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1. ABSTRACT 

The puzzle of the origin of life is grand. A major challenge is to understand the transition from a 

mixture of molecules into an entity with basic life faculties, such as a protocell, capable of self-

replication and inheritance. Two major schools tackle this problem: the genetic, or replicator-

first approach, and the metabolism-first approach. The replicator-first approach focuses on a 

single self-perpetuating informational biopolymer, e.g., RNA, as the first step, and it is thus often 

referred to as the “RNA world”. In contrast, the metabolism-first approach focuses on a network 

of chemical reactions among simpler chemical components that became endowed with some 

reproductive characteristics as the first step that led to a protocell. The lipid world scenario, 

largely initiated by our laboratory, delineates a specific example of metabolism first. It suggests 

that spontaneously forming assemblies of relatively simple molecules, such as mutually 

interacting lipids, that resemble primitive metabolism, are capable of storing and transmitting 

information similar to sequence-based polymeric RNA, except that in this case it is 

compositional information that is at work. 

This thesis is about further exploration of the lipid world scenario, showing in more detail how a 

relatively simple chemical system can acquire features such as selection and evolution. This was 

accomplished by studying dynamical aspects of the graded autocatalysis replication domain 

(GARD) computer-simulation lipid world model, previously developed at our laboratory. GARD 

simulates the homeostatic growth of a compositional amphiphile assembly by reversible 

accretion from a buffered heterogeneous external pool. This process is governed by a network of 

mutually catalytic reactions, and exhibits quasi-stationary compositional states termed 

compotype, that may be regarded as GARD species.  

I have demonstrated that that such GARD species exhibit positive as well as negative selection, 

an important prerequisite of a minimally living system. I further showed that when the catalytic 

network becomes dominated by mutual catalysis, as opposed to self-catalysis, selection is 

enhanced. When studying the dynamics of large populations of GARD assemblies under 

constant population conditions, I rewardingly found that they exhibit dynamics similar to natural 

ecosystem populations, e.g. similes of competition or predator-prey dynamics. I was able to 

establish relationships between a compotype’s internal molecular parameters (e.g. its molecular 

diversity) and population ecology behavior. In a separate vein, I have developed a new approach 

towards observing open-ended evolution, which enables asking whether there is an optimal level 

of open endedness in prebiotic evolution. Finally, I was able to show clear similarities between 

GARD compotypes and quasispecies in the Eigen-Schuster model for evolution, further 

underlining GARD’s capacity as an alternative to RNA World. Taken together, these results 
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uncover quantitative aspects of the GARD model which in turn contribute towards our 

understanding of the origin of life via the lipid world scenario. 

 

חידת ראשית החיים הינה מן הגדולות. אתגר עיקרי הוא להבין את המעבר מתערובת של מולקולת לישות בעלת כושר 

- המסוגלת לשכפול עצמי והורשה. שני גישות תוקפות בעיה זו: הגנטית או השכפול ,(protocell) תא- חיים, כגון הקדם

פולימר יחיד המעתיק עצמו, כגון רנ"א (ולכן לעיתים תחילה מתמקד בביו- תחילה. תרחיש השכפול-תחילה, והמטבוליזם

תחילה מתמקד ברשתות של ראקציות כימיות בין -קרובות נקראת "עולם הרנ"א"). לעומת זאת, תרחיש המטבוליזם

תא. עולם הליפידים, שפותח -מרכיבים כימיים פשוטים שפיתחו יכולות העתקה עצמית כצעד הראשון שהוביל לקדם

תחילה. הוא מציע שיצירה ספונטנית של צברים המורכבים - מתאר דוגמא ספציפית של מטבוליזם ברובו במעבדתנו,

ממולקולת פשוטות, כגון ליפידים העוברים אינטראקציות הדדיות, הדומים למטבוליזם קדמוני, מסוגלים ולהעביר מידע 

  .שבמקרה כזה מדובר במידע הרכבי -בדומה למידע רצפי של רנ"א, בהבדל אחד 

ה זו נסבה על פתוח מחקרי נוסף של תרחיש עולם הליפידים, ומראה בייתר פירוט כיצד מערכת כימית פשוטה יכולה תז

 לפתח מאפיינים כגון סלקציה ואבולוציה. זה נעשה על ידי חקירת היבטים דינמיים של המודל הממוחשב גארד

)GARD( הרכביים המורכבים -מרת של צבריםולם הלפידים, שפותח בעבר בקבוצתנו. גארד מדמה גדילה משלע

ממולקולות אמפיפיליות המתאספות מסביבה אחידה בעלת רבגוניות כימית. תהליך זה נשלט על ידי רשת של יחסי 

ואשר ניתן להתייחס אליהם כאל  ,(compotypes) קבועים המכונים קומפוטייפים- גומלין הדדיים, ומראה מצבים כמו

  .דמויי מינים ביולוגיים במודל

במחקרי הראיתי שהמינים של גארד מראים סלקציה חיובית וכן שלילית, שהיא תנאי הכרחי לחיים מינימאליים. יתר 

על כן, הראיתי שככל שהרשת נשלטת יותר על ידי קטליזה הדדית, בניגוד לקטליזה עצמית, סלקציה זו מוגברת. כאשר 

אוכלוסייה קבוע, למרבית הסיפוק גיליתי שאוכלוסיות  חקרתי את הדינמיקה של אוכלוסיות של צברי גארד בעלות גודל

נטרף. הצלחתי לבסס -אלה מראות דינמיקה הדומה לזו של מערכות אקולוגיות בטבע, מעין דינמיקת תחרות או טורף

קשר בין פרמטרים מולקולריים פנימיים של קומפוטייפ (כגון מגוון מולקולרי) להתנהגות שלו באוכלוסייה. במסלול 

), המאפשרת לשאול האם open ended evolutionאחר, פיתחתי גישה חדשה לבחינה של אבולוציה פתוחה (מחקרי 

יש רמה אופטימלית של פתיחות באבולוציה פרהביוטית. לבסוף, הצלחתי להראות דמיון ישיר בין הקומפוטייפים של 

ולל, תוצאות אלה מגלות היבטים שוסטר לאבולוציה. במבט כ-) שבמודל אייגןquasispeciesמינים (-גארד לכמו

  כמותיים במודל הגארד, באופן התורם להבנה משופרת של תרחיש עולם הליפידים לתיאור ראשית החיים.
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2. LIST OF KEY SYMBOLS AND ABBREVIATIONS 

LUCA Last universal common ancestor 

GARD Graded autocatalysis replication domain 

Composome A set of consecutive faithfully replicating assemblies 

Compotype Composome type 

β Network of rate-enhancement values 

QSS Quasi stationary state 

NC Compotype count 

NG Size of environmental molecular repertoire 

Nmax Assembly pre-fission size 

H Compositional similarity 

Nmol Compotype intrinsic molecular repertoire size 

r Compotype intrinsic growth rate 

K Compotype carrying capacity 

α Competition parameter 

Vβ The eigenvector of β, with the largest real eigenvalue 
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3. INTRODUCTION 

The conundrum of how life began has captivated mankind for ages. The question is how life 

could arise from non-living matter, which might be one of the most important questions in 

science, still unanswered. The origin of life field attempts to answer this question, by combining 

supramolecular and prebiotic chemistry with theoretical biology and complex systems research, 

otherwise known as a systems chemistry approach. Thus, the origin of life is perhaps the most 

exhaustive systems chemistry “experiment” [61, 104, 112].  

The origin of life is about the emergence of the first entity with minimal life faculties, and can be 

delineated to have occurred along the following timeline. At the accretion of planet Earth, some 

4.5 billion years ago, it was a hot molten body incapable of sustaining life. Once the planet 

cooled and hydrated by cometary infall some 4.0 billion years ago, the conditions for the origin 

of life were in place [146, 150]. Jumping forward, the oldest widely agreed upon cellular fossil 

record is dated to about 3.5 billion years ago [117]. The exact time is disputed, as older cell-like 

fossils have been reported [15], which seem to resemble cyanobacteria by size and appearance 

[91]. However, there is no concrete knowledge on the molecular consistency of such fossils.  

A term often used in the context of life’s origin is  the “last universal common ancestor” 

(LUCA), an organism which is at the common base of the phylogenetic tree of life, and 

possessing molecular machinery fundamentally similar to present-day life, i.e. genome, genetic 

code and ribosome-like translation apparatus, as well as proteins, including enzymes that control 

an elaborate biosynthetic metabolism [39, 62]. As looking at fossils does not reveal the inner 

structure, it is extremely difficult to use the cellular fossil record to time the emergence of 

LUCA. It is however absolutely obvious that LUCA must have emerged by a lengthy 

evolutionary process in a continuum way, passing through intermediate forms likely to have 

been different, and much simpler than LUCA. Such intermediate LUCA ancestors are often 

loosely referred to as protocells [17, 105, 130, 135] (Figure 1).  

Concepts about life’s origin strongly depend on life’s definition. A widely accepted definition of 

minimal life comes from NASA: life is a self-sustaining system capable of undergoing 

Darwinian evolution [9], and other definitions are often similar [139]. This definition is general, 

hence a minimally living entity needs not be a cell as we know it, i.e. LUCA, but could be a 

much simpler protocell, i.e. container with some necessary molecular content. In this thesis I 

consider a NASA-consistent entity that is even more primitive than a protocell, such as a 

compositional lipid micelle or very small vesicle, without any content. 

The state of earth surface during the origins of life is often referred to as “primordial (or 

prebiotic) soup”, a term coined by Oparin [94]. This represents a body of water with organic 

chemical building blocks. The source of earth’s water could be adsorption during the planet’s 
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accretion [26], or from icy comets [75]. The source of organics could be comet infall, which has 

been suggested to occur at a significant rate during early earth [18]. Alternatively, organics could 

be synthesized on early earth from inorganic compounds [20]. In a seminal experiment, Miller 

showed how in an environment similar to the assumed earth’s early atmosphere, a plethora of 

organics, including amino acids, could form [54, 74, 86]. So, most researchers agree that 

prebiotic earth contained water teaming with simple carbon-based molecules. The big question is 

how the transition from prebiotic soup to a functioning protocell occurred, which is elaborated in 

the next sections. 

 

Figure 1: A general timeline of life on Earth. Time is given in billions of years from the 

present (year 2014). 

 

3.1. Origins of life scenarios 

The path from the organic mixtures in the primordial soup to life- has been dominated by two 

views: “replicator-first”, influenced by the present day genetic machinery, and “metabolism-

first”, stemming from a molecular network similar to present day metabolism. While the first 

scenario necessitates the early appearance of long and relatively complex information carrier, i.e. 

self-copying or self-perpetuating biopolymer, the second can go a long way with early chemistry 

that includes only mutually interacting simple chemical components such as carbohydrates, 

amino acids, peptides and lipids.  

 

3.1.1. The RNA world 

A detailed and widely accepted example of replicator-first is the RNA world. It assumes that a 

molecule identical or very similar to present day RNA played the role of the self-perpetuating 

biopolymer [36, 37, 43, 55]. The “free-floating” or surface-adsorbed mixture of such molecules 

is assumed to have later evolved both a metabolic network and an encompassing container. The 

wide appeal of RNA as a precursor molecule is understandable, as RNA is capable of both 

information storage and propagation and the manifestation of certain catalytic activities typical 

of metabolism. One of the earliest supports for the RNA world was Spiegelman’s experiment, 

which demonstrated that RNA can be copied in vitro, aided by a simple viral enzyme, Qβ RNA 

replicase [87, 88, 131].  Later, a key finding supporting the RNA World concept was that 
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concrete demonstration that RNA can manifest certain catalytic activities. Such catalytic RNA is 

termed ribozyme [66]. The first ribozymes discovered were capable of self-splicing and cleavage 

[16, 41, 110]. This finding was so surprising because up until then it was believed that only 

proteins were capable of catalytic activities, and indeed such a finding led to the awarding of the 

1989 Nobel prize in chemistry1. Recent experiments demonstrate more and more elaborate 

features of ribozymes. In one example, two R3C RNA ligases with complementary sequences 

were modified such that each was able to catalyze the other’s synthesis in a potentially self-

sustained manner [76]. In another example, the self-replicating Azoarcus ribozyme was modified 

in two ways, one where tagged copies of itself cross- catalyze other copies and another where the 

tagged copies catalyze their own replication [45, 140]. It was found that the system with the 

mutually interacting ribozymes outperforms the selfish ones. Thus, the wide appeal of the RNA-

world is understandable, though such experiments are best put in perspective using Spiegelman’s 

own words: “When you create a living object the presumption is that the object didn't exist 

before. This I did not do. Working with simple chemical compounds, I take a primer of a living 

object and I generate many living objects from it"2. 

The “holy grail” of the RNA world is a ribozyme being able to replicate itself from a pool of its 

constituting nucleotide monomers. This has not been attained yet. A criticism of the RNA world 

scenario is that demonstrating the formation of nucleotide monomers under abiotic conditions is 

challenging. This is because nucleotide synthesis requires the binding together of phosphate, 

sugar and a nitrogenous base, thought recent studies show that it may be synthetically possible 

[2, 103]. Another synthetic challenge is the polymerization of such nucleotides to form long 

hetero-polymers, which also recently has been suggested to be synthetically plausible [14, 50]. 

So, the RNA world is not without problems, which can be generally put as requiring complex 

initial conditions [11, 96]. The metabolism-first notion attempts to overcome this 

 

3.1.2. The metabolism-first scenario 

The metabolism-first scenario suggests that the very first life precursors are likely to have been 

relatively elaborate molecular networks of simple organic molecules [4, 27, 79, 118, 123]. The 

reverse citric acid cycle (reverse Krebs cycle), during which carbon compounds are formed from 

carbon dioxide and water, is one example. Krebs cycle is a common mode of oxidative 

degradation in eukaryotes and prokaryotes, which uses eight different enzymes and some of the 

steps are catalyzed by the interim products [145]. Thus, demonstrating the reverse citric acid 

cycle under plausible prebiotic conditions is important for understanding the origin of life, not 

                                                 
1 The Nobel Prize in Chemistry 1989 was awarded jointly to Sidney Altman and Thomas R. Cech "for their 
discovery of catalytic properties of RNA". 
2 Taken from: Profiles in Science by the National Library of Medicine (http://profiles.nlm.nih.gov). 
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just because it represents an autocatalytic cycle (see below), but also because it is a source of 

carbon molecules necessary for a cells’ survival [21, 42, 114]. Another example is the formose 

reaction, during which sugars are formed from formaldehyde.  It has been shown to occur under 

diverse prebioticaly plausible conditions [19, 63, 108, 109, 122]. Oparin, one of the first to 

suggest a possible chemical pathway for the emergence of life, proposed that it could be 

manifested by the molecular reactions of relatively simple organic molecules in the primordial 

soup, interacting with each other to spontaneously form colloidal molecular assemblies 

(coacervates) [73, 92, 93]. 

 

3.2. Mutual catalysis 

Regardless of the specific details of the replicator-first and the metabolism-first, both scenarios 

acknowledge the need for reliable information storage and transfer, assisted by self-replication. It 

was Orgel who highlighted the relationship between molecular replication and the concept of 

autocatalysis or self-catalysis [95]. Kauffman [59] defined a set of mutually catalytic compounds 

as "collectively autocatalytic" if within this set, the reaction producing any of the set’s 

components can be catalyzed by at least one member of the set. Thus the entire set is self-

sustaining and may be considered as undergoing self-reproduction, as long as input of energy 

and molecular building blocks is provided [49, 59, 60]. The notion that mutual catalysis (cross-

catalysis) is an important facet of self-replication draws from these aforementioned ideas. 

Collectively autocatalytic systems resemble present-day living cells, which harbor self-catalytic 

polynucleotides as well as a plethora of mutual catalysts that constitute the metabolic pathways. 

This is exemplified by the famous hypercycle, a set of self-replicating polynucleotides, coding 

for and acted upon by catalytic enzymes [30]. Likewise, Autopoiesis [142] and the Chemoton 

[35] are example models of collective autocatalysis that also harbor self-replicators.  

 

3.3.  The lipid world  

An example of metabolism first is the lipid world, where specific types of small molecules, i.e. 

lipids, are assumed to form catalytic networks, with the advantage that such molecules 

spontaneously accrete to form kinetically-controlled distinct supramolecular structures. Our 

laboratory was one of the pioneers of the lipid world scenario for the origin of life, attempting to 

generate a synthesis between the replicator first and metabolism first approaches [118, 120] 

(Figure 2). The main point of strength of this scenario is that it suggests an entity that can 

undergoe self-reproduction of a set of relatively simple molecules, without any self-templating 

biopolymer. This happens via a specific mechanism resembling that at work in collectively 

autocatalytic systems.  
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The lipid world scenario considers non-covalent reversible accretion of amphiphiles, e.g. lipids, 

to form assemblies such as micelles and vesicles. Importantly, these assemblies are considered to 

store information in the form of non-random molecular compositions. These are passed to 

progeny via homeostatic growth accompanied by fission. It is suggested to draw an analogy 

between the transmission of compositional information to the copying of sequential information 

by templating biopolymers. The importance of amphiphiles in this origin of life scenario derives 

from concepts similar to those of Oparin’s coacervates. This is because lipids and similar 

amphiphiles spontaneously form distinct assemblies due to hydrophobic and hydrophilic 

interactions. These assemblies, in a way, combine properties of container structure, metabolism 

and information transfer [119].  

 

Figure 2: The lipid world attempts to generate a synthesis between the replicator first 

and metabolism first approaches. Figure taken from [120]. 

 

As for the question of where the monomer building blocks come from, prebiotic syntheses have 

been shown to include the formation of lipid-like amphiphilic molecules with long-chain 

hydrocarbons [40, 44, 101, 112]. In parallel, lipids are found in carbonaceous meteorites, and it 
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has even been shown experimentally that such infalling amphiphiles are capable of forming 

vesicle-like boundary structures [24, 100]. Finally, a rudimentary role of membrane composition 

was recently shown experimentally, where it was inherited by daughter vesicles and affected 

daughter fission [3], supporting the plausibility of the lipid world. 

 

3.4. The GARD model 

The graded autocatalysis replication domain (GARD) model quantitatively describes the details 

of the lipid world [119]. GARD is a systems-chemistry kinetic model which entails 

supramolecular assembly of amphiphiles and elaborates some of its evolution-related attributes, 

with an implied route to minimal protocells [52, 57, 71, 124, 125, 126, 127, 128]. The model is 

based on a catalytic network whose nodes and edges respectively represent molecular types and 

catalytic events, including autocatalysis (self-catalysis) and cross (mutual) catalysis. In Equation 

2 below these catalytic terms are respectively represented as the diagonal and off-diagonal terms 

of a matrix β, hence the term “β network”. The model assumes that molecules from a buffered 

environment join and leave an assembly in a reversible manner. Once an assembly reaches a pre-

defined maximal size, Nmax, a random fission action is applied to produce two progenies of same 

size which can grow again and again in growth-fission cycles (Figure 3). Importantly, the system 

is kept away from thermodynamic equilibrium by assembly fission. GARD’s dynamics displays 

species-like quasi-stationary states (QSS) in compositional space called composomes [119]. 

