growth of a particular genotgpgoverned not only by its own replication

rate, but also by the replication rate of the otj@rotypes. The is written as:

?Tf =(AQ ~Em)x + > AQ%

Equation 12
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Where for a genotype i, xs its time dependent concentration, i its replication rate (as it
reflects its fitness [29]) and;Q@s the probability of genotype j mutating intowith Q; being the
probability of self-replication)E(t)=3xiA; is termed “average excess rate” and serves totkeep
total population size constarffX;=1 at all time points). A steady-state solutiorthis equation

Is obtained as the eigenvector with largest eigelevaf the matrix W={QA}, in accordance to
Perron-Frobenius theorem [29, 104]. This eigenveatdds the steady-state distribution of the
concentrations of phenotypes, which is the quasispe

Using the quasispecies equation, it is possiblguantify an error threshold, which relates the
amount of information a replicating system canestair a given mutation rate to its single digit
error rate (e.g. the chance to insert a wrong wtide in a specific location) [12, 30, 147]. The
error threshold is defined as the minimum accuicseplication which is required in order to
preserve the information of the selected statdefsystem. For optimal selection, the required
precision of information transfer has to be adjdste the amount of information to be
transferred, and if the mutation rate is incredseybnd this limit the population structure breaks
down [30]. As RNA viruses replicate with relativehigh mutations rates [115], they are
susceptible to a treatment by mutagenic drugs wimctease their mutation rates to push them
beyond the error catastrophe [23, 129, 134]. Thisamly supports the quasispecies nature of
RNA viruses, but is also an example of a relatietwieen modeling and experiments.

5.5.1. Sequential vs. compositional information
There are inherent differences between sequentiad eompositional information. The
differences between two binargequenceswith same lengthare not like between two
compositionswith sametotal number of moleculefypically the former is represented by a
string and the latter by a vector). Consider the twnary sequences: S1=01 and S2=11. The
difference between them can be pinpointed to tts fiocation mutated to “1”, i.e. a Hamming
distance of 1. However, when considering the twmpositions: C1=[1A,1B] and C2=[2A,0B]
(where A and B are two different molecule typelsgirt differences are that one molecule of type
B is missing in C2 and an extra molecule of typésAn C1, i.e. an Euclidean distance &
(Equation 13). Another property of compositions,tligt one composition can be a direct
multiplication of the other, as in the case of C[LB] and C4=[4A,2B], which in fact both
hold the same composition (C4=2xC3). For such cdsesimilarity measure has been applied
[119] (H, Equation 3).
Another difference between sequence and compossiorlated to the probability of a back
mutation (revertants). Consider the sequence gfther100: S3=11...1 (each digit is set to 1). A
single mutation at the first location will produite sequence S4=01...1. Now, the probability of
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a back mutation from S4 back to S3 is 1/100 (tlpierce length), when neglecting any other
factors for simplicity. A point mutation in a congton is when 1 molecule of a certain type is
replaced by a molecule of a different type. Witimpositions, the probability of back mutations
depends on the composition itself, as shown inny two examples. When the composition
C5=[100A,0B] mutates into C6=[99A,1B], the probalilof C6 mutating back to C5 is 1/100
(when neglecting any other factors for simplicitiowever, the probability of C7=[51A,49B]
mutating into C8=[50A,50B] is 51/100, as changing & molecule into B will suffice.

Additional difference relates to the genome lendthe longer a polymer is the bigger is the
number of genes it can potentially code for. In GARowever, having a bigger assembly size
(Nmay leads to decrease in the number of compotypeaulsecthe system is nearing the
equilibrium steady state (Figure 17a in [80]). Tfere, the equivalence of a longer genome in

GARD may necessitate an increase a constag{MN: while Nyax is increased.

