5,826,636 research outputs found

    CO-LOCATED WAVE AND OFFSHORE WIND FARMS: A PRELIMINARY CASE STUDY OF AN HYBRID ARRAY

    Get PDF
    In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of co-locate both technologies at the same marine area has arisen. Co-located projects are a combined solution to tackle the shared challenge of reducing technology costs or a more sustainable use of the natural resources. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park

    Support the next generation by sponsoring the 2024 Windstorm Challenge!

    Get PDF
    The Windstorm Challenge is a unique opportunity for middle and high school students to get hands-on engineering practice at the Advanced Structures and Composites Center (ASCC). Organized by the same team that brings you AFloat, the Windstorm Challenge seeks to educate the next generation of floating offshore wind innovators

    AFloat 2021: American Floating Offshore Wind Technical Summit

    Get PDF
    Email invitation to the AFloat 2021: American Floating Offshore Wind Technical Summit scheduled for September 8 and 9, 2021. Due to the emergence of COVID variants and the health risks they pose, a decision was made to hold the event virtually to ensure everyone\u27s safety

    Dr. Habib Dagher testifying before the U.S. Senate

    Get PDF
    Sen. Collins asks Dr. Habib Dagher about sustainable infrastructure solutions

    Topologically Induced Optical Activity in Graphene-Based Meta-Structures

    Full text link
    Non-reciprocity and asymmetric transmission in optical and plasmonic systems is a key element for engineering the one-way propagation structures for light manipulation. Here we investigate topological nanostructures covered with graphene-based meta-surfaces, which consist of a periodic pattern of sub-wavelength stripes of graphene winding around the (meta-) tube or (meta-)torus. We establish the relation between the topological and plasmonic properties in these structures, as justified by simple theoretical expressions. Our results demonstrate how to use strong asymmetric and chiral plasmonic responses to tailor the electrodynamic properties in topological meta-structures. Cavity resonances formed by elliptical and hyperbolic plasmons in meta-structures are sensitive to the one-way propagation regime in a finite length (Fabry-Perot-like) meta-tube and display the giant mode splitting in a (Mach-Zehnder-like) meta-torus.Comment: 20 pages, 5 figures + TOC figure, accepted by ACS Photonic

    Wood Composites Manufacturing

    Get PDF
    The UMaine Advanced Structures and Composites Center has a complete Wood Composites Pilot Line allowing production of up to 4’ x 8’ oriented strand board (OSB), laminated strand lumber (LSL), particle board, MDF, and other cellulosic composites on a near-industrial scale

    Advanced Composites Center Research Patent Portfolio webpage

    Get PDF
    Webpage listing research patents held by since 1998
    • …
    corecore