GARD is thus a kinetic model which describes the growth and fission of a molecular assembly 

[80, 119].  

The composition of an assembly is given by the vector v: 

{ }
GNi nnnv KK1=  

Equation 1 

Where NG is the number of molecular types (environmental molecular repertoire) and ni 

(i=1..NG) is the current (time dependent) count of molecular type i within the assembly. 

Assembly growth is controlled by its molecular composition and the dynamics are described by a 

set of ordinary differential equations: 

( ) 







+−= ∑

= N

n
nkNk

dt

dn j
N

j
ijibif

i
G

1

1 βρ  

Equation 2 

Where ni is as in Equation 1, ρi is its environmental concentration (equal for all molecule types) 

and βij is the catalytic rate-enhancement exerted by an assembly molecule of type j on incoming 

or outgoing molecule of type i. kf and kb are the basal forward and backward rate constants 
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(joining and leaving, respectively) and N is current assembly size. βij values are based a 

lognormal distribution, drawing from the experimentally derived receptor affinity distribution 

[69, 70, 119]. The model does not assume a priori relation between βij and βji values. It was 

previously found that when βij values obey such a distribution, faithful transfer of information to 

progeny is augmented [121]. Different randomly drawn β networks may be viewed as 

representing different environmental chemistries.  

 

Figure 3: A cartoon representation of the GARD model cell-cycle. Molecules from the 

environment form and accrete to an assembly, biased by the β network (matrix). Once 

an assembly reaches a pre-determined maximal size it undergoes fission. Different 

colors represent different molecular types. 

 

3.5. GARD Composomes and compotypes 

The similarity between two assemblies, at generations χ and δ, was defined as the dot product of 

their compositions vectors [119], typically calculated at assembly size Nmax: 

δχ

δχ
δχ

vv

vv
vvH

⋅

⋅
=),(  

Equation 3 

A faithfully replicating assembly was previously defined as an assembly which is highly similar 

to predecessor and successor (H>0.9 for generations χ-1 and χ+1) [126]. A set of subsequent 

faithfully replicating assemblies is termed composome (a term originally derived from 

compositional genome) [119]. A composome is a QSS in the NG-dimensional compositional 

space, when the trajectory of GARD dynamics is followed. The dynamics can also be presented 

as a ‘carpet’: a two-dimensional matrix showing H values for all assemblies encountered during 

a simulation [119] (Figure 4). A composome appears as a dense area with high H near the main 

diagonal in a carpet, signifying consecutive generations where a composition was transferred 
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with high fidelity. A compotype (composome type) is subsequently defined as one of several 

clusters computed out of all assemblies that belong to any of the composomes in a simulation 

[126]. This is as contrasted with “drift” – assemblies that belong to no composome.  

GARD’s composomes (more specifically – compotypes) are treated as its species. This is 

because composomes are made out of a series of assemblies that share similar composition and 

faithfully replicate, making them persistent in time and on average appearing more than other 

compositions (i.e. drifts). The idea that that a compositional assembly of lipids (i.e. a vesicle) is a 

distinct species with distinct properties is supported by experiments that show that different 

binary and ternary composition of vesicles show different features such as permeability [82] or 

boundary structure [144]. 

 

Figure 4: Similarity ‘carpet’ shows the degree of compositional similarity (H, Equation 3) 

between all assemblies in a GARD simulation. Red is high similarity. Composome 

appear as a dense red area near the main diagonal. 

 

3.6. Spontaneous chiral symmetry breaking in early molecular networks 

This work was done in collaboration with Dr. Ran Kafri from Harvard Medical School, and was 

published as a M.Sc. thesis [56] and a peer-reviewed paper [58]. 

An important facet of early biological evolution is the selection of chiral enantiomers for 

molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-

standing question in molecular evolution [13]. A more general kinetic formalism for early 
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enantioselection, based on the GARD model, has been developed (Chiral-GARD, C-GARD 

[58]). The key is applying symmetry constraints to β, by considering an environment with 

asymmetric molecules in a racemic mixture. All 2×NG molecular types are treated as different 

compounds with different kinetic parameters, keeping in mind that they actually constitute NG 

enantiomer pairs (Figure 5). 

The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards 

composomes enriched with one of the two enantiomers for some of the constituent molecule 

types (Figure 6). A global analysis of the dependence of weak-enantioselection on molecular 

enantiodiscrimination finds that increasing the latter enhances the probability of assemblies to 

have high enantioselection, yet even for the highest enantiodiscrimination studied here there is 

an almost even chance for assemblies to show high or low enantioselection (Figure 7). This may 

indicates a stochastic effect: high enantiodiscrimination is necessary, but not sufficient to lead to 

symmetry breaking. 

It follows that chiral selection may be an emergent consequence of early catalytic molecular 

networks rather than a prerequisite for the initiation of primeval life processes. 

 

Figure 5: An illustration of a 2NG×2NG β and the value of enantiodiscrimination (βij). 

Note that the two blocks along each diagonal have identical values of the affinities 

(βLL=βDD and βLD=βDL). 
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Figure 6: Example of a C-GARD simulation. (A) Similarity carpet (red is high similarity). 

(B) Weak enantiomeric selection during this simulation ( NnnWw
GN

i

D
i

L
i∑

=

−=
1

). (C) Compotype 

assignments for the assemblies during this simulation. 

 

Figure 7: Probability distribution of Ww (see Figure 6 legend) at different values of 

enantiodiscrimination-related parameter (green=low, red=intermediate, blue=high). 
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4. METHODS 

4.1. Computer simulations 

Computer simulations were run using MATLAB versions 7.6-7.13. The GARD10 code package 

was prepared to be delivered upon request [80]. Different simulations were run using different 

underlying β matrices, which were generated by the MATLAB Mersenne-Twister 

pseudorandom number generator with different seeds. For each β, a set NG
2 random numbers 

(labeled Z) was drawn from a normal distribution mean=0 and standard deviation=1.0, and 

converted to a set Q of lognormally distributed number by the following transformation: 

Q=exp(µ+σZ), where µ and σ are respectively the lognormal mean and standard deviation. 

GARD is subjected to a kinetic Monte Carlo simulation based on Gillespie’s algorithm [38]: in 

each iteration, a set of 2NG rate values is generated based on Equation 2 (the forward and 

backward parts in Equation 2 are treated separately) and then one reaction is randomly picked 

and executed, where the chance of picking a reaction is directly proportional to the reaction rate. 

It is assumed that the time passed is the inverse of the rate of the reaction picked. This is 

repeated for each assembly until its size reaches Nmax (or 0, and then the simulation terminated) 

and then random fission applied. Fission is performed stochastically, whereby one progeny was 

created by selecting, one by one, molecules from the parent and placing them in this progeny. 

The chance to select a molecule of type i is proportional to its current count in the parent 

assembly, and this is continued until the size of this progeny is Nmax/2 and the other progeny 

assumes the remainder of the parent. 

Unless otherwise mentioned, the parameters used in this thesis are given in Table 1 [80]. 

NG 100 
Nmax NG 
kf 10-2 
Kb 10-4 

ρi 1/NG 

µ -4 

s 4 
Lpop 1000 

Table 1: Simulations parameters used in this thesis. 

 

4.2. Compotypes 

Compotypes were found by K-means clustering algorithm, using 1-minus-cosine type of 

silhouette [126, 132]. Clustering was repeated for k=2,3,… number of clusters and the k with the 

highest silhouette was picked as the compotype count (NC) of this simulation (for k=1, the 

silhouette is calculated as the average H between all assemblies in the simulation). A compotype 
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is represented by a compositional vector constituting the center of mass of all its member 

assemblies. 

In chapter  5.4 the size of a compotype’s intrinsic molecular repertoire (Nmol), its replication 

fidelity (Frep) and time (trep) are measured and employed. These parameters result from β and the 

GARD dynamics, as they are reflected in each compotype. Nmol is calculated as the number of 

molecule types (out of the total NG types) whose fractional counts in a compotype center of mass 

are bigger than 1.0. Frep and trep are assessed using the following method: an assembly with 

exactly the same composition as in the compotype’s center of mass (rounded to nearest integer) 

is used as parent. This parent than undergoes split and each of the two progeny is grown 

according to its idiosyncratic composition (Equation 2) until it reaches Nmax size. This is repeated 

for 4,000 times, each time beginning with the same parent, giving a total of 8,000 fully grown 

progeny of this compotype. Frep of a compotype is than defined as the average H between the 

fully grown progeny to the parent. This is an extension to a previous analysis, where the fidelity 

was assessed based only on the split action [121]. Each event of a molecule joining (or leaving) 

the assembly has a rate, and the total growth time of each progeny is the sum of 1 over each of 

these rates. trep of a compotype is than defined as the average growth time of all grown progeny 

who are highly similar to this compotype. 

 

4.3. Selection 

This part mainly relates to chapter  5.1. Selection performed by applying a selection pressure 

towards the center of mass of a specific target compotype, T [80]. This was done by biasing the 

growth of an assembly towards the target (Equation 5) via a growth bonus parameter: 

( )TvsHGb ,χ=  

Equation 4 

Manifested as a temporary enhancement of the corresponding βij values, as suggested [143], 

where s>1 is a fitness gain, embodying a selective advantage, and for consistency with a 

previous work [143] Equation 4 is calculated at assembly size Nmin, that is, at the beginning of 

the growth cycle. 

The modified βij ’ is obtained at each generation according to: 
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Equation 5 
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Where i and j are indices of molecular types, and βij modification is effected for all i,j (and j,i) 

pairs contained within the current assembly vχ. Thus, the network is perturbed only at edges 

present within the current assembly according to how similar to current assembly is to the target. 

The selection excess (SE) is defined as the ratio between the frequencies of the target in a 

simulation performed with and without selection (Equation 6), while the probability of allele 

fixation is proportional to 1 over the total population size [97]. 

T

T

f

f
SE '=

 

Equation 6 

 

4.4. Population dynamics 

This part mainly relates to chapter  5.4. The chemical dynamics of Lpop GARD compositional 

assemblies in a reactor under constant population conditions are simulated in a buffered 

environment (Figure 8). Each simulation starts by seeding the reactor with Lpop random 

assemblies, each at size Nmin. Assembly growth is controlled by its molecular composition 

(Equation 2). Each time an assembly reached Nmax a random fission was applied and one of the 

progeny replaced the parent while the other replaced a random assembly among the other Lpop-1, 

thus keeping the population size constant. This protocol is based on the classical Moran process 

[89]. Each simulation is performed for 50,000 split events in the reactor, typically sufficient to 

reach steady state, and data is saved every 10 split events. The composition of each assembly at 

each time point is assessed as belonging to one of the NC compotypes characterizing a specific β 

(H>0.9 to the compotype center of mass) or to drift (Figure 9). 

 

Figure 8: A heuristic representation of population dynamics, under constant population 

condition. One an assembly reaches Nmax size, it undergoes a split, where one progeny 

replaces the parent while the second progeny replaces a random assembly. 
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Figure 9: An example of GARD’s population dynamics (for brevity only 100 assemblies 

are shown). In this example NC=3. The color of an assembly represents it compotype 

assignment (white means drift). 

 

4.5. Logistic equation and fit to population data 

The fractional counts of assemblies belonging to each compotype (Ci) in a population are plotted 

and analyzed according to the multi species logistic model (r-K or Lotka-Volterra competition 

model) [34, 133, 141]: 
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Equation 7 

Where t is time, measured in the number split events that occurred in the population. For 

compotype species i, ri is its intrinsic growth-rate, Ki its carrying capacity and αij is the extent of 

competition exerted by compotype j on compotype i. The entire carrying capacity of a given 

environment is ∑K i. The entire set of αij values of a given simulation represents a quantitative 

food-web network [138], whose nodes and edges are respectively compotypes and αij values. 
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Fitting between the time dependent frequencies and the logistic equation is performed using 

MATLAB’s lsqcurvefit and ode functions for least-squares fitting and numerical integration of 

ordinary differential equations, respectively. The fit procedure is as follows: 

1. Ci(t) data of each compotype is smoothed 100 times by a 5-point moving average. 

2. In order to avoid over sampling of the long times over the short times, the fit time window is 

until twice the time the variance of the data (for each time point, the variance is calculated 

until that point) drops below half its maximal size, plus 100 points along the tail in equal 

intervals. This is calculated for each compotype individually and then the largest window is 

picked. 

3. Compotypes with <Ci> <0.01 are ignored and their assemblies classified as drift. 

4. For simulation with NC=1, if the time curve exhibits a plateau lower than the maximum by 

more than 20%, then this simulation is ignored. 

5. MATLAB lsqcurvefit is used to perform least-squares curve fitting with the following 

function parameters (the rest are at their default values): TolFun=1e-10; TolX=1e-10; 

MaxFunEval=200*NC*(NC+1); MaxIter=1000. 

6. ode45 and ode15s ordinary differential equation solvers are used to numerically solve 

Equation 7, and the fit with the lowest residuals is considered. The following function 

parameters are used and the rest are at their default values: AbsTol=1e-10; RelTol=1e-10. 

7. Initial parameter guesses are: Ki=max(Ci); aij=0.1; r� = ∑ dC����
	
� 100⁄  (dCi is approximated 

by 5th order numerical differentiation); Ci(0)=mean[Ci(1..100)]. 

8. Constraints are: ri>0, 0≤K i≤1.0, 0≤aij≤10.0, 0≤Ci(0)≤max(Ci). 

 

For each simulation, the quality of the fit was assessed using root-mean-square-difference 

(RMSD): 

( ) ( )[ ]
2

1
∑

=

−=
CN

i
ii tCtfRMSD

 

Equation 8 

Where fi is the fitted curve and <…> denotes an average over all time-points in that simulation. 
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5. RESULTS 

The results presented in this thesis show how the lipid world scenario and the GARD model have 

several characteristics of living systems, and elaborate some advanced features of the GARD 

model. 

 

5.1. Excess mutual catalysis is required for effective evolvability 

An important prerequisite from any living system is to be able to respond to selection and thus 

undergo evolution [9, 139]. In GARD, it is of special importance to demonstrate this attribute, as 

it is a non-standard model and it is not obvious why and how its species (compotypes) should 

respond to a selection pressure. This chapter analyzes the selection behavior of compotypes in 

order to address this issue. This is done by considering the change in the abundance of a 

compotype, in a given simulation, as a mimic to selection. It is found that GARD’s compotypes 

can indeed portray selection. Further, a fundamental relation between the general structure of β 

and this selection behavior is discovered: the higher the mutual catalysis level in β is, the 

stronger the selection response portrayed, i.e. a bigger change in the abundance. The argument 

that GARD’s selection should be studied with respect to compotypes is addressed in 

chapter  5.4.6.1, which also helps understand the difference in results with a recent erroneous 

criticism against GARD’s evolvability [143].  
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Abstract It is widely accepted that autocatalysis constitutes a
crucial facet of effective replication and evolution (e.g., in Eigenʼs
hypercycle model). Other models for early evolution (e.g., by
Dyson, Gánti, Varela, and Kauffman) invoke catalytic networks,
where cross-catalysis is more apparent. A key question is how
the balance between auto- (self-) and cross- (mutual) catalysis
shapes the behavior of model evolving systems. This is
investigated using the graded autocatalysis replication domain
(GARD) model, previously shown to capture essential features
of reproduction, mutation, and evolution in compositional
molecular assemblies. We have performed numerical simulations
of an ensemble of GARD networks, each with a different set of
lognormally distributed catalytic values. We asked what is the
influence of the catalytic content of such networks on beneficial
evolution. Importantly, a clear trend was observed, wherein only
networks with high mutual catalysis propensity ( pmc) allowed
for an augmented diversity of composomes, quasi-stationary
compositions that exhibit high replication fidelity. We have
reexamined a recent analysis that showed meager selection in
a single GARD instance and for a few nonstationary target
compositions. In contrast, when we focused here on compotypes
(clusters of composomes) as targets for selection in populations
of compositional assemblies, appreciable selection response was
observed for a large portion of the networks simulated. Further,
stronger selection response was seen for high pmc values. Our
simulations thus demonstrate that GARD can help analyze
important facets of evolving systems, and indicate that excess
mutual catalysis over self-catalysis is likely to be important for the
emergence of molecular systems capable of evolutionlike behavior.
1 Introduction
The fundamental question of how primitive life emerged on the prebiotic Earth has drawn consider-
able scientific attention throughout the centuries [2, 5, 14, 15, 22, 42, 59, 64]. The path from organic
mixtures (i.e., the primeval soup) to reproducing lifelike protocells has traditionally been dominated by
two different views: the genetic, or replicator-first, approach, and the metabolism-first approach [2, 42]. Both
srael. E-mail: omermar@weizmann.ac.il (O.M.);

Artificial Life 18: 243–266 (2012)
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acknowledge the need for reliable information storage and transfer, assisted by self-replication. The
replicator-first approach suggests that life began with a single self-perpetuating biopolymer (e.g.,
RNA) [14, 15, 18, 19, 22, 37, 42, 64], which later evolved into multimolecular networks under the
replicatorʼs control. Orgel [41] has highlighted the relationship between molecular replication and
the concept of autocatalysis or self-catalysis. The metabolism-first approach suggests that the very first
life precursors must have been relatively complex molecular networks arising via spontaneous accre-
tion of simpler organic molecules [3, 9, 24, 25, 34, 48, 51, 53, 60]. In this scenario, it is further pro-
posed that faithful reproduction directly stems from certain network attributes. Therefore, one should
better understand the network properties of the implicated molecular assemblies [1, 47, 57, 66] if one
can merge the two seemingly conflicting scenarios for prebiotic evolution.

One embodiment of the metabolism-first view is the lipid world scenario, which considers non-
covalent assemblies of amphiphiles, such as micelles and vesicles formed by lipids [8, 39, 48, 50,
53, 69]. These are assumed to store information in the form of nonrandom molecular composi-
tions, and pass it to progeny via homeostatic growth accompanied by fission [49]. The graded auto-
catalysis replication domain (GARD) kinetic model for prebiotic evolution quantitatively describes
the details of such a process. It elaborates some of its evolution-related attributes [10–12, 27, 30,
44, 50, 58, 62, 67, 68], with an implied route to minimal protocells [8, 45, 49, 63, 65]. The model
is based on a catalytic network, usually presented in the form of a matrix h with autocatalysis (self-
catalysis) and cross (mutual) catalysis terms. Importantly, the system is kept away from thermo-
dynamic equilibrium by assembly fission [49]. Key in GARD dynamics are compotypes—clusters of
replication-prone quasi-stationary states (composomes, a term derived from the notion of composi-
tional genomes [49]), proposed to play a crucial role in the GARDʼs evolutionary behavior. Introducing
substantial inhibition in h is expected to result in net catalysis because an inhibitor of an inhibitor is
an activator [20].

Catalysis, the enhancement of reaction rate by an external chemical component, was recognized
as early as 1836 by Berzelius, and Ostwald applied the term autocatalysis in 1890 to reactions that gain
speed as they proceed [26, 44]. In the genetic approach to lifeʼs origin, researchers invoke one or
several autocatalytic molecules as the core of a prebiotic entity. This is exemplified by the hypercycle, a
set of self-replicating polynucleotides, coding for and acted upon by enzymes [10, 30, 58]. In the
metabolism-first domain, autopoiesis [67] and the chemoton model [12] are examples of collective
autocatalysis [25].