5.5.2. A compotype is an attractor in compositional space
Each simulation was performed with identical parare yet with a differenf3. For each
simulation, the most frequent compotype (FC) waenified, and Q (Equation 12) was
constructed by sampling assemblies in differentadises around the center of mass of FC (see
chapter 5.5.8). Figure 34 shows the average Qtbeegntire set of 1,000 simulations performed.
The most striking feature is that for all but timeatlest distances, replication occurs towards FC.
For distance>40, replication always occurs tow&@dswhile for intermediate distances between
20 and 40 replication can occur towards and awayaR@ for distance<15 replication is usually
away from FC. In other words, the progeny of anyepaassembly located far (distance>40)
from FC will always grow to be closer to FC thar fbarent, while for a parent located very
close (distance<15) to the FC will typically growlie slightly further away from the FC. Thus,

a compotype is an attractor in the compositionatsp
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Figure 34: GARD'’s transition matrix (Q) with respect to the most frequent compotype
(FC) center of mass. Qj is the probability that a parent at distance j (=X axis) gave rise
to a progeny at distance i (=Y axis). Data in figure is averaged over 1,000
measurements, each with a different B network (see Figure 41 for specific examples).
5.5.3. GARD operates near its error threshold

For eachB, the eigenvector with the highest eigenvalue valsutated and marked as; \(see
chapter 5.5.7). In each simulation, overall regilen accuracy was assessed by comparing the
degree of H between the center of mass of FC andFgure 35A). This was done for
decreasing values of kate constant (Equation 2) — the basal molecuwliaing rate, which is
found to be a proxy analogue the single digit erHigh k value contributes to overall faster
assembly growth and shifts thgki equilibrium towards a higher value. Decreasipggykmore
than a factor of 2, results in FC becoming more ame dissimilar to Yand the former’s
frequency significantly diminishes, hinting to arrog catastrophe (Figure 35B). Even in the
highest k value examined, there is still a difference betwéwe FC and ¥, which is likely
caused by the stochastic nature of the model aridrpations caused by the assembly cell cycle
(i.e. growth-split cycle), with H{#&0.01)=0.917+0.161. As:ks reduced, especially below 0.005,
Vg and FC become more and more dissimilar, seemiagyimptotically reaching H0 as k—0
(the lowest value explored here K{8.00035)=0.488+0.210). Interestingly, when theatreé
frequency of FC is compared to its frequency wighOl01, a slightly lower kvalues actually
increases the frequency by almost 50%a0005 (Figure 35B). FC frequency reaches 0 as the
value of k is lowered. The increased FC frequency in inteiated¢ levels is suggested to occur
due to an improved ability of assemblies to exploesv regions in the compositional space
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around FC. Thus, the replication of GARD’s composial assemblies seems to be near an error

threshold. This draws for a quasispecies analygigh will be presented in the next section.

5.5.4. GARD'’s steady state is correlated with that of theyuasispecies equation

As GARD operates near its error threshold, it isceptible to be analyzed in accordance to the
quasispecies theory. Figure 36 shows exampleseostibady state distribution around the FC
center of mass, when predicted based on the qeasspequation and when measured from
GARD’s population dynamics (such as those presemnteéigure 18). Strikingly, the two
distributions share similar features, including tistance span and number and location of
peaks. The differences between the two distribstiomght result from the grouping of
assemblies according to their distance, which ake tifferent assemblies who occupy different
locations in the compositional space and exhildfeddnt replication rates and directions, and
assign them with average properties.
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Figure 35: GARD'’s error threshold. (A) Average compositional similarity (H) between
the center of mass most frequent compotype (FC) to the $ eigenvector (Vg) as a
function of k;. (B) Frequency of FC as a function of k; (relative to the frequency at

k=0.01). Dataset is based on 1,000 simulations, each with same parameters except for
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different  networks. The default value typically used in simulations in the past is

k=0.01. Each simulation was ran for 2,000 generations.

The effect of decreasing ks further seen here, where when the distributiese calculated
based on simulation with low; khe steady state distribution is shifted towardbsgantially
greater distances. A widespread agreement betweesteéady states of GARD and quasispecies
equation is observed when comparing the entiresdataf 1,000 different simulations (Figure
37). These results support the description of aufadjen of compositional assemblies around a
central compotype (master compotype) as a quasespec

An important point — is whether the choice of FCilass master compotype is justified. To this
end, the steady state distributions with respectanoassembly randomly generated were
compared (Figure 38), to find a complete lack afeation. This further supports the choice of

a compotype as a master compotype.
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Figure 36: Examples of the steady state from population-GARD and from the
guasispecies equation (Equation 12). The distributions of distances around FC are

shown from GARD (blue broken line) and from the quasispecies equation (green solid
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line) with k;=0.01. Black solid line shows GARD’s steady state distribution for
k=0.00035. B random seeds are 1, 79, 45 and 90 for panels A-D respectively. Q; and A;

are presented in Figure 41 and Figure 42.

5.5.5. GARD'’s error-catastrophe resembles that of the quaspecies equation
GARD’s population shows similar behavior to seq@snevhen approaching the error threshold.
Figure 39 shows an example of the occupancy oéwdifft distance shells around a compotype’s
center of mass, when the value ¢fik reduced. While the frequency of the compotypb/ o
slightly reduces at first, it is seen that the gamncy shifts from shells of smaller distances to
larger distances. Only when the occupancy shiftstds shells of relatively high distances the
frequency of the compotype quickly diminishes taga®. Importantly, a similar transition was
observed in simulated population of replicatingypotrs, where the concentration of the average
sequence (consensus) remains constant as the sigglesrror probability is reduced, while
sequences with multiple mutations at larger angelaHamming distances was observed [139].
When the error threshold was reached, the condemtraf the average sequences exhibits a
first-order phase-transition and drops to O.

5.5.6. The time dependent dynamics of the quasispecies edion resembles that of
GARD
Lastly, an example of the time dependent evolubbrihe distance distribution is compared
between population-GARD and the quasispecies emyatvhen both started from the same
initial conditions, and allowed to propagate ustgady state. Strikingly, in the case tested the
time development of the quasispecies equation relesnthat of GARD, where the formation of
a peak around distance ~20 at the expanse of Hiegreund distance ~60 is exhibited in both
(Figure 40). This further support the descriptidncomposomes around a compotype as a

guasispecies, suggesting that this descriptionegpplso to the full dynamics.
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Figure 37: Steady-state comparison of GARD’s vs. the quasispecies equation, with
respect to FC center of mass. Data shows the expected distances (=/p(r)dr) from the
steady-state distributions (Figure 35). Black solid line is a linear fit: y=0.804*x+2.27,
R?=0.60.
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Figure 38: Comparison the steady-states, with respect to a random assembly. Figure
details are similar to Figure 37, except for a set of 75 simulations instead of 1000.
Linear fit gives: y=0.65*x+33, R?=0.49, whereas performing the fit of Figure 37 with the
same 75 simulations gives: y=0.88*x+0.66, R?>=0.80.
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Figure 40: Example of GARD and QSEQ dynamics towards steady-state. Distance

distribution at different time points until steady state, for population-GARD (blue broken

line) and QSEQ (green solid line). Time points are arbitrary and monotonic

(tO<tl<t2<t3<t4<t5). f random seed = 1. The time dependent behavior of QSEQ was

obtained by numerical integration using MATLAB routine ode45.

5.5.7. How the B eigenvector was calculated

When is represented as a matrix, it is positive as ezclis 3 values are sampled from a

lognormal distribution [121]. According to the RamrFrobenius theorem, such a matrix has a

unique largest real eigenvalue with a correspondilhgpositive real eigenvector [104]. This

eigenvector is treated as a compositional asseamalymarked Y (see chaptes.5.3).
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5.5.8. How the compositional space was sampled and Q andc&nstructed
The large size of the compositional space, padrtylgiven the values used in this work,
Ng=100 and Na=100, makes direct calculation of Q matrix compatelly impossible.
Therefore, assemblies were grouped according to dntance from the center of mass of a
compotype (the FC) and the molecular space wasdetivinto shells of constant thickness. This
is similar to how genetic sequences are groupedrditg to their Hamming distance from the
master-sequence [61].

The Euclidean distance between two assemblieddslated as:

Ng )
D(V*,V?) =\/Z(nﬁ—nf)
i=1
Equation 13

Where i is the count of the i'th molecular type in assgmbi (Equation 1).