Collectively autocatalytic systems feature a central role not only for self-catalysis, but also for
mutual catalysis. In this, they arguably resemble present-day living cells, which harbor self-catalytic
polynucleotides as well as a plethora of mutual catalysts that constitute metabolic pathways. Here we
utilize a metabolism-first simulator to examine the relative importance of the two catalytic modes
(self- and mutual catalysis). Previously [11], an abstract chemistry model has been used to demon-
strate that self-maintaining organizations arise only once self-catalysis is completely inhibited [11, 62].
We attempt to extend such results in the realm of the GARD kinetic model, asking what features
of the h network contribute to the evolution of the ensuing compositional assemblies. It is shown
that excess mutual catalysis is a necessary, though not sufficient, condition for displaying several
evolutionlike characteristics, including a high number of composome types, higher evolvability scores,
and a significant response to selection.

Recently, it has been argued that collectively autocatalytic metabolic networks, such as the GARD,
do not allow for fitter compositional genomes to be maintained by selection. Vasas et al. [68] compared
the frequency ranking of random GARD compositional assemblies before and after selection, and
found that the relative ranks changed only slightly. This was taken as evidence for an inherent evolu-
tionary limitation of metabolism-first scenarios. Here it is demonstrated, based on a large number of
simulations, that when quasi-stationary composomes rather than arbitrary compositions serve as selec-
tion targets, GARD networks are capable of a significant response to selection. Importantly, this
can happen chiefly when a high proportion of mutual catalysis is present in a GARD network. The
results highlight the potentially important role of mutual catalysis, as compared to self-catalysis, in the
emergence of early lifelike systems.
244 Artificial Life Volume 18, Number 3

24



O. Markovitch and D. Lancet Excess Mutual Catalysis Is Required for Effective Evolvability
2 Model and Methods
2.1 GARD Formalism
The regular GARD formalism describes the time-dependent dynamics of a molecular assembly,
by following the fate of a compositional vector whose elements are the molecular counts ni within
the assembly:

r ¼ fn1; n2;… ; nNGg ði ¼ 1;… ;NGÞ ð1Þ

The vector dynamics is governed by mutually catalytic interactions among the invariable number of
constituent molecule types, NG. The assembly grows by accretion of environmental molecules, and
once a limiting size Nmax is attained, random fission is applied, producing two progeny of the same
size, Nmin = Nmax/2, one of which grows again, generating growth-fission cycles of consecutive
generations. GARD dynamics is described by a set of ordinary differential equations

dni
dt

¼ ðkfUiN − kbniÞ 1þ
XNG

j¼1

hij
nj
N

 !
; N ¼

XNG

i¼1

ni ; ð2Þ

where dni/dt is in units of the individual reaction rates at which the counts of elements are chang-
ing [49], and kf and kb are respectively the basal forward and backward rate constants (joining and
leaving the assembly). Typically kf ≫ kb, reflecting a high equilibrium constant kf/kb for sponta-
neous amphiphile accretion (Table 1). Here Ui is the buffered concentration of molecule type i in
the environment (assumed here to be equal for all i values), N is the assembly current size, and hij is
Table 1. Simulation parameters. NG is the number of molecular types (repertoire size); Nmax is the assembly pre-fission size;
kf and kb are the respective basal forward and backward rate constants; Ui is the buffered environmental concentration of
molecule type i; A andj are the respectivemean and standard deviation of the lognormal distribution ofhij values (Appendix A.1,
Equation 12);GEN is the duration of a simulation; Lognormal random seeds is the range of random seeds used for simulations;
Lpop is the constant size of the population in the population GARD.
Artificial Life Volum
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Nmax
 NG
kf
 10-2
kb
 10-4
Ui
 1/NG
A
 −4.0
j
 4.0
GEN
 5,000
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 1–10,000
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 1,000
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the non-negative matrix element signifying the rate enhancement exerted by an assembly molecule
of type j on an incoming or outgoing molecule of type i

iout þ jin ⇆
kb�ð1þhij Þ

kf�ð1þhij Þ
iin þ jin ð3Þ

The chemical reaction in Equation 3 embodies the notion that molecular catalysis equally affects the
forward and the backward rates, obeying the constraint that a catalyst may not change the equilibrium
constant of the reaction it affects. This means that even under catalytic action, the relationship kf ≫ kb
prevails.

The matrix h represents a network of self-catalytic (diagonal elements) and mutually catalytic
(off-diagonal elements) catalytic interactions (Figure 1), with self-catalysis represented by the case
j = i (Appendix A.1, Equation 13). The matrix elements are randomly drawn from a lognormal
distribution (Appendix A.1 and Equation 12) [49].
2.2 GARD Simulations
The model is subjected to a kinetic Monte Carlo simulation based on Gillespieʼs algorithm [16, 17,
51] using parameter values similar to those employed in previous studies (Table 1). Simulations are
run using MATLAB versions 7.6–7.10 (the GARD10 code is available upon request). A set of
10,000 GARD simulations is generated, all with the same parameters, and each with a different
matrix h generated by the MATLAB pseudorandom number generator with seeds 1–10,000. The
validity of the conclusions drawn here is ascertained by repeating the simulations with smaller data
sets, with seeds 1–2,000 and 2,001–4,000, striving to verify that the entire 10,000-strong data set
adequately represents the GARD simulation space. The random sampling of h values may be per-
ceived as representing different possible GARD environmental chemistries.

The relative mutual catalysis power

pmc ¼

XNG

i¼1

XNG

j¼1

hij

XNG

q¼1

hqq

�NG

N 2
G

ð4Þ
Figure 1. Network representation of GARDʼs hmatrix. Two cartoon networks are shown, one with excess mutual catalysis
(a) and the other with excess self-catalysis (b). In the electronic version, colored circles represent different molecular
types, and arrow thickness represents catalysis strength (Equation 3). Self-catalysis is the shortest closed loop, containing
one molecular type (see Appendix A.1, Equation 13).
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is defined as the sum of all rate enhancements divided by the sum of self-catalysis rates (diagonal h
elements). Because there are only NG diagonal elements and the total number of elements is NG

2, an
appropriate correction is introduced. Thus, the excess of mutual catalysis is represented by pmc > 1,
while the excess of self-catalysis (or autocatalysis) is portrayed by pmc < 1.

2.3 Compositional Similarity and Compotypes
The similarity between the compositions rm and ry of the respective assemblies at generations m and
y is defined as the dot product H (see Equation 5) of their composition vectors [49], typically cal-
culated at assembly size Nmax (end of the growth cycle).

Hðm; yÞ ¼ H rm; ry
� � ¼ rm � ry

jrmj � jryj ð5Þ

GARD dynamics is visually portrayed by a similarity carpet, showing H between any pair of parent
assemblies during a simulation (e.g., Figure 10 in Appendix A.4). Composomes, appearing as dense
areas with high similarity near the main diagonal, are defined as any two consecutive generations
where H(m, m + 1) ≥ 0.9 [56]. Inter-composome similarity is viewed by off-diagonal examination.
The time duration of different generations (Equation 2) is different due to different growth path-
ways; hence a certain level of selection is already achieved by the matrix h causing composomes to
appear more frequently than random compositions [49].

All the compositions belonging to composomes in the entire simulation undergo k-means cluster-
ing [56, 61], and the centers of mass of the resulting clusters are defined as compotypes.

2.4 Similarity Autocorrelation
The similarity autocorrelation function, c(Dt), akin to a Fourier transform of the compositional
similarity time series, is defined by

cðDtÞ ¼ 〈Hðm;mÞ �Hðm; yÞ〉 ¼ 〈Hðm; yÞ〉 ð6Þ

where 〈…〉 denotes averaging over all generation pairs fulfilling y − m = Dt. This function is history
independent, that is, no conditions are imposed on the events occurring between generations m and y.

c(Dt ) is fitted with a single exponential with parameters H and H0 using a least squares fit (see
Appendix A.2, and Figure 12 in Appendix A.4):

cðDtÞ ¼ ð1 − H0Þ exp −
Dt
H

� �
þH0 ð7Þ

The parameters H and H0 are used to define a measure of evolvability (Section 3).

2.5 Selection in GARD
For each simulation, themost frequent compotype is chosen as a target,T. A selection-GARDsimulation
is then run, whereby the growth of an assembly at generation m is biased toward T via a growth bonus
parameter

Gb ¼ s �H rm; Tð Þ ð8Þ

manifested as a temporary enhancement of the correspondinghij values, as suggested [68], where s> 1 is
a fitness gain, embodying a selective advantage, and for consistency with previous work [68] H(rm,T )
is calculated at assembly size Nmin, that is, the beginning of the growth cycle.
Artificial Life Volume 18, Number 3 247
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The modified matrix element hij′ is obtained at each generation according to

hij′ ðmÞ ¼ hij ; i or j ∉ rm

Gb � hij ; i and j ∈ rm

�
ð9Þ

where i and j are molecular type indices, and hij modification is effected for all i, j (and j,i ) pairs
contained within the current assembly. Thus, the network will be perturbed only at edges present
within the current assembly according to how similar the current assembly is to the target. In the
selection-GARD simulation, a compotype T′ is identified as having the highest H value with respect
to T. An unambiguous identification of T′ is afforded by the fact that the mean similarity between T
and T′ in the entire data set is H = 0.9933 ± 0.0217. The selection excess is subsequently defined as

SE ¼ fT ′
fT

ð10Þ

where fT ′ and fT are the fractions of generations belonging the respective compotype (before and
after selection). Selection excesses ≥1.05 and ≤0.95 are respectively taken to represent positive and
negative target selection; the rest are taken to signify no selection.

2.6 Selection Dynamics in a Population of Compositional Assemblies
An initially random population of a fixed number of assemblies, Lpop, is allowed to simultaneously
grow according to Equations 1 and 2 and its idiosyncratic composition. When one of the assemblies
reaches the limiting size Nmax, it divides by random fission, and a randomly chosen assembly from
among the other Lpop − 1 assemblies is removed, thus keeping the population size constant. This is
repeated for GEN splits (Table 1). This protocol is based on the classical Moran process [36, 68, 70],
and to some degree reflects an earlier attempt to simulate GARD populations [38].

The frequency of the target in each population is defined as the number of assemblies that are
highly similar (H ≥ 0.9) to the target compotype taken from regular GARD for the same h network
(Figure 13 in Appendix A.4). Selection is exerted by performing a simulation with the same parameters,
biasing the growth of assemblies toward a target compotype as for regular GARD (Equations 8 and 9).
The selection excess is defined as in Equation 10, where fT′ and fT are respectively the fractions of
assemblies within the population belonging to the target compotype before and after selection.
3 Results
3.1 Selection in GARD
We used GARD simulations to ask what is the selection response of compositional assemblies. A
value for the selection excess was obtained for each of 10,000 simulations, using a modest value of
the fitness gain, s = 1.1, in line with previous work [68]. Figure 2a shows the correlation between the
frequencies of the target compotype with and without selection (examples of regular GARD carpets
before and after selection are given in Figure 14 in Appendix A.4). An overall skew is seen here
toward positive selection. The figure also demonstrates that significant positive selection, as well
as negative, occurs over most of the range of fT.

Figure 2b shows the distribution of selection excess values for the entire data set (Equation 10).
Importantly, a considerable percentage of the simulations (33%) show positive selection, with a mean
selection excess of 1.38 for selection excess >1.05, and as much as 10% shows selection excess >1.5.
Interestingly, 31% of the cases showed negative selection, with a mean selection excess of 0.775 for
selection excess <0.95, and about 36% were neutral to the selection pressure. Similar to the skewness in
Figure 2a, there is a slight bias in favor of positive selection, as indicated by an overall mean selection
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excess equal to 1.05. Notably, higher mean selection values positively correlate with the number of other
compotypes coexisting with the target compotype in a given system (Figure 15 in Appendix A.5).

GARD simulations are used to see how attributes of the catalytic network embodied in the matrix h
govern the evolution-related dynamics of compositional assemblies. It is asked how the mutually cata-
lytic power pmc (Equation 4) influences the selection response. A clear trend appears here, whereby
strong positive or negative selection is found almost entirely for pmc higher than 1 (Figure 3b).

The main trends appear also at lower simulation counts, barring small-number fluctuations at high
pmc (Figure 3a). For example, for the range of pmc > 100, a meaningful p-value with 5% significance
level is achieved only after performing more than 2,500 simulations (Table 3 in Appendix A.6). The
other two evolution-related parameters withstand similar scrutiny (below).

3.2 Populations of GARD Assemblies
The foregoing simulations of the regular GARD model addressed the case in which at each time
point only one GARD assembly is considered. To enhance the capacity to draw conclusions about
Figure 2. Selection in GARD. (a) The correlation between the frequencies of the target compotype in the basal simulation
(fT) and its frequency after applying selection (fT ′). In the electronic version, color represents probability out of the entire
data set of 10,000 simulations, and positive and negative selection are respectively seen above and below the diagonal
(selection excess = 1.0, solid black line). The dashed and dotted lines respectively mark selection excesses of 3

2 and 1
2 .

(b) Selection excess histogram for the entire data set. Simulation parameters are given in Table 1.
Artificial Life Volume 18, Number 3 249

29



O. Markovitch and D. Lancet Excess Mutual Catalysis Is Required for Effective Evolvability
selection in GARD, 1,000 simulations were performed, each for a population of 1,000 assemblies, under
the constant population conditions. Figure 4 shows an example of the dynamics for one of
the networks. Starting from a population of random assemblies, the population frequency of the target
compotype gradually grows over the first 10,000 split events, reaching a plateau with fluctuations,
signifying the compositional preference imposed by the matrix h towards this compotype. When
selection toward this compotype is applied (Equation 9), this general behavior is retained, with a faster
Figure 3. The dependence of selection excess (SE ) on mutual catalysis power (pmc). (a) Mean SE versus log10pmc, collected
from 10,000 GARD instances (solid black line, smoothed) or from two subsets of 2,000 instances, random seeds 1–2,000
(ovals) and 2,001–4,000 (crosses). (b) Density plot of SE versus log10pmc. In the electronic version, color represents prob-
ability of finding instances with specific (SE, pmc) values in all 10,000 GARD instances. Data is the same as in Figure 2.
Figure 4. Anexampleof the development of a compotype inpopulation dynamics,without andwith selection. This figure shows the
fraction of assemblies in the population that are highly similar to a given compotype (see Section 2 and Figure 13 in Appendix A.4)
over a large number of splits. Simulation parameters are lognormal seed= 3, GEN= 100,000, and the rest are given in Table 1.
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growth and a higher plateau, that is, showing positive response to selection. Similar to Figure 3b, strong
positive or negative selection is much more prevalent for pmc values higher than 1 (Figure 5b).

The effect of selection pressure on the frequency of the target compotype for all 1,000 networks is
presented in Figure 5a. Similarly to Figure 2a, an overall skew toward positive selection is seen (about
50% of cases), with some cases of negative (about 15% of cases) or no response to selection, and with
a mean selection excess of 1.254 ± 0.804. Significantly, the ratio of the number of simulations showing
positive selection to that showing negative selection increasedmore than threefold, from 1.06 in the regular
GARD to 3.33 in the population-GARD. In line with previous work [68], the growth bonus was calculated
when the assembly size wasNmin (Equation 8).When the bonus was calculated for all time points between
Nmin and Nmax (for a smaller set of 100 population-GARD simulations), the overall selection response
seems to become evenmore positive (70% of cases), with a higher selection excess value of 1.399 ± 0.997.

3.3 Compotype Diversity
The influence of pmc on one of the attributes of GARD diversity, the mean number of different com-
potypes appearing in a simulation, is now analyzed. It is found that as pmc increases, so does the mean
Figure 5. Selection in population-GARD. Figure details for (a) and (b) are as in Figures 2a and 3b, respectively. Data set is
1,000 population-GARD simulations, whose parameters are collected in Table 1.
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number of compotypes, reaching a maximal value of nearly 3 at pmc = 100 (Figure 6a). Furthermore,
in the realm of excess self-catalysis ( pmc < 0.5), one compotype appears in an overwhelming majority
of the cases (91%) (Figure 6b). In contrast, compotype counts between 2 and 6 are almost entirely
confined to the domain of excess mutual catalysis ( pmc > 2). Curiously, even among the ∼5,000
simulations that show only one compotype, a large majority have pmc > 2, suggesting that high mutual
catalysis is a necessary but not sufficient condition for a high number of compotypes.

3.4 GARD Evolvability
The similarity autocorrelation function (Equation 6) and its derived parameters (Equation 7) are
employed to obtain information on the evolutionlike dynamics of GARD assemblies. One possible
interpretation of the value of H is a depiction of the whole-simulation average of the assembly composi-
tional lifetime. Longer Hmay be taken to represent better averagemaintenance of compositional similarity
between consecutive GARD generations, symbolizing better reproduction fidelity. Likewise, 1/Hmay be
thought of as related to the compositional mutation rate. Indeed, effective compositional preservation is
implicated by the most frequent number of generations, H≈ 3, with a non-negligible probability for H≥
10 (Figure 7a). Note that H does not represent the composomal lifetime. In fact, the most probable target
compotype lifetime (taking for simplicity themaximal time from each simulation) is 30, and the average is
434 generations (Figure 7c). The other similarity autocorrelation parameter, H0, is interpreted here as
showing the residual compositional similarity among assemblies along many generations in the entire
simulation. Thus, 1 − H0 is taken as proportional to the overall compositional diversity of assemblies
across the entire simulation. Note thatH0 is not strongly correlated with the compotype count (Figure 16
inAppendixA.5, correlation coefficient−0.049, r2= 0.89) and therefore constitutes a rather independent
diversity assessment attribute. The most probable H0 value is ∼0.5, with a smaller probability peak at
H0 ≈ 1. The latter stems from simulations in which a single compotype tends to dominate.
Figure 6. The dependence of compotype count (NC ) on pmc. Details are as in Figure 3.
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Figure 7. Distributions of H, H0, and composome duration. (a) A histogram of H : unit is number of generations, and the
rightmost bin represents all data with lnH > 3. (b) A histogram of H0, unitless. (c) Distribution of the longest appearance
of target compotypes. Data in panels is the same as in Figure 2.
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A score is defined, which could arguably assess a GARD systemʼs evolvability:

EV ¼ H ð1 −H0Þ ð11Þ

A larger evolvability score will typically arise when the system concomitantly displays appreciable
trans-generation compositional preservation and higher overall compositional diversity. This compound
Figure 8. The dependence of the evolvability score (EV ) on pmc. Details are as in Figure 3.
Figure 9. The percentage of regular-GARD instances exhibiting extreme evolution-related parameters as a function of
maximal assembly size (Nmax). In the electronic version, the values taken are: compotype count >2 (blue), evolvability
score >1 (green), and selection excess >1 (red). All parameters, except Nmax, are as in Figure 3b. Full histograms and
their related data are given in Appendix A.6 (Figure 17 and Table 3).
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measure reflects similar definitions of evolvability [7, 43]. Similar to the selection excess and number of
compotypes, a clear trend appears, whereby high evolvability scores are much more prevalent for pmc

values higher than 1 (Figure 8).