Assemblies in the same distance shell were grotgupether and the relevant properties (i.e. Q
and A) of each shell were averaged over the assesnldontained in this shell. The
compositional space was sampled in the followingmea for each simulation:

10,000 assemblies were generated at random, eacinbdgmly picking a molecular type and
adding a random count of this type until the asdgnsize reaches Nx Another 10,000
assemblies were generated by conducting 10,00@mandalk step pairs starting from the FC,
where in each step a molecule is randomly remorad the FC and a random one is added to it.
Another 10,000 assemblies were generated by ramgaiknstarting from the Y, similarly to the
FC. This gave rise to a total of 30,000 parentrabies. Each of these was then split and its
progenies grown until they reach.) this was repeated 10 times for each parepts Ghan the
probability that a parent at distance j gave rs@ progeny at distance i, and i the average
growth rate of progeny at distance i. Examples @@ A are given in Figure 41 and Figure 42.
The sampling of population-GARD steady-state disttion was done by collecting the entire
population along the population steady state (tdn@%5.0x10 with time intervals of 0.1x10
See for example Figure 18).
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5.5.9. Conclusions
While the quasispecies is a general concept, retifgpto any sort of replicators, in the past it
has always been applied to the only replicatorskm@wv — sequential polymers. The present
demonstration of the quasispecies nature of GARS8erablies, which hold compositional
information as a group rather than sequential médron as an individual molecule, thus
supports the generality of the QSEQ. ImportanttyGRARD was developed and is often used to
study the lipid world scenario for the origin dEli the present results, together with experiments
demonstrating the quasispecies nature of cataRRtWA [5], further points to the role of
guasispecies in the origin of life [31].
Lastly, in a separate vein, if one agrees that iat wrong to represent a cell’s transcriptome,
which holds the composition of the different typafs RNA molecules [78, 98, 148], as a
compositional vector, then it is further suggestb@t regardless a cell's genome, the

transcriptome is a quasispecies.
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5.61s there an optimal level of open-endedness in praiiic evolution?
This work was done with collaboration with Prof.thléo Krasnogor from Newcastle University,
and was published as an extended abstract [81].
Open ended evolution is considered an importantufeaof life. GARD simulations cycle
between composomes (Figure 4) and typically exhittly a few compotypes (Figure 9 in [80]
and chapter 5.6.1), which impends on its abildypbrtray open ended evolution. Therefore,
modifying GARD to show open ended evolution wilegtly contribute to its acceptance as an
evolutionary model. This chapter deals with th&ies exactly and further suggests a new method
to quantify open ended evolution in a way that \eitlable comparing different systems and
models on the same scale.
Open ended evolution may be thought of as refetorsy“system in which components continue
to evolve new forms continuously, rather than grngdo a halt when some sort of “optimal’ or
stable position is reached” [137]. Notably, opedesh evolution does not necessarily imply
evolutionary progress or complexification. Yet, ystem in which complexity increases along
the evolutionary time axis fulfills a sufficient @n if not necessary) condition for open-
endedness.
Indeed, evolution of complexity and the related capt of open ended evolution have been a
topic of scientific enquiry since Darwin and Wakamtroduced the Theory of Evolution by
Natural Selection. There is no doubt that a comfitestion process took place over the
extended evolutionary time frame, with some enddsgtic events [90]. With the advent of
powerful computational tools in which one couldeésssly run “what-if” scenarios about the
origins of life, the questions of how complexity emes from evolution-like processes and how
open-ended the emergent processes have gained egnienpetus [8]. Researchers have
proposed multiple definitions of both open-endedlaton and (pre)biotic complexity and have
applied these measures to several, more or lesgoleed, “Artificial Life” and prebiotic
systems. Common definitions of open-ended evolutionsider an increase in the internal
complexity of species [84, 113] or species occugyewer more diverse niches of the natural
design space [65, 85]. A difference between the approaches is apparent when considering
the case of a few species in an ecosystem becamang and more complex vs. the emergence
of multiple species that might each be relativaimme but overall occupy a relatively large
portion of the natural possible design space. Tmmér definition can be viewed as “species-
centric” whereas the latter as more “system-cenfi6is].
Korb and Dorin discuss at length the various attsnmpade at measuring open-endedness and
suggest a two-part measure based on message minlength required for conveying (or

encoding) information (MML). They propose that aasere that considers the complexity of
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events of species evolving (part 1) and of thetedlahypothesis (part 2) would be a better

measure for evolutionary complexity as it is atreameasure that takes into account not only

the end product but the context in which these proeluced. Building on this concept, we
address the question of whether there is an optseialip for a putative prebiotic universe that
leads to greater open ended evolution of the spesielving within it. We define an index of the

excess-complexity of species (event, E) in relatethe universe in which they evolve (U), as a

proxy for open ended evolution. This index is eE(B(, P(U)), that relates the probability of

observing events (P(E|U)) to the probability of ihidal conditions (P(U)). Our index (Equation