3.5 The Effect of Assembly Size
The effect of the assembly pre-fission size Nmax on GARDʼs evolutionlike behavior was studied by
performing two additional sets of 10,000 simulations, each with the same parameters as in Table 1 except
forNmax=NG/2 and 2NG (Figure 9; Appendix A.6 Figure 17 and Table 3). While for the smallerNmax

value, the percentage of beneficial outcomes seems to be even higher than for the nominalNmax=NG, a
largerNmax value appears to have a disruptive effect because the system is nearing the equilibrium steady
state [23]. This is especially seen for the compotype count and the evolvability score.
4 Discussion
4.1 The Significance of Mutual Catalysis
One of the dominant concepts in prebiotic evolution research is the replicator-first scenario [10, 32,
40]. Based on the concept that molecular replication is related to self-catalysis [41], such views may be
perceived as related to the RNA-first scenario, positing that life began with a unique self-replicating
polyribonucleotide. In this realm, it is argued that more complex interaction networks have arisen
only at later stages, as when precursors for the autocatalytic molecule have been exhausted [31].
Our simulation results demonstrate an advantage for a network-first scenario, in which a large number
of molecular components mutually interact. While arising from a metabolism-related framework,
such results may be taken as relevant to the question of whether lifeʼs early precursors were a set
of replicators or a metabolic network. Note that the present work makes a direct comparison between
a metabolic network with frequent self-catalytic interactions and a metabolic network with frequent
mutually catalytic interactions, and therefore has only indirect relevance to the question of the validity
of replicator models. It is conceivable that future work incorporating templating biopolymers together
with mutually catalytic networks will better resolve this issue.

Awidespread argument against metabolism-like entities being the first seed of life is the assertion
that metabolic networks cannot store and propagate information. The GARD model may be viewed
as a counterexample, as it is endowed with a (limited) capacity to store and propagate compositional
information. This has implications for a set of previously proposed models involving networks of
molecular interactions. Two of the earliest relevant concepts are Gántiʼs chemoton [12, 13, 63] and
Maturana and Varellaʼs autopoietic systems [35, 67]. Autopoiesis characterizes a spatially confined
network of molecular components, whose mutual interactions continuously regenerate the network
itself. The chemoton is described as a system of three subnetworks: metabolite generation, template
copying, and membrane synthesis. We prudently suggest that GARD may be viewed as a special case
of autopoietic-chemoton-like models, where template copying and compartmentation are embodied
in one entity, and a continuous supply of metabolites is afforded by the spontaneous accretion of
lipids from the buffered environment.

4.2 The Effect of Mutual Catalysis on GARD Diversity and Evolvability
An important result of this work is that networks within a certain range of kinetic parameters,
namely those that exhibit excess mutual catalysis, lead to enhanced diversity and evolvability of
GARD compotypes. The compotype count is a direct indication of the degree of composomal di-
versity. This result is related to an important aspect of early evolution: Self-catalysts tend to propa-
gate their own identity and suppress processes essential for the increasing complexity necessary for
transitions from early seeds of life toward systems resembling present-day life. The presently dem-
onstrated importance of mutual catalysis echoes the notion of systems prebiology [21, 57], whereby it
is suggested that life began its trajectory from complex chemical mixtures obeying network behavior
similar to that of metabolism in present-day cells.
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4.3 Compotypes as Selection Targets
One of the unique corollaries of the GARD model is the emergence of composomes, dynamic states
of compositional assemblies that embody both metabolism-like characteristics and a rudimentary
capacity to store and propagate molecular information [49]. Composomes may be considered as
forming bridges between seemingly disparate views of the early seeds of life: metabolism first
and replicators first. Compotypes are further defined as centers of mass of composome clusters,
which may be regarded as analogous to species or quasi species [6]. This is due to the fact that
a compotype is a distinct entity, with distinct physical properties and hence fitness encoded in its
compositional information, different from those of other compotypes but still harboring consider-
able internal variability of constituents. Therefore, compotypes are considered as natural targets of
selection, as compared to randomly chosen compositions, as previously pursued [68]. Note that
here we have a measure of selection inherently present in the GARD model even in the absence
of external selective pressure, due to the fact that different composomes have different average
growth rates. This is seen in the present populationGARD simulations, which are seeded with a random
population, but show a gradual increase of the population frequency of a specific compotype even in the
absence of externally imposed selection. This increase comes at the expense of other compositions be-
cause of the constant population condition.
4.4 Selection in a GARD
The present results show that GARD assemblies can exhibit positive or negative selection toward a
compotype target, as well as no selection at all. While in regular GARD the overall average selection
excess is merely 1.05, it is noteworthy that as many as 10% of the simulations show high selection
excess, >1.5. Importantly, these general results are borne out both in simulations of the regular
model and in simulations involving populations of assemblies. Previously, GARD population dy-
namics has been studied by addressing various emergent properties, including a comparison of finite
and infinite chemical environments [38]. Another study [70] showed that compositional inheritance
also emerges in the GARD model variants involving assembly populations and spatial proximity
interaction effects, and that it emerges in both a thermodynamic and a kinetic interaction regimen.

Analyzing GARD, both positive and negative selections can be observed in practice only when
the underlying network exhibits mutual catalysis excess. This conclusion is strengthened by its dem-
onstration in two different simulation modes: in the regular model and in populations. Notably, pos-
itive selection is observed appreciably more often in population GARD simulations, perhaps
reflecting the advantage of addressing populations of competing entities with different reproductive
rates. Furthermore, this selection response tends to be augmented as the number of coexisting com-
potypes increases in a given simulation, which may indicate a capacity of selective forces to provide an
edge to the target compotype in inter-compotype competition. Further in-depth analyses (currently
underway) of the ultrastructure of the h network, as well as subnetworks (quasi compartments [68]),
could lead to a better understanding of the influence of pmc and the compotype count on selection.

The present method for biasing the growth rate of a GARD target composition is in principle
similar to that used previously [68]. In both cases, modifications are in effect introduced to h matrix
elements. However, the previous analysis utilizes an interim formalism, the Eigen equation, for
replication-mutation dynamics [10], and the selection-related modification is exerted by multiplying
the growth rate by f H, defined in the same way as in Equation 8. The method utilized here involves
direct modification (Equation 9), a possible explanation for the discrepant results obtained by the
two reports. There are, however, additional significant differences between the two studies: (a) a pre-
fission value Nmax = 100 used here, as compared to Nmax = 6 used previously, an obligatory small
value required for the realistic application of Eigenʼs formalism with the available computing power;
(b) a large difference in repertoire size (NG = 100 here versus NG = 10 in the earlier study); (c) the
performance here of 10,000 random simulations, considered essential for proper statistical rigor, as
compared to only a single simulation done previously. Both points (b) and (c) provide a significant
edge to the present simulations in sampling the h interaction space, which allows drawing conclusions
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with higher certainty. In the future it will be interesting to consider additional methodologies to exert
external selection. One could be a variant of the presently used method, whereby the h network will be
biased by a constant factor and not employing target similarity-oriented bias. Another could be biasing
the environmental concentration Ui (Equation 2) by a constant factor based on the molecules that are
contained in the target compotype.

5 Conclusion

The GARD model embodies the inheritance of compositional information in the realm of a lipid
world scenario for early evolution [20, 21, 23, 27, 48, 49, 51, 55–57]. The GARD has recently been
pursued in several additional publications [20, 39, 68, 70] and has been chosen as an archetypal
metabolism-first realization [68]. This suggests that despite being a simulated toy model, the
GARD has sufficient complexity to shed light on some important questions in the field of prebiotic
origins. In the present work an attempt is made to shed further light on some of the GARDʼs
evolutionary features. It is expected that the present insights will become instrumental in further
efforts to extend the GARD beyond the monomer world [54], as has been preliminarily explored
[55]. This might be necessary to reveal the capacity of the GARD model to capture the much-
needed open-ended attributes of natural selection and evolution.
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Appendix

A.1 Distribution and Sampling of the GARD Matrix B

While not much is known about the values of the rate enhancement between prebiotic molecules,
there is a need to consider such values by a physically reasonable method. hij values are randomly
generated based on a lognormal distribution

PðhijÞ ¼
1

hijj
ffiffiffiffiffiffi
2k

p exp −
ðln hij − AÞ2

2j2

 !
ð12Þ

where A and j are the mean and standard deviation, respectively, which can be considered as a
“natural” distribution [33], in accordance with the receptor affinity distribution formalism [28, 29,
46], and it was also shown that a lognormal h increases the reproduction fidelity over the normal h
in GARD [52]. Each randomization of the h network may be thought of as representing the relative
rates of the NG molecules as they might ensue from different possible GARD environments.

Self-catalysis in GARD is represented by

iout þ iin →
hii iin þ iin ð13Þ

Often self-catalysis is written as [4]

X þ Y →
hXY Y þ Y ð14Þ

The seeming dichotomy between the notations hii and hXY is clarified on noting that in the GARD,
molecules have two states, in and out, which behave as distinct chemical species. While it is possible
that more complex pathways would also be autocatalytic [44], this work refers to self-catalysis as the
simplest closed subnetwork of the h network, containing one element (Figure 1).

A.2 Fitting the Similarity Autocorrelation Function

The fitting procedure is as follows: (1) Calculate H0 as the mean of c(Dt ) in the interval [GEN/4,
GEN/2]. (2) Guess H‡ as the first instance c(Dt ) drops below H0. (3) Smooth the c(Dt ) tail by forcing:
c(Dt > H‡ ) = H0. (4) Fit an exponential (Equation 7) to the smoothed c(Dt ), using nonlinear least
squares with a tolerance of 10-5.

Examples are given in Figure 12 in Appendix A.4.
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A.3 p-Values

See Table 2.
A.4 Examples

See Figures 10–14.

(under regular GARD simulations).
Table 2. Studentʼs t-test statistical analysis for the selection excess of h networks exhibiting pmc > 100 (Equations 4 and
10). Test was run using MATLAB function ttest, against the null hypothesis that the data are a random sample from a
normal distribution with mean 1.0, per specific ranges of lognormal random seeds.
Artificial Life Volum
Random-seed range
e 18, Number 3
pmc > 100*
41
Selection excess†
 p-Value
50–300
 3
 0.973 ± 0.0395
 3.57 � 10-1
300–800
 5
 1.311 ± 0.389
 1.49 � 10-1
1,000–3,500
 40
 1.100 ± 0.325
 5.95 � 10-2
5,000–10,000
 70
 1.119 ± 0.248
 1.45 � 10-4
1–10,000
 143
 1.105 ± 0.272
 8.03 � 10-6
*The number of networks exhibiting high pmc value.
†Mean and standard deviation of the selection excess of these networks
Figure 10. Example of carpets from two regular-GARD simulations with lognormal seeds 42 and 41 (a and b, respectively)
and the rest of the parameters as in Table 2. Compotype counts are 4 and 2, respectively. h matrices are presented in
Figure 11, and functions c(Dt) in Figure 12.
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Figure 11. h matrices for the two simulations in Figure 10. pmc values are 1.98 and 0.81, respectively. To better express the
richness of the h matrix, catalytic values are scaled according to hij = 2 log10 hij

0 - 4 (values of hij
0 are generated according to

Equation 12).
Figure 12. Functions c(Dt) for the two simulations in Figure 10. Insert shows initial decay on a log-log scale. Fitted parameters
for Equation 7 are H = 2.57, H0 = 0.49 (seed = 41), and H = 6.32, H0 = 0.50 (seed = 42).
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Figure 14. Regular-GARD similarity carpets before and after selection. (a) Similarity carpet of the GARD instance gen-
erated with lognormal seed 114. The frequency of the target compotype is fT = 0.27. (b) The same carpet as (a), after
applying selection pressure, whereby the new frequency of the target is fT ′ = 0.34. (c) Similarity carpet of the GARD
instance generated with lognormal seed 168. Here fT = 0.82. (d) The results after applying selection pressure. Here
fT ′ = 0.74. Simulation parameters are in Table 1.
Figure 13. Example histograms of similarity between the target compotype from a regular GARD simulation, for a popula-
tion of 1,000 assemblies, with and without selection. A cutoff of H ≥ 0.9 (dashed line) is imposed to identify the frequency of
the compotype in the GARD population. Simulation details are lognormal seed= 3, GEN= 5,000, and the rest as in Table 2.
Artificial Life Volume 18, Number 3 263
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A.5 Selection Excess and the Number of Compotypes

See Figures 15–16.
Figure 15. The dependence of selection excess on the number of compotypes (before selection). Black solid line plots
the average selection excess per compotype count. Figure details are as in Figure 2a.
Figure 16. The weak dependence of H0 on the number of compotypes (NC ). (a) Average H0 versus NC after 5-point
moving-average smoothing. Fitting the smoothed data to a linear curve gives a slope of −0.0485 with r2 = 0.89. (b)
Density plot of the probability to have a simulation with a pair of H0 and NC values. In the electronic version, the color
represents the normalized probability to find a network with such a pair (in scale; red means that about 300 simulations
fall in this bin). Simulation parameters are as in Figure 15.
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A.6 Assembly Size

See Figures 17 and Table 3.
Figure 17. Histograms of the three evolution-related parameters, per Nmax values. (a) Number of compotypes (NC ). In
the electronic version, blue bars are with Nmax = NG/2, green bars are with Nmax = NG, and red bars are with Nmax = 2NG.
The rest of parameters are as in Figure 15. (b) Evolvability score (EV ). (c) Selection excess (SE ).
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Table 3. Mean values collected from Figure 17. Number in parenthesis refers to the percentage of simulations that show
positive or negative selection.
266
Number
Mean value
Nmax = 2NG
46
Nmax = NG
Artif
Nmax = NG/2
NC
 1.20
 2.03
 3.38
EV
 0.72
 1.11
 1.35
SE
 1.01
 1.05
 1.04
SE > 1.05
 1.36 (8%)
 1.38 (33%)
 1.28 (48%)
SE < 0.95
 0.85 (13%)
 0.77 (31%)
 0.71 (30%)
icial Life Volume 18, Number 3
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5.1.1. Network motifs and their effect on selection in GARD 

This work was done with collaboration with Prof. Uri Alon and Dr. Avi Mayo from the 

Weizmann Institute. 

The result above, that mutual catalysis excess is a required condition for effective evolvability, 

demonstrates an advantage for a network first theme in the origin of life, and calls for a more 

detailed analysis of the inner structure of β.  

To this end, β is analyzed under the scope of network motifs - basic interaction patterns that 

recur throughout biological and other networks [1]. The goal is to understand how the spectrum 

of motifs in a given β affects the selection behavior observed. 

 

5.1.1.1. Binarizing ββββ 

As motifs are typically considered in binary networks while β is graded (an edge in the former 

can only have a weight of 0 or 1, whereas in the latter it can acquire a range of βij values), β is 

binarized using a cutoff which determine the minimal βij value to be considered: 
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Equation 9 

In each β, the counts of the 13 commonly studied triplet motifs [1] are found by finding which 

molecular types exhibits which triplet motif (with a total of NG/3!(NG-3)! possible triads for 

cutoff=0), and the count of a given motif in a β is standardized according to: 

( ) ( )
x)(

x)(x,count
x, score standard

σ
µβ

β
−

=
 

Equation 10 

Where x is the motif index (x=1..13) and µ and σ respectively represents the mean and standard 

deviation of its counts across all β networks studied. This extends an earlier study on the 

structure of β [128]. 

 

5.1.1.2. The motif spectrum of ββββ 

Figure 10 shows the overall motif counts for different cutoff values, which is the underlying 

motif spectrum. The shape of the spectrum does not depend on the exact cutoff used. The 

relative counts of the different motifs, especially those with the same number of edges, can be 

understood when considering the graded to binary transition (Figure 11). When there is no 

cutoff, any three nodes will be maximally connected, that is motif #13, because βij values are 
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always positive as they are picked from a lognormal distribution. As the cutoff gradually 

increases, removal of any single edge from motif #13 will lead into #12. By removing another 

edge (e.g., by increasing the cutoff further), #11, #10, #8 or #6 have equal probability to form, 

depending on the exact edge removed. This can be continued further, giving rise to shape of the 

motif spectrum. Thus, the general structure of binary β is constant on average, and the counts of 

motifs depend on the exact value of the cutoff. 

 

Figure 10: The underlying network motif spectrum of β, under different cutoffs 

(Equation 9). Data is averaged over 1,000 networks. Default cutoff used = 1e-5. 

 

Figure 11: Network motifs hierarchy. When no cutoff is applied, any three molecules 

exhibit motif #13 by definition (see text). 
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5.1.1.3. Motifs in selection 

In order to understand how does the motif spectrum effect selection, networks are grouped 

according to their selection outcome (positive, none or negative) and the average motif spectrum 

is calculated for each group (Figure 12). Networks which exhibit positive selection show over 

representations of two out of the three doubly-connected motifs (i.e. motifs with only two 

edges), #1 and #2, while deficient with the third (motif #4). An opposite behavior is observed 

with networks exhibiting negative selection. Presumably, a network with more of motifs #1 and 

#2 is more connected, i.e. existence of more paths connecting distant parts a network, because 

each edge in these motifs points to a different molecular type, whereas #4 reduces the 

connectivity because the two edges point to the same molecular type. It is suggested that a highly 

connected network exhibit positive selection because it is possible to have an increased flux 

towards the compotype when applying the selection pressure. Additionally, networks with the 

average spectrum exhibit no selection (Figure 12).  

 

Figure 12: Average motifs standard scores (relative to data in Figure 10), collected for 

simulations showing positive, none and negative selection (blue, yellow and red, 

respectively). Positive selection is defined as selection-excess>1.05 (SE, Equation 6), 

negative selection as SE<0.95 and the rest is no selection. 

 

5.1.2. A completely selfish ββββ 

It is interesting to do a thought experiment, as to the outcome of a simulation based on a 

completely selfish β, e.g. for i≠j βij=0 and βii values drawn from a lognormal distribution. In 

such a case, the value of the mutual-catalysis-power parameter will assume its lowest value = 

NG
e (pmc. Equation 4 in [80]). It is suggested that in such a case the most frequent compotype in 
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the simulation will be composed almost entirely out of the molecular type with the highest βii 

value as it will act as an exponential replicator.  Additional compotypes may appear composed 

majorly out of a single molecular type yet with different levels of additional molecular types 

depending on the ratios of βii values, due to the stochastic nature of GARD. Similar cases have 

indeed been encountered (the left most bin in Figure 3b in [80], for example) 
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5.2. Chemistry biased fission 

GARD’s fission is a stochastic process, on average creating two equal progeny, without regard to 

mutual molecular interactions within the splitting assembly. This fission behavior may not be 

true to reality. Therefore, it was examined how deviating from this rule effects GARD behavior. 

A new fission action proposed, with aim to allow a more realistic budding-like split in GARD by 

invoking a process with dynamics analogous to that of assembly accretion. This type of fission is 

referred to as “chemistry biased fission”. 

A major drawback of random fission is that it could destroy the composition the parent assembly 

transfers to progeny, thus hampering its ability to faithfully replicate. The idea of the new fission 

was guided by the notion that if a molecule of type i was drawn into an assembly by molecules 

of type j (as directed by the value of βij) then i and j will also favorably interact within the 

assembly and are likely to be located spatially close within the assembly towards fission. This 

involve a concept derived from the study of present-day cellular membranes, namely rafts, i.e. 

membrane microdomains that are more ordered and tightly packed than their surrounding bilayer 

[10, 77]. Rafts are related to the membrane function as they influence membrane fluidity and 

trafficking [64, 99] and even relate to signal transduction [33]. In GARD, chunks from a parent 

assembly, strongly connected by a network of interaction in β, are budded together during 

chemistry biased fission and transfer as a single unit, akin to a raft, to a progeny. 

Two types of new split action developed and studied: competitive and non-competitive biased 

fission. In competitive biased fission, molecular types which are connected by a strong βij rate 

enhancement value have a higher propensity to be in the same progeny. This means that fission 

is governed by a process analogue to how assembly grows out of the environment. The assembly 

is treated as the (non-buffered) environment and a progeny is grown out of the parent according 

to a modified version of Equation 2, were at each step a molecule is picked out of the parent and 

placed into a progeny, until the parent diminishes and the size of each progeny reaches Nmin. 

Thus, the two progenies simultaneously grow and compete on the same set of limited resources, 

i.e. the parent. In contrast, non-competitive biased fission describes a case whereby only one 

progeny is grown out of the parent as best as it can, where the second progeny is left with the 

'leftovers'. These are in contrast to random fission, in which a progeny is created by selecting, 

one by one, molecules from the parent and placing them in one of the progeny. The chance to 

select a molecule of type i is proportional to its current count in the parent assembly, and this is 

continued until the size of the progeny is Nmin. 

 

5.2.1. Chemistry biased fission algorithms 

The algorithm for chemistry-biased-fission is: 
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1. Select a random molecule from the parent assembly for each progeny (labeled childA & 

childB). 

2. Continue until the parent assembly has 0 molecules, perform for childA: 

2.1. Select 1 molecule from the parent assembly by using Equation 2 with kb=0. ρi is the 

current concentration of molecular type i in the parent assembly, nj is the current count 

of molecular type j in childA and N is the current size of childA. 

2.2. Update the parent and childA according to  2.1 above (decrease and increase by 1 the 

relevant molecular type from the parent and in childA, respectively). 

2.3. Perform  2.1- 2.2 above for childB. 

The algorithm for non-competative-biased-fission is as chemistry-biased-fission, with the 

following changes: 

2. Continue until the size of childA assembly reaches Nmin. 

2.3. This operation is canceled. 

3. ChildB receive the remaining composition of the parent. 

 

5.2.2. Analyzing GARD’s fission behavior 

The effect of different fission actions on the similarity autocorrelation  (Equation 7 in [80] and 

chapter  5.1) was studied. The similarity autocorrelation is akin to a Fourier transform of the 

compositional similarity time series. Its derived parameters, τ and H0, were employed to obtain 

information on the evolution like dynamics of GARD assemblies. τ depicts whole-simulation 

average of compositional lifetime, where longer τ represents better average maintenance of 

compositional similarity between consecutive generations, hence 1/τ is related to the 

compositional mutation rate. H0 depicts the residual compositional similarity among assemblies 

along many generations in the entire simulation, thus a lower H0 represents a higher overall 

compositional diversity. 

Figure 13 presents τ and H0 distributions for the three fission actions. H0 peaks around 1.0 with 

competitive biased fission and is narrower than random fission, while the second peak is larger 

and shifted to smaller values. With non-competitive biased fission (while always choosing the 

preferred progeny) the first peak is almost two times higher than competitive biased fission, and 

its second peak is about one third than that of competitive biased fission. This suggests that 

competitive biased fission increases assembly diversity, compared both to random fission and 

non-competitive biased fission. For the latter it is interesting to note that despite having an 

overall lower probability for a high diversity, it does allow in general for slightly higher diversity 

than random fission. τ distribution is practically identical with random fission and competitive 

biased fission, with essentially the same power-law tail (Table 2). With non-competitive biased 
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fission, τ distribution peaks at smaller values than competitive biased fission and has a power-

law factor of about three fourths of competitive biased fission. Competitive biased fission τ 

distribution is very similar to that of random fission. Non-competitive biased fission distribution 

is different than competitive biased fission, peaking at slightly lower τ and is below competitive 

biased fission until τ~50, after which non- competitive biased fission probability is always 

higher than competitive biased fission and random fission. 

Thus, removing the competition during fission results in a lower number of composomes, some 

of which can reproduce more faithfully than if competition existed, yet including competition 

during fission significantly contributes to increasing diversity.  

 

Figure 13: Probability distributions of H0 (left) and τ (right) for the three fission actions. 

Abbreviations are: random fission, RF; competitive biased fission, cBF; non-competitive 

biased fission, nBF-1. Right panel insert shows data on a log-log scale. 

 
Fission A B R2 
Random 144 2.435 0.96 
cBF 96.1 2.306 0.96 
nBF-1 9.51 1.683 0.92 

Table 2: Parameters of fitting the data of Figure 13 right panel to: BAP −= τ , for the 

three fissions actions. Fit interval is 10<τ<250. 
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5.3. A physiochemical realistic GARD model 

This work is done with collaboration with Prof. Raphael Zidovetzki and Dr. Don Armstrong from 

University of California at Riverside, while Rafi visited the Weizmann Institute of Science. 

Understanding how vesicles replication rates depends on physicochemical parameters can open a 

new direction in the study of prebiotic vesicles and lay the groundwork for experimentally 

studying the lipid world. To this end, a new model, real-GARD (R-GARD), was developed [6]. 

In the new model, replication and thus evolution of lipid vesicles is based on semi-empirical 

foundation using experimentally measured kinetic values of selected extant lipid types, 

comprising present-day animal cell. The concept of R-GARD draws from the regular-GARD as 

it models molecular accretion rates. 

Four lipid families were considered: phosphatidylcholine, phosphatidylethanolamine, 

phosphatidylserine and sphingomyelin, and cholesterol (respectively PC, PE, PS, SM and 

CHOL, see Figure 14). The physiochemical properties considered for each lipid family were 

seven carbon chain lengths (12-24 carbons) with five possible degrees of unsaturation (0-4 

double bonds). This gives a total environmental repertoire size of NG=141 (=4×7×5+1) 

molecular types. R-GARD rate equation (Equation 11) is different than GARD’s equation 

(Equation 2), as in the former the rate also depends on the average properties of the vesicle and 

in the latter it is based on interactions between individual molecules.  

[ ] [ ] [ ]vi
adj
bbimi

adj
ffi

vi CKkSCKk
dt

Cd
−=  

Equation 11 

Cvi and Cmi respectively are the concentration of molecule type i in the current vesicle and 

environment, kfi and kbi respectively are the forward and backward rate constant of molecule 

type i, S is vesicle surface area, and 
adj
fK

 and 
adj
bK  are the respective forward and backward 

functions that are a function of vesicle physical properties. Composomes are found to emerge in 

R-GARD, similarly to GARD (Figure 15). This supports the possibility of experimentally 

observing faithful replication of lipid vesicles. The fact that composomes appear weaker in R-

GARD than in GARD is attributed to the usage of realistic molecules, suggesting that in reality 

differences in mutual catalysis values are expected to be distributed more uniformly than in a 

lognormal distribution as usually employed in GARD. 
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Figure 14: Schematics of the lipids structure used in R-GARD. 

 

Figure 15: (a) R-GARD ‘carpet’ [6]. Composomes are marked by square boxes on the 

diagonal; similar composomes are colored with the same color. As a similarity measure, 

the Euclidean distance between the property-vector is used (as opposed to the 

composition vector, Equation 1). (b) GARD ‘carpet’ with the standard similarity measure 

between the composition vectors (H, Equation 3). Color code for both panels is: Red 

marks most similar (values of 0 in R-GARD and 1 in GARD), blue marks least similar 

(values of 3 in R-GARD and 0 in GARD) and white marks being outside of the range [0, 

3] in R-GARD. Both simulations were run with NG=20 and Nmax=100. 
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It is further found that vesicle replication rate is largely influenced by variations in the chain 

length, unsaturation and relative environmental concentrations of molecular types (Figure 16), 

and as expected, the initial vesicle composition does not affect the final vesicle composition. The 

decrease of replication time with chain length or unsaturation is a consequence of the defects 

created in the plane of the bilayer by the mismatch in these characteristics, as expressed in its 

rate equations. These defects allow for molecules to be accreted into the vesicle. Interestingly, 

the effect of lipid variation on vesicle’s replication rate can be considered as a further support to 

the previous finding that the higher Nmol of a compotype is the faster it replicates (chapter  5.4.2), 

as a higher Nmol represents a higher molecular variation. A correlation of environmental 

concentration of lipid types with average replication time is best seen in the case of PC, a 

consequence of the larger surface area of PC which increases vesicle surface size for a given 

number of lipids in the vesicle coupled with the effect of additional PC concentration reducing 

the concentration of the other species. 

 

Figure 16: Dependence of average replication time (ART) on various properties and 

lipid species [6]. Circles represent simulations with starting vesicle composition with 

binomial distribution and environmental composition of gamma distribution with sizes 

from 102 to 105 molecules and 20 to 141 species. (a) ART vs. the standard deviation of 

the length of species. (b) ART vs. the standard deviation of the unsaturation of species. 

(c) ART vs. the environmental molar concentration of PC. Linear correlations for the 
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three panels produce: (a) R=-0.61, slope=-0.56; (b) R=-0.39, slope=-1.73; (c) R=-0.28, 

slope=-0.80. 

An ongoing investigation with this model, studies populations under a limited environment, in 

contrast to the simulations performed in chapter  5.4. In this investigation, the system is seeded 

with a single vesicle and the reactor contains enough molecules to form 4096 vesicles (i.e. 12 

generations). The rest of parameters are identical to those employed [6]. Interestingly, it is found 

that vesicles of newer generations show a bigger difference between growth-time of same 

generations (Figure 17B). This suggests an evolution of vesicles towards an optimal composition 

which enables for faster growth, i.e. higher fitness. An overall increase in the growth-time is due 

to the decreasing environmental concentration of molecules (Figure 17A). This phenomenon is 

currently under study. 

 

Figure 17: Vesicles growth time vs. vesicle generation, under a limited environmental 

concentration of molecules. (A) Average growth-time of all vesicles that belong to each 

generation. (B) The ratio of the fastest to slowest growing vesicles in each generation. 

The first vesicle that was seeded in the system is generation=1. This figure is based on 

20 simulations. 
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5.4. Ecological dynamics of GARD population 

This chapter describes work which has been accepted for publication at the Journal of 

Theoretical Biology. 

Thus far, GARD was typically studied by focusing on individual assemblies. The present paper 

studies GARD population in a rigorous way by using standard ecological tools. When simulating 

populations of GARD assemblies, compotypes exhibit competition similarly to that seen for 

natural species, and it analyzable by a common multi species logistic formulation. With that, it 

becomes possible to relate compotypes’ chemical parameters to population ecological behaviors, 

and to predict GARD’s behavior based on compotypes’ structure. Further, GARD’s assemblies 

until now have been treated as information carriers, positing the lipid world as an alternative to 

the RNA world. This paper adds another layer to GARD, by considering β as a rudimentary 

metabolic network and a compotype as a rudimentary organism. 

Prebiotic models have often focused on evolution in populations of self-replicating molecules, 

without explicitly invoking the intermediate molecular-to-supramolecular-to-ecology transition. 

Of note, a similar transition has been studied in a model of RNA-like replicators, in which 

supramolecular entities (traveling waves) were found to play a role in the ecology and evolution 

of replicators [136]. Present life portrays a two-tier phenomenology: molecules compose self-

replicating supramolecular structures such as cells or organisms, which in turn portray 

population behavior, including selection, evolution and ecological dynamics. Thus, 

understanding how molecular mixtures gave rise to evolving entities which in turn gave rise to 

simple ecological niches will greatly contribute to our understanding of the origin of life and to a 

degree akin to the on-going pursuit to understand and predict the dynamics of ecological 

populations from the, often complex, metabolic or genetic networks of the underlying species 

[7].  

An admitted shortcoming of GARD is the paucity of experimental verification of many of its 

predictions. A proof-of-principle experiment should address the question of whether vesicles are 

capable of homeostatic growth and even rudimentary transfer of compositional information to 

fission-generated progeny. Such experiments would require complex setups, accurate 

compositional monitoring of individual amphiphile assemblies, not yet fully elaborated. A 

promising lead would be the recent experimental exploration of multi-component vesicles [82, 

144]. Another critique of GARD asserts that it simulates abstract molecules without specified 

chemical properties. This point has been recently addressed in an extension of the simulated 

model to incorporate realistic physicochemical properties of amphiphilic molecules, showing 

that a measure of compositional heredity may be observed ([6] and chapter  5.3).  
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GARD simulations are used in this chapter to quantitatively follow population-ecological 

dynamics of composmal species. In the foregoing analyses a multivariate logistic equation is 

used to relate systems chemical parameters of GARD assemblies, including chemical diversity, 

replication fidelity and compositional similarity to specific ecological measures such as the 

carrying capacity, the intrinsic growth rate and the competition parameters. 

 

5.4.1. GARD population exhibit natural-like dynamics 

Different simulations with different underlying β networks result in widely different dynamic 

behaviors, such as delayed growth, different plateaus and “takeover” of a fast-rising compotype 

by a slower one (Figure 18). Such dynamics are typical of natural ecosystems that harbor 

multiple species with competition or predator-prey relationships. The resulted dynamics are 

analyzed by a multi species logistic model for population ecology (r-K or Lotka-Volterra 

competition model, Equation 7) [34, 133, 141]. 

That equation has a steady state Ci
ss=Ki-∑αijCj

ss and can be solved analytically only for the case 

of a single species (NC=1). For each simulation, the logistic parameters for all NC compotypes 

are obtained by least square fitting and numerical integration, as detailed in chapter  4.5. Notably, 

an adequate fit to such equation was observe for practically all GARD simulations performed, 

with average root mean square difference=0.019±0.011 for the entire set of 1,000 simulations 

performed. In contrast, several other models with similar overall characteristics gave an inferior 

fit (chapter  5.4.5). Next, analyses are performed, aimed at relating the chemistry-base molecular 

parameters of GARD to the ecology-related parameters of the logistic equation. 

 

5.4.2. Compotype intrinsic molecular repertoire 

Each GARD compotype contains a subset (Nmol, chapter  4.2) of the total NG molecular types 

present in the environment. Such repertoire restriction emerges as a result of the intermolecular 

catalytic interactions in β and in the present simulations an average of Nmol=16±5 is observed 

(Figure 19). The effect of this chemical diversity parameter, Nmol, on the Ki and ri values of 

individual compotypes is examined (Figure 20). It is found that K values are inversely correlated 

with Nmol, and in contrast, r values show a weak positive correlation. Thus, compotypes with a 

large Nmol will tend to have a larger growth rate and a smaller carrying capacity. For cases with 

negligible competition parameters this will amount to a steeper ascent and a relatively low 

plateau in cases of large Nmol.  

The dependence of K and r on Nmol may be explained considering the random nature of the 

processes involved and the fact that external concentrations of all molecular types are equal. A 
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higher value of Nmol increases the probability that a randomly impinging molecule will be part of 

the compotype’s intrinsic molecule repertoire, enhancing homeostatic growth rate.  

 

Figure 18: Examples of GARD simulations and fit to logistic growth. Simulation data is 

broken line and fit is solid line. Fitted parameters are collected in Table 3. 
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Panel ββββ seed 
 

K r [splits -1] 
ααααij  

C(0) 
j=1 j=2 j=3 j=4 

A1 18 i=1 0.572 2.06E-03 
    

3.58E-03 

A2 30 i=1 0.937 7.70E-04 
    

5.68E-02 

B1 170 
i=1 0.843 8.48E-02 

 
1.518 

  
7.86E-11 

i=2 0.538 1.28E-02 0.633 
   

6.89E-02 

B2 261 
i=1 0.548 2.40E-03 

 
0.000 

  
4.15E-02 

i=2 0.273 1.00E-03 0.170 
   

2.25E-02 

C1 45 

i=1 0.555 4.90E-03 
 

1.487 0.486 
 

1.94E-02 

i=2 0.494 4.30E-03 0.788 
 

0.557 
 

3.10E-03 

i=3 0.724 2.00E-03 1.260 0.000 
  

5.46E-02 

C2 7 

i=1 0.462 4.80E-03 
 

0.601 0.359 
 

1.00E-03 

i=2 0.734 5.30E-03 1.018 
 

0.663 
 

3.50E-02 

i=3 0.828 3.60E-03 0.000 1.919 
  

3.13E-01 

D1 149 

i=1 0.348 7.10E-03 
 

0.274 2.094 0.414 1.57E-02 

i=2 0.448 3.20E-03 0.585 
 

1.914 0.456 1.40E-03 

i=3 0.113 4.51E-02 0.281 0.038 
 

0.130 1.59E-11 

i=4 0.581 6.20E-03 1.292 0.000 5.277 
 

2.15E-01 

D2 133 

i=1 0.518 2.40E-03 
 

7.198 1.814 0.000 1.46E-01 

i=2 0.342 1.06E-02 0.002 
 

2.034 0.791 1.91E-06 

i=3 0.187 8.50E-03 0.101 0.885 
 

0.334 1.20E-03 

i=4 0.341 2.70E-03 1.266 4.141 0.304 
 

4.10E-03 

Table 3: Fitted parameters of the simulations given in Figure 18. 

 

Conversely, low Nmol means that on average every molecular type exists inside the compotype in 

higher counts, so when split occurs there is a better chance that a progeny will contain the same 

composition as the parent. 

One may ask, whether there could be a parallelism for any of these results in present day life. An 

interesting analogous trend was observed in experimental data for 113 bacteria, whereby a 

negative correlation was seen between measured doubling time and metabolic network size [32]. 

However, direct comparison between compotype dynamics and present-day metabolism might 

not be possible, as the latter is controlled by a genome, centralized informational entity acting 

via a complex hierarchy of interactions [46, 116]. 
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Figure 19: Distribution of intrinsic molecular repertoire size (Nmol) values for all 

compotypes. 

 

5.4.3. Compotype replication fidelity 

The relation between K and the replication fidelity (Frep, chapter  4.2) is analyzed in this section. 

Frep measures the average degree of compositional similarity between an assembly representing a 

compotype and its progeny, both in fully-grown state. K, the carrying capacity, represents the 

maximal number of individuals of a given species that may be sustained in an ecological niche. 