14), like suggested by Korb and Dorin (2011), iswe part index but with the additional

advantage of having the following properties:

1. P(E|U)andP(U) are normalized such thatP(E|U), P(U) < 1.

2. P(E|U) » 0 and—1 respectively represents improbable and probaleomes unraveling
from the initial conditionsU. Similarly, P(U) - 0 and —1 represents improbable and
probable initial universe conditions.

3. ec> 0 and can grow arbitrarily large. The larger tladue ofec the more complex are the
unfolding events in relation to a given universe.

4. limpgy)-1,pw)—1, €c(P(E|U),P(U)) = 0, that is, probable initial conditions that lead to
probable events receive the lowest rank (i.e. mprses can be expected from this universe
under the given initial conditions). This is markesiScenario A in Fig. 1.

5. limp(gn)-1,pw)—0 ec(P(E|U),P(U)) = K ; K > 0, that is, improbable initial conditions that
lead to probable events are ranked slightly higih@n O (Scenario B).

6. limp(g)-0pw)-0 ec(P(E|U),P(U)) =L; L > K >0, that is, an improbable initial state
that leads to improbable events ranks even higbehia clearly represents an unexpected
observation emerging from an unexpected initialdition (“Garden of Eden”, scenario C).

7. limp(gpy-0pw)-1 ec(P(E|U),P(U)) =M; M >L>K >0, that is, a probable set of
initial conditions throws out surprising outputsishranking at the top of the scal&lggant
Garden of Eden”, scenario D).

We now define ec with exactly the above charadiesis

edE,U)= - Log,[P(E 2| u)-PU)] Log, Max|P(E 2| U),PU)]

Equation 14

where the first part is an embodiment of MML andscale invariant, and the second part is
different than zero only when added value in thenglexity of events has occurred (i.e. U is
simpler than E). Increase in ec during a simulatdhserve as a proxy to identify open ended
evolution, as increase in complexity is generalbnsidered to be indicative of open ended
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evolution. Moreover, following the previous disciass ec(E,U) is a species-centric measure of
open ended evolution but can easily be “systemestiiby encompassing all outcomes E.

In Figure 43 we identify the four extreme ec valaesimulated universe might receive. As one
moves from A, to B, to C and finally to D the lex#lec increases thus open ended evolution is
observed. In fact, as the likelihood of the initiednditions increases (P)1) and the
likelihood of the events decreases (P(E}{Q) the level grows, potentially without limit.

A major challenge lays in exactly defining and mesgy P(U) and P(E|U). To this end, it is
suggested to build on the fact that not only necssid repertoire underwent evolution, but also
the genome [47, 51, 102]. The earliest genetic i®geoposed to encode for fewer amino acids
than the present-day one from one side, and frenother side the phylogenetic tree of life has
too been suggested to expand during evolution. @) be related to the probability of a
specific code out of the entire possible codes|W(kight be related to the observed size of the
tree at different evolutionary stages, given thié tode led to that tree, compared to the sizes of
the rest of the trees.