In the original Verhulst formalism, death was introduced to counter the Malthusian exponential 

growth. Later, the r-K logistic formalism defined K=birth/death [34]. In GARD, a positive 

correlation between K and Frep is observed (Figure 21). Unfaithful replication (low Frep) means 

that the progeny has lost its compotype state, either to another compotype species or to drift, 

somewhat comparable to death of the species in question. This may rationalize the somewhat 

unexpected positive correlation between an emergent molecular parameter such as Frep and an 

ecological one – the carrying capacity. Other relationships explored, between r and Frep and 

between K and r and the replication-time (trep) showed no appreciable correlations (Figure 22 

and Figure 23). 
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Figure 20: The dependence on Nmol. Data are binned according to Nmol values and 

vertical lines represent standard error of the mean. Black solid line is a linear fit. (A) K 

vs. Nmol.  Linear fit: K=‒0.0371*Nmol+1.052, R2=0.978; (B) r vs. Nmol. Linear fit: 

r=8.46*10-4*Nmol‒1.06*10-3, R2=0.946. 

 



64 
 

 

Figure 21: K vs. Frep. Blue and red dots are compotypes taken from simulations 

exhibiting NC=1 and NC>1, respectively. Black solid line is linear fit to NC=1 data: 

K=9.23*Frep-8.23, R2=0.876. 

5.4.4. Takeover 

In this section, the molecular mechanism behind the ecological takeover is addressed. This 

phenomenon is exemplified in panel B1 of Figure 18, by the observation that compotype C2 

shows a much faster ascent, reaching a 538 fold excess over C1 at time 990. Subsequently, C1 

increases substantially, becoming 5.82 fold more abundant than C2 at steady state. This was 

examined by analyzing an extended set of 316 β networks that exhibit NC=2. Two parameters, 

MP and PP, were defined to quantify takeover behavior: MP=Max(Clow)/Plateau(Clow), 

PP=Plateau(Chigh)/Plateau(Clow), where Clow is the compotype with the lower plateau (Figure 24). 

Two subgroups were examined: one showing clear takeover, with MP>2 and PP>5, and another 

in which no takeover occurs, with MP<1.5 & PP<4 (control). The inter-compotype 

compositional similarity for pairs that exhibit takeover is found to be significantly lower than for 

control pairs (Figure 25). These two behavior types are also seen to be partially segregated in a 

principle component analysis of the 6 fitted logistic parameters (r1, r2, K1, K2, α12 and α21) 

(Figure 26 and Figure 27). Intriguingly, the majority of the variance in this plot is contributed by 
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the competition parameter α21 (Figure 27). Work is underway to study the molecular mechanism 

that governs across-compotype competition. 

 

Figure 22: K and r vs. trep of all compotypes (A and B, respectively). Linear fit: K vs. 

log10(trep) gives R2=0.48; log10(r) vs. log10(trep) gives R2=0.007. 
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Figure 23: r vs. Frep of all compotypes. Linear fit: log10(r) vs. Frep gives R2=0.10. 

 

 

Figure 24: Takeover in simulations exhibiting NC=2. Additional simulations performed 

for this part, giving a total of 316 such simulations. Takeover is represented by MP>2 & 

PP>5 and control is MP<1.5 & PP<4 (each group consists of 40 and 87 simulations, 

respectively). Max(C) is the value at the highest point and Plateau(C) is the average 

value along the plateau. 
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Figure 25: Compotype similarity in the takeover and control groups. Average cross-

compotype similarity (H) for the takeover group is lower than for the control group 

(0.33±0.09 vs. 0.40±0.12; supported by a two-sample Kolmogorov-Smirnov test with p-

value=1.3*10-3). 

 

Figure 26: Principle component analysis (PCA) of the 6 fitted parameters (r1, r2, K1, K2, 

α12 and α21), performed using MATLAB princomp routine. The first two components are 

responsible for 96% and 3% of the variance in the data, respectively. 
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Figure 27: Linear combination of the first two components found by the PCA. A two 

sample Kolmogov-Smirlov test found that the takeover group have higher αhigh,low values 

than the takeover (p-value=3.2*10-4). 

 

5.4.5. On the choice of specific logistic formulation 

It was found above that the fit between the standard multi species logistic equation to GARD’s 

population dynamics data is very good. However, it is unclear if this is due to a profound 

similarity between the GARD model dynamics and real-world ecology. It may very well be that 

the good fit is due to the fact that this equation has many parameters, as even von Neumann is 

said to say: “With four parameters I can fit an elephant, and with five I can make him wiggle his 

trunk”3 [28]. To address this, several other multi species logistic formulations were tested, asking 

whether they can similarly fit the data. 

Any equation tested must include cross species coupling aswell (i.e. the existence of a Cj term in 

dCi/dt), because when multiple compotypes exist in a population they sometime exhibit a 

coupled behavior such as takeover. The subset of 141 simulations with a compotype count NC=2 

was used, being the simplest multi-species case. 

Table 4 shows the additional equations tested here, together with the original equation (marked 

V0). V5a is taken from [68] and V5b is a variation of it. V2a and V4a are manually generated 

based on V0. These four equations are fitted with identical procedure to that of which the 

original logistic equation was fitted (chapter  4.5), while they are similarly written in the original 

form (form I in Table 4). The preferential status of the specific logistic formulation used in this 

                                                 
3 Demonstrated in: http://www.johndcook.com/blog/2011/06/21/how-to-fit-an-elephant. The 5th parameter it time. 
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thesis is apparent when the average root-mean-square-deviations (RMSD, Equation 8) from the 

fit to V0 is smaller than the in the fit to the other 4 variations (Figure 28). 

Additional equations were also tested. When V0 is written in a polynomial-like form (form II in 

Table 4), it is possible to systematically vary it while keeping a power of 2 present (e.g. Ci
2 or 

CiCj). This gives variations V3a-V3e. These were fitted in this polynomial-like form, with 

exactly the same procedure as before, yet the fitting routine was unable to converge in these 5 

cases. No convergence was obtained also when looser convergence criteria were used. As this is 

potentially alarming, the fitting code functionality was verified, by comparing the ecological 

parameters obtained for V0 when it is fitted in both form I and II. As expected, this gave 

identical parameters values in both forms (for example: Z1=α12r1/K1). The origin of this issue 

requires further investigation4. 

Overall, these results support the usage of the original logistic formulation, which is commonly 

used to describe natural phenomena, thus contributing to recognizing GARD as a model of a 

natural phenomenon. 

 

Table 4 (below): Additional differential equations tested against the population data, 

written for NC=2. V0 is the original equation. a) Grey cell represents that this form has 

been fitted (see text). b) Number of free parameters for NC=2 (in brackets for any NC 

value).  c) Mean RMSD (Equation 8), when fitted against the dataset of 141 simulations 

with NC=2. 
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4 When I asked colleagues in Israel and around the globe should I be surprised when get such a good fit only to one 
specific variation of the logistic equation, every single one told me that I should not, though none was able to 
provide further information as to the reasoning behind this… 
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Figure 28: Distribution of RMSD values of 4 variations of the logistic equation and of 

the regular form (V0, blue color). 

 

5.4.6. Broadening the analysis of selection in GARD 

GARD populations were considered in two papers: in the earlier one it was an addition to the 

main selection and mutual catalysis analyses ([80] and chapter  5.1), and in the later one, where 

ecology was studied, it was a natural part of the work (the present chapter). The selection 

behavior focused on only the most frequent compotype and in this section and the following one 

the selection behavior when focusing on other assemblies and compotypes is addressed. 

 

5.4.6.1. Testing on drift assemblies  

When selection was studied, for the first time in GARD [80], only compotypes were considered 

as they are treated as GARD’s species (and in chapter  5.5 their quasispecies nature is revealed). 

In this section, the selection response of drift assemblies is analyzed and compared to that of 

compotypes, in order to further understand the nature of selection in GARD. Additionally, it was 

argued that GARD lacks evolvability by studying the selection response of a particular GARD 

system and drift assemblies [143]. One of our arguments against those conclusions is that those 

authors did not designate a compotype as the selection target, and studying the selection of drift 

(non-compotype) assemblies resolves this point. 

Drift assemblies selection is studied similarly to the selection of compotypes, whereby the 

change in abundance of a given target is considered a mimic to selection (chapter  4.3). In each 

simulation under a given β, the drift assembly which is the least similar to all of the NC 
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compotypes centers of mass is picked as the target for selection. This is done in order to make 

proper comparison, as drift assemblies analyzed must be different from compotypes and must be 

related to their own chemical environment characteristics (represented by β). The reason for 

picking the drift from the simulation and not generating one at random is that it may very well be 

that the structure of drifts is somehow related to β. The reason for picking the assembly least 

similar to the compotypes is that it may very well be that composome and compotype 

identification algorithm is not perfect, so there are assemblies that might be considered as 

compotypes, if only they were slightly more similar to them (i.e. similarity threshold slightly 

reduced). For each of 1,000 β used in this section, under regular-GARD simulation, the average 

similarity between the target drift picked to the NC compotypes centers of mass is 0.220±0.129, 

signifying that a substantial difference indeed exists between compotypes and the drifts picked. 

The superior selection of compotypes over drifts is apparent, where only 34% of cases exhibited 

negative selection (selection excess<0.95, SE, Equation 6) vs. 76% in drifts (Figure 2). 

Compotypes also exhibit a higher tendency for positive selection (SE>1.05), where 29% of cases 

exhibiting it vs. 21% in drifts. 

Thus, designating compotypes as selection targets proves to be a central point when addressing 

GARD’s selection. 

 

Figure 29: Selection excess (SE, Equation 6) of compotypes and drifts. The rightmost 

bin collects SE>2. Compotype data is taken from Figure 2b in [80]. 
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5.4.6.2. Testing on every compotype in a population 

Previously, the selection response of only a single compotype out of each simulation, under a 

given β, was studied. This section will briefly present post-selection dynamics when all of the 

compotypes in a given simulation are addressed, one at a time. Further, in light of the results that 

GARD population exhibit ecological behavior similar to natural systems (chapter  5.4), this 

section will focus on the changes in population dynamics as a result of the selection. As a ‘proof 

of principle’ only a single case was analyzed, and is described in this brief section. 

The β studied exhibits NC=3. Therefore, four simulations performed: one with no selection 

pressure (“wild type”) and three were in each a different compotype was designated as selection 

target. Each simulation’s data is fitted with the logistic equation (chapter  4.5) and the ecological 

parameters are extracted. Additionally, αij values are used to construct a food-web network 

whose nodes and edges are respectively compotypes and αij values [138]. 

Selection alters the dynamics of the entire population rather than just of the targeted compotype ( 

Figure 30). This was quantified by examining the values of the ecological parameters before and 

after selection (Figure 31). Interestingly, when selecting for a compotype, its own K and r values 

typically did not change with respect to the wild type. When selecting for C1, K2 increased by 

almost 100% and r3 by more than 50%. When selecting for C2, its maximum increased by about 

50% and its plateau by almost 100%, thought K2 and r2 did not change. This is indicative for a 

change in the food-web as a result of the selection (Table 5). Interestingly, the food-web does not 

change when selecting for C3 (Table 6). Selecting for C1 alters the food-web the most, and it is 

more similar to the food web when selecting for C2 than for the wild type. 

Thus, applying selection towards a compotype in the population alters the food web but keeps 

this compotype’s parameters constant (r and K). This is an interesting result that requires further 

inspection. 

 

5.4.7. Network motifs and their effect on ecological dynamics 

When the inner structure of β was decomposed into network motifs (see chapter  5.1.1.1), it was 

found that they are useful in predicting GARD’s selection response. In this section, it will be 

asked if the motif spectrum can also be used to understand some of the ecological behaviors. 

When β’s are grouped according to their NC values, it is found that the more compotypes a β 

exhibits, the lower are the counts of all motifs it shows. This can be understood when first 

considering that the size of a compotype intrinsic molecular repertoire (Nmol) was found always 

be much smaller than the environmental one (Nmol<NG. See Figure 19). This means that a 

compotype is a distinct subpart of β. Therefore, the higher the counts of all motifs a β exhibits, 
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the more it is connected and thus the lesser the chance it will exhibit more separated subparts, i.e. 

a lesser chance for a higher NC value. 

The structure of the β can also be used to predict cross-compotype competition dynamics in 

GARD populations. This is seen when αij values are presented as food-web, and binarized in the 

same way as β. For brevity, this analysis focuse on cases with NC=2 and 3 only, because the 

food-webs in such cases is simple and exhibits only a single mode of interaction – only a single 

motif (Figure 33). In general, when the competition between pairs is one sided (i.e. Ci→Cj), β 

exhibits less motifs. Interestingly, for NC=3, when all three pairs exhibit reciprocal competition 

(i.e. Ci↔Cj) β shows less motifs than when only two pairs are reciprocal and the third is one-

sided. The scores are overall negative because simulations with NC>1 show negative scores to 

begin with (Figure 32). 

Thus, the connectivity of β affects both the number of species and their ecological interactions. 

 

Figure 30: Example of selection in a population with multiple compotypes (lognormal 

random seed=45) and the fit to logistic growth (Equation 7). (a) Wild type population 

dynamics when no selection applied, (b-d) Population dynamics when selection target is 

C1, C2 and C3, respectively. 
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Figure 31: Ratios of values (carrying capacity, K; growth rate, r; maximum; plateau) 

after selection, compared to no selection (wild-type). A ratio >1.0 represent an increase 

in the value due to selection with the target stated on the X axis. 

 

None i=1 i=2 i=3 C1 i=1 i=2 i=3 
α

ij
 (j=1) - 0.79 1.26 α

ij
 (j=1) - 0.48 1.10 

α
ij
 (j=2) 1.49 - 0.00 α

ij
 (j=2) 0.00 - 10.0 

α
ij
 (j=3) 0.49 0.56 - α

ij
 (j=3) 0.51 0.25 - 

C2 i=1 i=2 i=3 C3 i=1 i=2 i=3 
α

ij
 (j=1) - 0.97 1.55 α

ij
 (j=1) - 1.25 1.35 

α
ij
 (j=2) 0.00 - 2.46 α

ij
 (j=2) 2.79 - 0.14 

α
ij
 (j=3) 0.68 0.54 - α

ij
 (j=3) 0.00 0.83 - 

Table 5: Values of competition parameters (αij) before and after selection for different 

targets. 

 None C1 C2 C3 
None  0.10 0.47 0.95 
C1 10.1  0.85 0.11 
C2 2.90 7.58  0.37 
C3 1.50 10.3 3.72  

Table 6: Similarity between the food-webs (Table 5) under different selections. Upper 

diagonal shows H (Equation 3) and lower diagonal shows Euclidean distance. 
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Figure 32: Average motif spectrum (relative to data in Figure 10), collected for 

simulations with different NC values. 

 

Figure 33: Average motif spectrum, collected for different food-webs. (top) All 

simulations with NC=2. One-sided (i.e. Ci→Cj) and reciprocal (i.e. Ci↔C) competitions 

are respectively blue and green lines. (bottom) All simulations with NC=3. Blue line is 

when all three compotype pairs show reciprocal competition (i.e. motif #13). Green line 

is when only two pairs are reciprocal and the third is one-sided (i.e. motif #12). Red line 

is when only one-sided competition exists (C1→C2→C3→C1). 
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5.4.8. Discussion 

In a majority of the cases the logistic (or Lotka-Volterra) formalism is used for cases such as 

predator-prey or inter-species competition for resources. Should one use such formalism in the 

case of GARD populations?. These populations are characterized by a different dynamics, 

whereby species interconvert into each other, a situation resembling macro-evolutionary 

dynamics. Indeed, there are reports of utilizing Lotka-Volterra equations for such systems [22]. 

In GARD analyses, some of the ecological parameters are thus interpreted differently than in 

classical ecology. The carrying capacity (K) is related to the chance that a compotype will 

produce progeny belonging to the parent’s compotype (and not to drift, or another compotype). 

Hence, K is related to the replication fidelity of a given species, independent of environmental 

parameters. Specifically, in the simulations presented here there is no competition for resources 

as the environment is buffered. GARD’s αij parameter measures the extent of species inter-

conversion, made possible by the fact that every compotype is a sub-network of the global β 

network. Thus, the forgoing results could seed a better understanding of early evolution, 

whereby protocellular entities were sufficiently malleable so as to reveal aspects of evolutionary 

ecology. 

We utilize here the logistic equation to fit the dynamic behavior of GARD compotypes. This 

equation can show oscillations for certain parameter ranges [83, 106, 107]. Notably, in 1000 

different sets of fitted logistic parameters here no oscillatory behavior observed. It is important, 

though, that such parameters are derived from chemical rate-enhancement values embodied in 

beta. Future analyses could give insights into the conditions for the existence of stationary states 

vs. oscillations. 
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5.5. Compotypes are quasispecies 

This chapter describes work done by Renan Gross, a summer student I closely supervised, in 

order to answer a key question I posed regarding GARD’s behavior and its similarity to a widely 

used evolutionary model, the quasispecies model. 

Here, the GARD model dynamics are compared to that stemming from Eigen’s quasispecies 

theory, seeking to unravel the quasispecies nature of GARD’s compositional assemblies, as an 

archetype of a system replicating and evolving without a hierarchical genome. Sequential and 

compositional information are intrinsically different, which makes it appealing to study the 

quasispecies nature of compositional replicators. To the best of our knowledge, this has not been 

done before. 

Eigen’s quasispecies theory was first proposed to describe error-prone replication of primitive 

macromolecules carrying information at the origin of life [30]. It referred to information carriers 

that undergo self-replication with errors, and extended the classical concept of a species to 

include not only the main replicating sequence, but also its closely connected mutants [12, 29, 

30]. A quasispecies is a steady-state population of variants (“cloud”) around the master-

sequence, which are linked through mutations and collectively contribute to the characteristics of 

this cloud. The master-sequence is referred to as the sequence with the highest fitness and it is 

thus the dominant sequence amongst the distribution within the cloud. It is typically the wild-

type sequence from whose erroneous replication gave rise to other mutants. 

Perhaps the best example in nature of quasispecies is RNA viruses, which have low replication 

fidelity with measured high mutations rates [25, 48, 72, 115, 147]. While in the past it was 

argued that RNA viruses’ evolution does not follow the quasispecies theory [53], this is largely 

disputed [72, 111]. Two additional examples of natural quasispecies, are the genome of Chinese 

hamster ovary which has genetic diversity due to non-standardized cloning [149] and catalytic 

RNA molecules [5, 67]. 

The quasispecies equation describes a population of self-replicating genotypes (Equation 12) 

[12, 29, 30]. Due to replication errors, a genotype produces not only offspring of its own kind, 

but might also produce offspring of other genotypes. This is represented by the transition matrix 

(Q) which denotes the probability that a certain genotype will produce an offspring of another 

genotype. Thus, the growth of a particular genotype is governed not only by its own replication 

rate, but also by the replication rate of the other genotypes. The is written as:  

( ) ∑
≠

+−=
ij

jijiiiii
i xQAxtEQA

dt

dx
)(

~
 

Equation 12 
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Where for a genotype i, xi is its time dependent concentration, Ai is its replication rate (as it 

reflects its fitness [29]) and Qij is the probability of genotype j mutating into i (with Qii being the 

probability of self-replication). Ĕ(t)=∑xiA i is termed “average excess rate” and serves to keep the 

total population size constant (∑xi=1 at all time points). A steady-state solution to this equation 

is obtained as the eigenvector with largest eigenvalue of the matrix W={QA}, in accordance to 

Perron-Frobenius theorem [29, 104]. This eigenvector holds the steady-state distribution of the 

concentrations of phenotypes, which is the quasispecies. 

Using the quasispecies equation, it is possible to quantify an error threshold, which relates the 

amount of information a replicating system can store at a given mutation rate to its single digit 

error rate (e.g. the chance to insert a wrong nucleotide in a specific location) [12, 30, 147]. The 

error threshold is defined as the minimum accuracy of replication which is required in order to 

preserve the information of the selected state of the system. For optimal selection, the required 

precision of information transfer has to be adjusted to the amount of information to be 

transferred, and if the mutation rate is increased beyond this limit the population structure breaks 

down [30]. As RNA viruses replicate with relatively high mutations rates [115], they are 

susceptible to a treatment by mutagenic drugs which increase their mutation rates to push them 

beyond the error catastrophe [23, 129, 134]. This not only supports the quasispecies nature of 

RNA viruses, but is also an example of a relation between modeling and experiments. 

 

5.5.1. Sequential vs. compositional information 

There are inherent differences between sequential and compositional information. The 

differences between two binary sequences with same length are not like between two 

compositions with same total number of molecules (typically the former is represented by a 

string and the latter by a vector). Consider the two binary sequences: S1=01 and S2=11. The 

difference between them can be pinpointed to the first location mutated to “1”, i.e. a Hamming 

distance of 1. However, when considering the two compositions: C1=[1A,1B] and C2=[2A,0B] 

(where A and B are two different molecule types), their differences are that one molecule of type 

B is missing in C2 and an extra molecule of type A is in C1, i.e. an Euclidean distance of √2 

(Equation 13). Another property of compositions, is that one composition can be a direct 

multiplication of the other, as in the case of C3=[2A,1B] and C4=[4A,2B], which in fact both 

hold the same composition (C4=2×C3). For such cases the similarity measure has been applied 

[119] (H, Equation 3). 

Another difference between sequence and composition is related to the probability of a back 

mutation (revertants). Consider the sequence of length=100: S3=11…1 (each digit is set to 1). A 

single mutation at the first location will produce the sequence S4=01…1. Now, the probability of 
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a back mutation from S4 back to S3 is 1/100 (the sequence length), when neglecting any other 

factors for simplicity. A point mutation in a composition is when 1 molecule of a certain type is 

replaced by a molecule of a different type. With compositions, the probability of back mutations 

depends on the composition itself, as shown in the next two examples. When the composition 

C5=[100A,0B] mutates into C6=[99A,1B], the probability of C6 mutating back to C5 is 1/100 

(when neglecting any other factors for simplicity). However, the probability of C7=[51A,49B] 

mutating into C8=[50A,50B] is 51/100, as changing any A molecule into B will suffice. 

Additional difference relates to the genome length. The longer a polymer is the bigger is the 

number of genes it can potentially code for. In GARD, however, having a bigger assembly size 

(Nmax) leads to decrease in the number of compotypes because the system is nearing the 

equilibrium steady state (Figure 17a in [80]). Therefore, the equivalence of a longer genome in 

GARD may necessitate an increase a constant Nmax/NG while Nmax is increased. 

 

5.5.2. A compotype is an attractor in compositional space 

Each simulation was performed with identical parameters yet with a different β. For each 

simulation, the most frequent compotype (FC) was identified, and Q (Equation 12) was 

constructed by sampling assemblies in different distances around the center of mass of FC (see 

chapter  5.5.8). Figure 34 shows the average Q over the entire set of 1,000 simulations performed. 

The most striking feature is that for all but the smallest distances, replication occurs towards FC. 

For distance>40, replication always occurs towards FC, while for intermediate distances between 

20 and 40 replication can occur towards and away FC, and for distance<15 replication is usually 

away from FC. In other words, the progeny of any parent assembly located far (distance>40) 

from FC will always grow to be closer to FC than the parent, while for a parent located very 

close (distance<15) to the FC will typically grow to be slightly further away from the FC. Thus, 

a compotype is an attractor in the compositional space. 
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Figure 34: GARD’s transition matrix (Q) with respect to the most frequent compotype 

(FC) center of mass. Qij is the probability that a parent at distance j (=X axis) gave rise 

to a progeny at distance i (=Y axis). Data in figure is averaged over 1,000 

measurements, each with a different β network (see Figure 41 for specific examples). 

5.5.3. GARD operates near its error threshold 

For each β, the eigenvector with the highest eigenvalue was calculated and marked as Vβ (see 

chapter  5.5.7). In each simulation, overall replication accuracy was assessed by comparing the 

degree of H between the center of mass of FC and Vβ (Figure 35A). This was done for 

decreasing values of kf rate constant (Equation 2) – the basal molecular joining rate, which is 

found to be a proxy analogue the single digit error. High kf value contributes to overall faster 

assembly growth and shifts the kf/kb equilibrium towards a higher value. Decreasing kf by more 

than a factor of 2, results in FC becoming more and more dissimilar to Vβ and the former’s 

frequency significantly diminishes, hinting to an error catastrophe (Figure 35B). Even in the 

highest kf value examined, there is still a difference between the FC and Vβ, which is likely 

caused by the stochastic nature of the model and perturbations caused by the assembly cell cycle 

(i.e. growth-split cycle), with H(kf=0.01)=0.917±0.161. As kf is reduced, especially below 0.005, 

Vβ and FC become more and more dissimilar, seeming to asymptotically reaching H→0 as kf→0 

(the lowest value explored here H(kf=0.00035)=0.488±0.210). Interestingly, when the relative 

frequency of FC is compared to its frequency with kf=0.01, a slightly lower kf values actually 

increases the frequency by almost 50% at kf=0.005 (Figure 35B). FC frequency reaches 0 as the 

value of kf is lowered. The increased FC frequency in intermediate kf levels is suggested to occur 

due to an improved ability of assemblies to explore new regions in the compositional space 
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around FC. Thus, the replication of GARD’s compositional assemblies seems to be near an error 

threshold. This draws for a quasispecies analysis, which will be presented in the next section. 

 

5.5.4. GARD’s steady state is correlated with that of the quasispecies equation 

As GARD operates near its error threshold, it is susceptible to be analyzed in accordance to the 

quasispecies theory. Figure 36 shows examples of the steady state distribution around the FC 

center of mass, when predicted based on the quasispecies equation and when measured from 

GARD’s population dynamics (such as those presented in Figure 18). Strikingly, the two 

distributions share similar features, including the distance span and number and location of 

peaks. The differences between the two distributions might result from the grouping of 

assemblies according to their distance, which can take different assemblies who occupy different 

locations in the compositional space and exhibit different replication rates and directions, and 

assign them with average properties. 

 

Figure 35: GARD’s error threshold. (A) Average compositional similarity (H) between 

the center of mass most frequent compotype (FC) to the β eigenvector (Vβ) as a 

function of kf. (B) Frequency of FC as a function of kf (relative to the frequency at 

kf=0.01). Dataset is based on 1,000 simulations, each with same parameters except for 
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different β networks. The default value typically used in simulations in the past is 

kf=0.01. Each simulation was ran for 2,000 generations. 

 

The effect of decreasing kf is further seen here, where when the distributions were calculated 

based on simulation with low kf the steady state distribution is shifted towards substantially 

greater distances. A widespread agreement between the steady states of GARD and quasispecies 

equation is observed when comparing the entire dataset of 1,000 different simulations (Figure 

37). These results support the description of a population of compositional assemblies around a 

central compotype (master compotype) as a quasispecies. 

An important point – is whether the choice of FC as the master compotype is justified. To this 

end, the steady state distributions with respect to an assembly randomly generated were 

compared (Figure 38), to find a complete lack of correlation. This further supports the choice of 

a compotype as a master compotype. 

 

Figure 36: Examples of the steady state from population-GARD and from the 

quasispecies equation (Equation 12). The distributions of distances around FC are 

shown from GARD (blue broken line) and from the quasispecies equation (green solid 
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line) with kf=0.01. Black solid line shows GARD’s steady state distribution for 

kf=0.00035. β random seeds are 1, 79, 45 and 90 for panels A-D respectively. Qij and Ai 

are presented in Figure 41 and Figure 42. 

 

5.5.5. GARD’s error-catastrophe resembles that of the quasispecies equation 

GARD’s population shows similar behavior to sequences, when approaching the error threshold. 

Figure 39 shows an example of the occupancy of different distance shells around a compotype’s 

center of mass, when the value of kf is reduced. While the frequency of the compotype only 

slightly reduces at first, it is seen that the occupancy shifts from shells of smaller distances to 

larger distances. Only when the occupancy shifts towards shells of relatively high distances the 

frequency of the compotype quickly diminishes towards 0. Importantly, a similar transition was 

observed in simulated population of replicating polymers, where the concentration of the average 

sequence (consensus) remains constant as the single digit error probability is reduced, while 

sequences with multiple mutations at larger and larger Hamming distances was observed [139]. 

When the error threshold was reached, the concentration of the average sequences exhibits a 

first-order phase-transition and drops to 0. 

 

5.5.6. The time dependent dynamics of the quasispecies equation resembles that of 

GARD 

Lastly, an example of the time dependent evolution of the distance distribution is compared 

between population-GARD and the quasispecies equation, when both started from the same 

initial conditions, and allowed to propagate until steady state. Strikingly, in the case tested the 

time development of the quasispecies equation resembles that of GARD, where the formation of 

a peak around distance ~20 at the expanse of the peak around distance ~60 is exhibited in both 

(Figure 40). This further support the description of composomes around a compotype as a 

quasispecies, suggesting that this description applies also to the full dynamics. 
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Figure 37: Steady-state comparison of GARD’s vs. the quasispecies equation, with 

respect to FC center of mass. Data shows the expected distances (=∫p(r)dr) from the 

steady-state distributions (Figure 35). Black solid line is a linear fit: y=0.804*x+2.27, 

R2=0.60. 

 

Figure 38: Comparison the steady-states, with respect to a random assembly. Figure 

details are similar to Figure 37, except for a set of 75 simulations instead of 1000. 

Linear fit gives: y=0.65*x+33, R2=0.49, whereas performing the fit of Figure 37 with the 

same 75 simulations gives: y=0.88*x+0.66, R2=0.80. 
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Figure 39: Error-catastrophe. (top) An example of the change in compotype frequency 

and occupancy of distance shells in GARD as kf is reduced. (bottom) The change in the 

concentration of the average (consensus) sequence and sequences at different 

Hamming distances from the master-sequence as the single digit error probability is 

reduced; Taken from [139]. 



87 
 

 

 

Figure 40: Example of GARD and QSEQ dynamics towards steady-state. Distance 

distribution at different time points until steady state, for population-GARD (blue broken 

line) and QSEQ (green solid line). Time points are arbitrary and monotonic 

(t0<t1<t2<t3<t4<t5). β random seed = 1. The time dependent behavior of QSEQ was 

obtained by numerical integration using MATLAB routine ode45. 

 
5.5.7. How the ββββ eigenvector was calculated 

When β is represented as a matrix, it is positive as each of its βij values are sampled from a 

lognormal distribution [121]. According to the Perron-Frobenius theorem, such a matrix has a 

unique largest real eigenvalue with a corresponding all positive real eigenvector [104]. This 

eigenvector is treated as a compositional assembly and marked Vβ (see chapter  5.5.3). 
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5.5.8. How the compositional space was sampled and Q and A constructed 

The large size of the compositional space, particularly given the values used in this work, 

NG=100 and Nmax=100, makes direct calculation of Q matrix computationally impossible. 

Therefore, assemblies were grouped according to their distance from the center of mass of a 

compotype (the FC) and the molecular space was divided into shells of constant thickness. This 

is similar to how genetic sequences are grouped according to their Hamming distance from the 

master-sequence [61]. 

The Euclidean distance between two assemblies is calculated as: 

( )∑
=

−=
GN

i
ii nnVVD

1

22121 ),(  

Equation 13 

Where ni
1 is the count of the i'th molecular type in assembly V1 (Equation 1). 

Assemblies in the same distance shell were grouped together and the relevant properties (i.e. Q 

and A) of each shell were averaged over the assemblies contained in this shell. The 

compositional space was sampled in the following manner for each simulation: 

10,000 assemblies were generated at random, each by randomly picking a molecular type and 

adding a random count of this type until the assembly size reaches Nmax. Another 10,000 

assemblies were generated by conducting 10,000 random walk step pairs starting from the FC, 

where in each step a molecule is randomly removed from the FC and a random one is added to it. 

Another 10,000 assemblies were generated by random walk starting from the Vβ, similarly to the 

FC. This gave rise to a total of 30,000 parent assemblies. Each of these was then split and its 

progenies grown until they reach Nmax, this was repeated 10 times for each parent. Qij is than the 

probability that a parent at distance j gave rise to a progeny at distance i, and Ai is the average 

growth rate of progeny at distance i. Examples of Q and A are given in Figure 41 and Figure 42. 

The sampling of population-GARD steady-state distribution was done by collecting the entire 

population along the population steady state (time=4.9-5.0×104 with time intervals of 0.1×104. 

See for example Figure 18). 
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Figure 41: Examples of Q. Figure details are as Figure 34. Panels A-D respectively 

corresponds to Panels A-D in Figure 36. 

 

Figure 42: Examples replication rates (A). Lines respectively correspond to Panels A-D 

in Figure 36. 
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5.5.9. Conclusions 

While the quasispecies is a general concept, not specific to any sort of replicators, in the past it 

has always been applied to the only replicators we know – sequential polymers. The present 

demonstration of the quasispecies nature of GARD assemblies, which hold compositional 

information as a group rather than sequential information as an individual molecule, thus 

supports the generality of the QSEQ. Importantly, as GARD was developed and is often used to 

study the lipid world scenario for the origin of life, the present results, together with experiments 

demonstrating the quasispecies nature of catalytic RNA [5], further points to the role of 

quasispecies in the origin of life [31]. 

Lastly, in a separate vein, if one agrees that it is not wrong to represent a cell’s transcriptome, 

which holds the composition of the different types of RNA molecules [78, 98, 148], as a 

compositional vector, then it is further suggested that regardless a cell’s genome, the 

transcriptome is a quasispecies. 
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5.6. Is there an optimal level of open-endedness in prebiotic evolution? 

This work was done with collaboration with Prof. Natalio Krasnogor from Newcastle University, 

and was published as an extended abstract [81]. 

Open ended evolution is considered an important feature of life. GARD simulations cycle 

between composomes (Figure 4) and typically exhibits only a few compotypes (Figure 9 in [80] 

and chapter  5.6.1), which impends on its ability to portray open ended evolution. Therefore, 

modifying GARD to show open ended evolution will greatly contribute to its acceptance as an 

evolutionary model. This chapter deals with this issue exactly and further suggests a new method 

to quantify open ended evolution in a way that will enable comparing different systems and 

models on the same scale. 

Open ended evolution may be thought of as referring to a “system in which components continue 

to evolve new forms continuously, rather than grinding to a halt when some sort of `optimal' or 

stable position is reached” [137]. Notably, open-ended evolution does not necessarily imply 

evolutionary progress or complexification. Yet, a system in which complexity increases along 

the evolutionary time axis fulfills a sufficient (even if not necessary) condition for open-

endedness. 

Indeed, evolution of complexity and the related concept of open ended evolution have been a 

topic of scientific enquiry since Darwin and Wallace introduced the Theory of Evolution by 

Natural Selection. There is no doubt that a complexification process took place over the 

extended evolutionary time frame, with some endosymbiotic events [90]. With the advent of 

powerful computational tools in which one could seamlessly run “what-if” scenarios about the 

origins of life, the questions of how complexity emerges from evolution-like processes and how 

open-ended the emergent processes have gained renewed impetus [8]. Researchers have 

proposed multiple definitions of both open-ended evolution and (pre)biotic complexity and have 

applied these measures to several, more or less convoluted, “Artificial Life” and prebiotic 

systems. Common definitions of open-ended evolution consider an increase in the internal 

complexity of species [84, 113] or species occupying ever more diverse niches of the natural 

design space [65, 85]. A difference between the two approaches is apparent when considering 

the case of a few species in an ecosystem becoming more and more complex vs. the emergence 

of multiple species that might each be relatively simple but overall occupy a relatively large 

portion of the natural possible design space. The former definition can be viewed as “species-

centric” whereas the latter as more “system-centric” [65]. 

Korb and Dorin discuss at length the various attempts made at measuring open-endedness and 

suggest a two-part measure based on message minimum length required for conveying (or 

encoding) information (MML). They propose that a measure that considers the complexity of 
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events of species evolving (part 1) and of the related hypothesis (part 2) would be a better 

measure for evolutionary complexity as it is a relative measure that takes into account not only 

the end product but the context in which these are produced. Building on this concept, we 

address the question of whether there is an optimal set up for a putative prebiotic universe that 

leads to greater open ended evolution of the species evolving within it. We define an index of the 

excess-complexity of species (event, E) in relation to the universe in which they evolve (U), as a 

proxy for open ended evolution. This index is ec(P(E|U), P(U)), that relates the probability of 

observing events (P(E|U)) to the probability of the initial conditions (P(U)). Our index (Equation 

14), like suggested by Korb and Dorin (2011), is a two part index but with the additional 

advantage of having the following properties: 

1. P(E|U) and P(U) are normalized such that 0 ≤ P(E|U), P(U) ≤ 1. 

2. ���|�� → 0 and →1 respectively represents improbable and probable outcomes unraveling 

from the initial conditions U. Similarly, ���� → 0 and →1 represents improbable and 

probable initial universe conditions.  

3. ec ≥ 0 and can grow arbitrarily large. The larger the value of ec, the more complex are the 

unfolding events in relation to a given universe. 

4. lim���|��→�,����→�, ������|��, ����� = 0, that is, probable initial conditions that lead to 

probable events receive the lowest rank (i.e. no surprises can be expected from this universe 

under the given initial conditions). This is marked as Scenario A in Fig. 1. 

5. lim���|��→�,����→� ������|��, ����� =  ; 	 > 0, that is, improbable initial conditions that 

lead to probable events are ranked slightly higher than 0 (Scenario B). 

6. lim���|��→�,����→� ������|��, ����� = $ ; 	$ >  > 0, that is, an improbable initial state 

that leads to improbable events ranks even higher as this clearly represents an unexpected 

observation emerging from an unexpected initial condition (“Garden of Eden”, scenario C). 

7. lim���|��→�,����→� ������|��, ����� = % ; 	% > $ >  > 0, that is, a probable set of 

initial conditions throws out surprising outputs thus ranking at the top of the scale (“Elegant 

Garden of Eden”, scenario D). 

We now define ec with exactly the above characteristics: 

( ) ( ) ( )[ ] ( ) ( )[ ]
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⋅
−=  

Equation 14 

where the first part is an embodiment of MML and is scale invariant, and the second part is 

different than zero only when added value in the complexity of events has occurred (i.e. U is 

simpler than E). Increase in ec during a simulation will serve as a proxy to identify open ended 

evolution, as increase in complexity is generally considered to be indicative of open ended 
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evolution. Moreover, following the previous discussion, ec(E,U) is a species-centric measure of 

open ended evolution but can easily be “system-shifted” by encompassing all outcomes E. 