Lastly, | would like to submit that life can be citered as being about under achievement.
Looking at the huge diversity of life all around, us is understandable why some may,
mistakenly, think that life is about giving rise meany species or the potential to give rise to
infinite more, which is often referred to as opewled evolution. However, as suggested here, it
is not enough to consider just the genome size@attual number of species (i.e. tputof

the system). One has to consider #ittual number of species with respect to the poteial
(which is a function of théput). Doing so, it becomes apparent, for example, ttatratio of
actual species to genome size has actually decreasthe course of evolution. Thus, life is
aboutunderachievement
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Figure 43: Excess-complexity (ec, Equation 14) as a proxy for open-ended-evolution.
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5.6.1. Universe-GARD
In order to address the question of whether therani optimal set up for a putative prebiotic
“universe” with events unfolding inside such thateo ended evolution is observed, the GARD
model was extended. Typically up to eight differeampotypes are being cycled and they can
be identified early on in a simulation, suggestingt GARD does not appear to display high
levels of ec to begin with, which impends on itewrended evolution (Figure 44). The new
proposed model, termed universe-GARD (U-GARD), walllow systematically studying the
tradeoff between the initial conditions of the warse and the emerging compotypes (i.e. map the
ec surface). In U-GARD, the immediate environmergmbedded in a larger “universe” witly N
(>Ng) different molecular types, instances of which ewatinually being diffused in and out of
the immediate environment (Figure 45). This is pbgisemically feasible, as exemplified by the
immediate environment being absorbed to a minardhse, contained in a mineral pore or
constituting an ineffectively stirred sub-region af larger prebiotic aquatic body. As a
compotype constitutes a set of molecules that fomcbetter as a whole in their particular
environment and thus faithfully replicate, the argation of a compotype is also assumed to
protect its constituting molecular types from bedliijused out to the larger universe.
The simulation will be run for sufficiently longntie course and P(U) and P(E|U) will be
measured along time intervals of fixed length. Each interval, P(U) is the probability of
randomly picking the set of dNtypes observed during the interval out qf fdssuming that the
diffusion rate is much slower than the accretiote rso that N is relatively constant in this
interval) and P(E|U) is the probability of findimgw compotypes in this interval. Open ended
evolution will be identified when a universe wibklgbit an increase in ec over time. Different
universes with different )N Ng and 3 parameters could be compared by using the expected

value of ec:
(ecNy,Ng, ) = > [edE,U)- Pled E,U))

Equation 15
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Figure 44: Average Nc value per simulation duration, for regular-GARD and U-GARD.
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Figure 45: Open-ended GARD (Universe-GARD, U-GARD). Assemblies undergo
growth-fission cycles in the immediate environment, obeying the GARD dynamics. At
any given time step diffusion of molecular types in and out of the GARD environment

occurs for molecules not included in compotypes.

5.6.2. Early results
Figure 46 shows examples of a preliminary implermgon of the U-GARD model, which
shows the emergence of new compotypes even in &ges of the simulation, unlike in
regular-GARD (see Figure 4 for example). Indeedenvithe mean § value is compared
between U-GARD and regular-GARD, it becomes appalet not only that the latter exhibits a
higher average flvalue but also that this value tends to increasie simulation length (Figure
44). This suggests that GARD can be tweaked intavsig open ended evolution.
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6. DISCUSSION

6.1.Compotypes as quasispecies

One of the unique corollaries of the GARD modelthe emergence of quasi-stationary
compositional states — composomes, which embody tmattabolism-like characteristics and a
capacity to store and propagate molecular inforomaffThese composomes often interchangingly
mutate towards a central point — compotype, wh&cln attractor in the compositional space.
This is analogue to the quasispecies concept, widkeners mutate around a master entity in
the sequential space — the master sequence. Tlheagoeement between the steady state of the
quasispecies equation to that of GARD supportgldseription of a cloud of assemblies around
a compotype as a quasispecies, similarly to howdbed of sequences around a master
sequence is. Critically, this description does mat for any assembly, only for compotypes. A
point of difference between compositional- and sedgal- quasispecies is between the master-
sequence and the compotype. A compotype is reszbéy the center-of-mass of its member-
assemblies and as such does not have to represeassembly encountered during the
simulation, while a master-sequence is the one thighhighest fitness and therefore exist in a
substantial proportion inside the cloud.