In Figure 43 we identify the four extreme ec values a simulated universe might receive. As one 

moves from A, to B, to C and finally to D the level of ec increases thus open ended evolution is 

observed. In fact, as the likelihood of the initial conditions increases (P(U)→1) and the 

likelihood of the events decreases (P(E|U)→0) the level grows, potentially without limit. 

A major challenge lays in exactly defining and measuring P(U) and P(E|U). To this end, it is 

suggested to build on the fact that not only nucleic acid repertoire underwent evolution, but also 

the genome [47, 51, 102]. The earliest genetic code is proposed to encode for fewer amino acids 

than the present-day one from one side, and from the other side the phylogenetic tree of life has 

too been suggested to expand during evolution. P(U) can, be related to the probability of a 

specific code out of the entire possible codes. P(E|U) might be related to the observed size of the 

tree at different evolutionary stages, given that this code led to that tree, compared to the sizes of 

the rest of the trees. 

Lastly, I would like to submit that life can be considered as being about under achievement. 

Looking at the huge diversity of life all around us, it is understandable why some may, 

mistakenly, think that life is about giving rise to many species or the potential to give rise to 

infinite more, which is often referred to as open ended evolution. However, as suggested here, it 

is not enough to consider just the genome size or the actual number of species (i.e. the output of 

the system). One has to consider the actual number of species with respect to the potential 

(which is a function of the input). Doing so, it becomes apparent, for example, that the ratio of 

actual species to genome size has actually decreased in the course of evolution. Thus, life is 

about underachievement. 

 

Figure 43: Excess-complexity (ec, Equation 14) as a proxy for open-ended-evolution. 

A, B, C and D mark different scenarios (see text). 
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5.6.1. Universe-GARD 

In order to address the question of whether there is an optimal set up for a putative prebiotic 

“universe” with events unfolding inside such that open ended evolution is observed, the GARD 

model was extended. Typically up to eight different compotypes are being cycled and they can 

be identified early on in a simulation, suggesting that GARD does not appear to display high 

levels of ec to begin with, which impends on its open ended evolution (Figure 44). The new 

proposed model, termed universe-GARD (U-GARD), will allow systematically studying the 

tradeoff between the initial conditions of the universe and the emerging compotypes (i.e. map the 

ec surface). In U-GARD, the immediate environment is embedded in a larger “universe” with NU 

(≥NG) different molecular types, instances of which are continually being diffused in and out of 

the immediate environment (Figure 45). This is physiochemically feasible, as exemplified by the 

immediate environment being absorbed to a mineral surface, contained in a mineral pore or 

constituting an ineffectively stirred sub-region of a larger prebiotic aquatic body. As a 

compotype constitutes a set of molecules that function better as a whole in their particular 

environment and thus faithfully replicate, the organization of a compotype is also assumed to 

protect its constituting molecular types from being diffused out to the larger universe. 

The simulation will be run for sufficiently long time course and P(U) and P(E|U) will be 

measured along time intervals of fixed length. For each interval, P(U) is the probability of 

randomly picking the set of NG types observed during the interval out of NU (assuming that the 

diffusion rate is much slower than the accretion rate so that NG is relatively constant in this 

interval) and P(E|U) is the probability of finding new compotypes in this interval. Open ended 

evolution will be identified when a universe will exhibit an increase in ec over time. Different 

universes with different NU, NG and β parameters could be compared by using the expected 

value of ec: 

{ } ( ) ( )( )[ ]∑ ⋅= UEecPUEecNNec GU ,,,, β  

Equation 15 
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Figure 44: Average NC value per simulation duration, for regular-GARD and U-GARD. 

 

Figure 45: Open-ended GARD (Universe-GARD, U-GARD). Assemblies undergo 

growth-fission cycles in the immediate environment, obeying the GARD dynamics. At 

any given time step diffusion of molecular types in and out of the GARD environment 

occurs for molecules not included in compotypes. 

 

5.6.2. Early results 

Figure 46 shows examples of a preliminary implementation of the U-GARD model, which 

shows the emergence of new compotypes even in later stages of the simulation, unlike in 

regular-GARD (see Figure 4 for example). Indeed, when the mean NC value is compared 

between U-GARD and regular-GARD, it becomes apparent that not only that the latter exhibits a 

higher average NC value but also that this value tends to increase with simulation length (Figure 

44). This suggests that GARD can be tweaked into showing open ended evolution.  
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Figure 46: Examples of early U-GARD simulation with NU=∞. Diffusion/exchange rates 

are increasing from A to D. 
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6. DISCUSSION 

6.1. Compotypes as quasispecies 

One of the unique corollaries of the GARD model is the emergence of quasi-stationary 

compositional states – composomes, which embody both metabolism-like characteristics and a 

capacity to store and propagate molecular information. These composomes often interchangingly 

mutate towards a central point – compotype, which is an attractor in the compositional space. 

This is analogue to the quasispecies concept, where polymers mutate around a master entity in 

the sequential space – the master sequence. The good agreement between the steady state of the 

quasispecies equation to that of GARD supports the description of a cloud of assemblies around 

a compotype as a quasispecies, similarly to how the cloud of sequences around a master 

sequence is. Critically, this description does not hold for any assembly, only for compotypes. A 

point of difference between compositional- and sequential- quasispecies is between the master-

sequence and the compotype. A compotype is represented by the center-of-mass of its member-

assemblies and as such does not have to represent an assembly encountered during the 

simulation, while a master-sequence is the one with the highest fitness and therefore exist in a 

substantial proportion inside the cloud. 

 

6.2. GARD is a minimally living system 

The finding that GARD’s species, i.e. compotypes, can exhibit Darwinian evolution has an 

important implication directly related to the origin of life and the definition of minimal life. 

Early on, the ability of GARD’s assemblies to faithfully replicate was demonstrated [119]. 

GARD is now viewed as an autopoietic-chemoton system5, where template copying and 

compartmentation are embodied in one entity, and a continuous supply of metabolites is afforded 

by the spontaneous accretion of lipids from the environment [80]. Thus, a compotype is self-

sustaining, which is an important prerequisite for life [9]. The other prerequisite comes from the 

accepted definition of minimal life: “Life is a self-sustaining system capable of undergoing 

Darwinian evolution” [9]. Thus, showing that compotypes can indeed evolve is critical if one 

wants to consider GARD as a minimally living system. Further, demonstrating that the 

distribution of assemblies inside a compotype cloud agrees with the quasispecies equation 

strengthen this point, as the quasispecies model describes the process of evolution of replicating 

entities [30]. Thus, a non-biological system, i.e. devoid of information carrying polymers, can 

exhibit (minimal) life. 

                                                 
5 There is disagreement with some other scholars, who points that Autopoiesis requires actual metabolic production 
in the sense of chemical covalent bonds modifications. However, I am treating production in the broader sense of 
the word. 
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It should be noted, that the span of evolution in GARD is likely to be limited as the effective 

number of compotype species is always below 8 hence the model does not portrays full-fledged 

open ended evolution (though the relative number of species with respect to the theoretical one is 

greater in GARD than in nature). This is probably because the underlying β network, which 

represents a chemical environment, is constant throughout each simulation. This is un-realistic as 

environments change over the course of evolution and in fact this change is intertwined with 

evolution. Addressing this point, the universe-GARD model has been formulated which changes 

the environment by systematically changing β. Indeed, preliminary results suggest the new 

model exhibits a larger number of compotype species and that this number is increasing with 

time, which hints for open ended evolution. 

 

6.3. Evolution towards lower entropy of compotypes 

Population ecology typically involves complex organisms, for which relating biochemical 

parameters to organismal behavior is extremely difficult. The GARD model, governed by 

mutually-catalytic networks, analyses supramolecular assemblies that are uniquely positioned at 

the interface between systems chemistry on the one hand and population dynamics on the other. 

This allows presenting a direct and quantitatively analyzable link between individual molecules 

and ecology. 

The Nmol analysis might advocate a prebiotic scenario initiated by fast-replicating assemblies 

with a high molecular diversity, evolving into more faithful replicators with narrower molecular 

repertoires. This is not unlike the transition from prebiotic “random chemistry” to the relatively 

restricted repertoire of small molecules (monomers) seen in present-day living [119]. Such a 

transition might be considered as a change from a compotype with higher entropy into a lower 

one, as a composition with a lower Nmol has lower entropy (under a given NG and Nmax).  

 

6.4. Lack of GARD experiments 

While GARD is based on realistic physical and chemical considerations, an experiment 

demonstrating homeostatic growth and faithful inheritance of a vesicle composed out of several 

molecular types is lacking. Such experiment is likely to be affected by the choice of participating 

amphiphiles, as lipids tend to be selfish and often form homogenous vesicles. However, as was 

shown here, mutually interacting groups of lipids can show better behaviors in terms of selection 

response and growth-rate, which can give them an advantage over selfish lipids. Such an 

experiment would also require accurate compositional monitoring, not yet elaborated. A 

difficulty may arise from the size of vesicles. The minimal diameter of vesicles and micelles is in 

the order of dozens of nanometers and contains many hundreds of molecules, which could make 
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it difficult to differentiate between assemblies of different compositions. A further difficulty is 

that GARD usually employs small assembly size and larger sizes result in diminishing 

compotype diversity. A point in favor of performing such experiments, is that recent studies of 

vesicles with multiple components have demonstrated that vesicles with different compositions 

show different distinct features such as permeability [82] (Figure 47) or boundary structure [144] 

(Figure 48). 

 

 

Figure 47: Effect of bilayer composition on the encapsulation of pyranine. A 1:2 ratio 

between amphiphiles shows the highest encapsulation efficiency, defined as the ratio of 

volume of dye solution to concentration of lipid. GM18 and 18A stands for glycerol 

monoacyl and lauric acid amphiphiles, both with 18 carbons. Figure taken from [82]. 
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Figure 48: Typical confocal microscopy images of giant unilamerllar vesicles composed 

out of a mixture of dioleoylphosphatidylglycerol (DOPG), egg sphingomyelin (eSM) and 

cholesterol (Chol). Black scale bar correspond to 10 micrometer. Figure taken from 

[144]. 
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  ,וווש, מתעופפת לה הסכין החדה

  ,המלבנים הלבנים מתעופפים

  ,תססס, קופץ לו השמן

  ,והנה הם עולים מהמעמקים

  .הצ'יפסים הפריכים

 

מרטין. מי ייתן ותנצצו באור הניאון. - בסן מוקדש, באהבה, לצ'יפסים

  ).Research proposal; 2010, מחקר הצעת', מרקוביץלעד (עומר 

  

  ,השמש היא צהובה

  ,חיים ומעניקה בשמיים בוהקת

  ,במים משתקפת לפעמים

  ,ועגלגלה גדולה, החמנייה היא צהובה

  ,אחרים לצהובים בלב מקום שמור לי אך

  .ומרובעים קטנטנים

 

 שתנצצו ייתן מי. הם באשר צהובים מרק לשקדי, באהבה, מוקדש

(עומר  לעד. מצופי שומן נוצצים יפסים'צ שבו החן באותו ניאון באורות

  ).Interim report; 2011, ביניים"ח דו', מרקוביץ

  

  

בכדור הארץ שלום ערן!, קוראים לי עומר ואני מסיים כעת את הדוקטורט שלי במכון וייצמן, בנושא ראשית החיים 

  .מיליארד שנה. אני פונה אלייך בעקבות ביקורת שקראתי בעיתון הארץ על ספרך האחרון 4לפני כ

  

מידי שנה ושנה במהלך הדוקטורט, על כל תלמיד להגיש דו"ח המפרט את התקדמותו בשנה שחלפה. עקב ויכוחים 

 2שלי וכן דו"ח התקדמות, הקדשתי  שונים עם מנחה הדוקטורט שלי, פרופסור דורון לנצט, כחלק מהצעת המחקר

  .שירים פרי עיטי לצ'פסים ולשקדי מרק וצירפתי אותם לדו"חות שהגשתי לוועדה

  

, הייתי רוצה לבקש ממך לשקול לקרוא את שיריי 2013כעת, כשעליי להגיש את תזת הדוקטורט שלי עד סוף שנת 

  .ולהעביר עליהם ביקורת קצרה אותה אפרסם ביחד עם התיזה

  .)ביוטית כגישה לחקר ראשית החיים-כותרת התיזה היא: כימיה פרה(

  

אכבד כל החלטה שלך, ואני חושב שזה יהיה ממש מגניב אם תסכים לעשות כן (או לפחות להמליץ למי עליי לפנות). 

  תודה!. עומר מרקוביץ'.
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  בב ולחמם" (צאלה כץ)אל תאמרו לי שאני יודעת לבשל / המצרכים כבר נבראו / וכל שנותר לי הוא / לער"

  "והנה הם עולים מהמעמקים, / הצ'יפסים הפריכים" (עומר מרקוביץ')

  

כבר ממבט ראשון קל לראות ששיריו של עומר מרקוביץ' מנסים להוות אלטרנטיבה, לאתגר תפיסה קיימת. אם 

לכיוון תרגום המידע הרי שהיא מוטה , RNA אלפבית של-התפיסה השלטת בנוגע למקור החיים הוא הורשה מבוססת

פיה, תהא זו קערת טוגנים או קערית -כלומר לחלבונים. מרקוביץ' הופך את הקערה על -הגלום בו לחומצות אמינו 

אדמה וחיטה בהתאמה. "אך לי שמור מקום בלב לצהובים - מרק ובו שקדי מרק, למודל פואטי מבוסס פחמימות, תפוחי

  ."אחרים

  

מה  ; שות כן, לשאול מה מחבר, יצירתית ומטבוליסטית, בין שני הרכיבים הפחממתייםיכול אדם, אף כי אינו מוכרח לע

האדמה במידה -שם דבק, וכך גם לגבי תפוחי-מדביק אותם יחדיו. והרי חלבון החיטה הוא הרי גלוטן, שמו קרוי על

' היא זו שמאפשרת את פחותה, אז כיצד נדבק דבק לדבק? אני טוען, אם כי לא בלהט, שהטכניקה השירית של מרקוביץ

היחס בין הדבקים, יחס שהוא רפלקסיבי וטרנזיטיבי, אך לא בהכרח סימטרי. כל מרכיב מדביק את עצמו, ללא ספק, 

וגם אחד דבק בשני, אך אין בהכרח שצ'יפס הנוגעים בשקדי מרק יהיו לשקדי מרק הנוגעים בצ'יפס. ולפיכך, אין מדובר 

  .המאשאפ בלשון ימינו, שיאפשר את מודל הבריאה החלופי ביחס שקילות, ונדרש הדבק הפואטי,

  

כאן עלינו להקדים ולשאול, אף כי אי אפשר, מפני שהטקסט שלעיל כבר נכתב, אז עלינו לאחר ולשאול, מי היה 

הראשון שהציע מודל הדבקה שכזה. אין צורך במחקר רב כדי להשיב שפבלו פיקאסו הוא האחד (וז'ורז' בראק הוא 

הרי על שמם רשום המונח שדחק את הקלאסיציזם באמנות הצדה, לטובת המודרניזם, וזה שאיפשר שניים), ש

מקורית, ואני מתכוון כמובן למונח: קולאז', שטבעו השניים בתחילת העשור השני - למקוריות לנוח לצד היצירה הלא

  .הדבק - . קולאז' פירושו 20-של המאה ה

  

ביוטי -האלטרנטיבי, שהניע את תחילת השירה המודרנית, לבין המודל הפרה לפיכך, עד כה קשרנו בין המודל האמנותי

המערכתי שהוביל לתחילת החיים, אך השאלה המהותית בשני המקרים היא שאלת גרעיניות המצרכים, או הצ'יפסים, 

במובן  או לחלופין, שאלת ההשתנות וההתפתחות. ביתר פירוט: האם המצרכים הגיעו בגודלם הטבעי, או שהם נוצרו

שאנו מכירים אותו מתוך תהליך הערבוב והחימום? האם צ'יפס הוא יותר כפיסי תפוחי אדמה, או יותר תוצר של 

  ?הוא ראשון החומרים התורשתיים, או שמולקולות פשוטות יחסית קדמו לו בתפקיד זה RNA-טיגונם? האמנם ה

  

הבסיסיים, שהתהליך הביא אותם באופן שיטתי  מרקוביץ' רומז בשירתו לכיוון השני, לכיוון המצרכים הפשוטים,

מרטין. אותו - הבחירה בצ'יפס ובשקדי מרק אינה מקרית. מרקוביץ' מפנה זרקור לצ'יפסים של סן .RNA-להקדים את ה

חבל ארץ בצ'ילה, או שם של קפיטריה באוניברסיטה ישראלית, הוא למעשה שם של כל מקום. והחיבור לכל מקום הוא 

פס ושקדי המרק. ולמעשה חיבור שכזה נוצר בכל מקום שמתרחשת עליו מלחמה. נודע סיפורה של חיבורם של הצ'י

סרייבו, בירת בוסניה (ויש שיאמרו והרצגובינה), שבה אזל מלאי תפוחי האדמה במהלך המצור במלחמה היוגוסלבית 

גנו להם צ'יפסים מבצק. ארנב החרדה מעט מזון נחמה, טי-של המאה העשרים. כדי להכין לילדים מלאי 90-של שנות ה
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אייג' קלישאי, אך השאלה כאן היא האם "צ'יפס סרייבו" הוא צ'יפס או שקדי מרק. והרי אין -או ברווז, שואל ציור ניו

  .סרייבו סרייבו בלבד, ואת מעדן הפסים המטוגן ניתן להשיג בדוכני פלאפל בפרוורי ערי שדה ישראליות

  

ובעצם השאלה היא התשובה: כימיית המערכות, שדה שמבקש לחקור את היחסים שבין תגובות כימיות מרובות, 

ולתכלל את המידע כדי להבין כיצד הן מתפקדות יחד, היא הדבק, היא התהליך. ממש כמו שירה, שבה חומרי הגלם 

של צלילים או של בסיסים חנקניים. הרגשיים מוטחים על משטח השפה כדי ליצור שפה, אלפבית, יחידות חוזרות 

לפיכך שירתו של מרקוביץ' נוכחת ופועמת, כחלק אינהרנטי מן המחקר הכימי. התוצר הוא הנגלה, התהליך הוא 

  .הנחקר

  

אני רואה ביצירתו של מרקוביץ' נדבך חשוב בקשר הקוולנטי שבין חקר ההברות לבין חקר הנוקלאוטידים, אך הייתי 

ה בחזון, נדבך נוסף של העניין, והוא פרויקט זינוטקסט של המשורר הקנדי כריסצ'ן בוק. בוק רוצה לסיים את הסקיר

לבקטריה שידועה כעמידה לפיצוץ  X-P13. ע"י הזרקת הגן DNAכתב שיר וקודד אותו כך שכל אות תתאים לשלשת 

זינוטקסט עבד היטב  אטומי, נוצרה תגובה שבתורה נוצרה מולקולה חדשה, ובו שיר אחר שכתב בוק.... עד כה

 בסימולציה, אבל נוצרו באגים בכתיבת השיר בנסיונות אמיתיים. ואולי זה מה שמשותף לשירת אמת ולמדע: הבאגים.

 2013 ספטמבר) / Eran Hadas( הדס ערן

 

 

 

 

 

 

 