6.2 GARD is a minimally living system

The finding that GARD’s species, i.e. compotypean @xhibit Darwinian evolution has an
important implication directly related to the ongof life and the definition of minimal life.
Early on, the ability of GARD’s assemblies to féitltly replicate was demonstrated [119].
GARD is now viewed as an autopoietic-chemoton sytevhere template copying and
compartmentation are embodied in one entity, aoohéinuous supply of metabolites is afforded
by the spontaneous accretion of lipids from theiremment [80]. Thus, a compotype is self-
sustaining, which is an important prerequisiteliier [9]. The other prerequisite comes from the
accepted definition of minimal life: “Life is a $edustaining system capable of undergoing
Darwinian evolution” [9]. Thus, showing that compo¢s can indeed evolve is critical if one
wants to consider GARD as a minimally living systefurther, demonstrating that the
distribution of assemblies inside a compotype clagiees with the quasispecies equation
strengthen this point, as the quasispecies moderitbes the process of evolution of replicating
entities [30]. Thus, a non-biological system, devoid of information carrying polymers, can

exhibit (minimal) life.

® There is disagreement with some other scholars, paints that Autopoiesis requires actual metalmiodiuction
in the sense of chemical covalent bonds modificatidHowever, | am treating production in the broastnse of
the word.
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It should be noted, that the span of evolution BRB is likely to be limited as the effective
number of compotype species is always below 8 hdreenodel does not portrays full-fledged
open ended evolution (though the relative numbepeties with respect to the theoretical one is
greater in GARD than in nature). This is probabgcduse the underlying network, which
represents a chemical environment, is constantigfimaut each simulation. This is un-realistic as
environments change over the course of evolutiahiarfact this change is intertwined with
evolution. Addressing this point, the universe-GARIDdel has been formulated which changes
the environment by systematically changifgIndeed, preliminary results suggest the new
model exhibits a larger number of compotype speares that this number is increasing with

time, which hints for open ended evolution.

6.3 Evolution towards lower entropy of compotypes
Population ecology typically involves complex organs, for which relating biochemical
parameters to organismal behavior is extremelyicditf The GARD model, governed by
mutually-catalytic networks, analyses supramolecatsemblies that are uniquely positioned at
the interface between systems chemistry on thehnand and population dynamics on the other.
This allows presenting a direct and quantitativeahalyzable link between individual molecules
and ecology.
The Nyo analysis might advocate a prebiotic scenarioatati by fast-replicating assemblies
with a high molecular diversity, evolving into mdiathful replicators with narrower molecular
repertoires. This is not unlike the transition frpmebiotic “random chemistry” to the relatively
restricted repertoire of small molecules (monomsexn in present-day living [119]. Such a
transition might be considered as a change fromanapotype with higher entropy into a lower
one, as a composition with a lowegdNhas lower entropy (under a give Bnd Nhay).

6.4Lack of GARD experiments
While GARD is based on realistic physical and clmhiconsiderations, an experiment
demonstrating homeostatic growth and faithful inthece of a vesicle composed out of several
molecular types is lacking. Such experiment islyike be affected by the choice of participating
amphiphiles, as lipids tend to be selfish and oftem homogenous vesicles. However, as was
shown here, mutually interacting groups of lipids show better behaviors in terms of selection
response and growth-rate, which can give them ararddge over selfish lipids. Such an
experiment would also require accurate compositiananitoring, not yet elaborated. A
difficulty may arise from the size of vesicles. Tineimal diameter of vesicles and micelles is in
the order of dozens of nanometers and contains imangreds of molecules, which could make
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it difficult to differentiate between assembliesdfferent compositions. A further difficulty is
that GARD usually employs small assembly size aad)er sizes result in diminishing
compotype diversity. A point in favor of performisgich experiments, is that recent studies of
vesicles with multiple components have demonstréitad vesicles with different compositions
show different distinct features such as permdgliB2] (Figure 47) or boundary structure [144]
(Figure 48).
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Figure 47: Effect of bilayer composition on the encapsulation of pyranine. A 1:2 ratio
between amphiphiles shows the highest encapsulation efficiency, defined as the ratio of
volume of dye solution to concentration of lipid. GM18 and 18A stands for glycerol

monoacyl and lauric acid amphiphiles, both with 18 carbons. Figure taken from [82].
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Figure 48: Typical confocal microscopy images of giant unilamerllar vesicles composed

out of a mixture of dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and
cholesterol (Chol). Black scale bar correspond to 10 micrometer. Figure taken from
[144].
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