11,465 research outputs found

    Light-Cone Quantization of Gauge Fields

    Get PDF
    Light-cone quantization of gauge field theory is considered. With a careful treatment of the relevant degrees of freedom and where they must be initialized, the results obtained in equal-time quantization are recovered, in particular the Mandelstam-Leibbrandt form of the gauge field propagator. Some aspects of the ``discretized'' light-cone quantization of gauge fields are discussed.Comment: SMUHEP/93-20, 17 pages (one figure available separately from the authors). Plain TeX, all macros include

    Light-Front QCD(1+1) Coupled to Chiral Adjoint Fermions

    Get PDF
    We consider SU(N) gauge theory in 1+1 dimensions coupled to chiral fermions in the adjoint representation of the gauge group. With all fields in the adjoint representation the gauge group is actually SU(N)/Z_N, which possesses nontrivial topology. In particular, there are N distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization for the case N=2, using discretization as an infrared regulator. In the discretized form of the theory the nontrivial vacuum structure is associated with the zero momentum mode of the gauge field A^+. We find exact expressions for the degenerate vacuum states and the analog of the \theta vacuum. The model also possess a condensate which we calculate. We discuss the difference between this chiral light-front theory and the theories that have previously been considered in the equal-time approach.Comment: 14 pages, RevTeX, two figures requiring BoxedEPS.tex. References added and some typos correcte

    Light-Cone Quantization of Electrodynamics

    Get PDF
    Light-cone quantization of (3+1)-dimensional electrodynamics is discussed, using discretization as an infrared regulator and paying careful attention to the interplay between gauge choice and boundary conditions. In the zero longitudinal momentum sector of the theory a general gauge fixing is performed and the corresponding relations that determine the constrained modes of the gauge field are obtained. The constraints are solved perturbatively and the structure of the theory is studied to lowest nontrivial order. (Talk presented at ``Theory of Hadrons and Light-Front QCD,'' Polana Zgorzelisko, Poland, August 1994.)Comment: 6 pages, LaTeX, OSU-NT-94-0

    The BES f_0(1810): a new glueball candidate

    Get PDF
    We analyze the f_0(1810) state recently observed by the BES collaboration via radiative J/\psi decay to a resonant \phi\omega spectrum and confront it with DM2 data and glueball theory. The DM2 group only measured \omega\omega decays and reported a pseudoscalar but no scalar resonance in this mass region. A rescattering mechanism from the open flavored KKbar decay channel is considered to explain why the resonance is only seen in the flavor asymmetric \omega\phi branch along with a discussion of positive C parity charmonia decays to strengthen the case for preferred open flavor glueball decays. We also calculate the total glueball decay width to be roughly 100 MeV, in agreement with the narrow, newly found f_0, and smaller than the expected estimate of 200-400 MeV. We conclude that this discovered scalar hadron is a solid glueball candidate and deserves further experimental investigation, especially in the K-Kbar channel. Finally we comment on other, but less likely, possible assignments for this state.Comment: 11 pages, 4 figures. Major substantive additions, including an ab-initio, QCD-based computation of the glueball inclusive decay width, evaluation of final state effects, and enhanced discussion of several alternative possibilities. Our conclusions are unchanged: the BES f_0(1810) is a promising glueball candidat

    Physical Coupling Schemes and QCD Exclusive Processes

    Get PDF
    I discuss application of the BLM method to obtain commensurate scale relations connecting QCD exclusive amplitudes to other observables, in particular the heavy quark potential.Comment: 7 pages, Latex, uses l-school.sty. Talk given at "New Nonperturbative Methods and Quantization on the Light Cone," Les Houches, France, 24 Feb.-7 March 1997. To appear in the proceeding

    TSIL: a program for the calculation of two-loop self-energy integrals

    Get PDF
    TSIL is a library of utilities for the numerical calculation of dimensionally regularized two-loop self-energy integrals. A convenient basis for these functions is given by the integrals obtained at the end of O.V. Tarasov's recurrence relation algorithm. The program computes the values of all of these basis functions, for arbitrary input masses and external momentum. When analytical expressions in terms of polylogarithms are available, they are used. Otherwise, the evaluation proceeds by a Runge-Kutta integration of the coupled first-order differential equations for the basis integrals, using the external momentum invariant as the independent variable. The starting point of the integration is provided by known analytic expressions at (or near) zero external momentum. The code is written in C, and may be linked from C, C++, or Fortran. A Fortran interface is provided. We describe the structure and usage of the program, and provide a simple example application. We also compute two new cases analytically, and compare all of our notations and conventions for the two-loop self-energy integrals to those used by several other groups.Comment: 31 pages. Updated to reflect new functionality through v1.4 May 2016 and new information about use with C++. Source code and documentation are available at http://www.niu.edu/spmartin/TSIL or http://faculty.otterbein.edu/DRobertson/tsil

    Optimal Renormalization Scale and Scheme for Exclusive Processes

    Get PDF
    We use the BLM method to fix the renormalization scale of the QCD coupling in exclusive hadronic amplitudes such as the pion form factor and the photon-to-pion transition form factor at large momentum transfer. Renormalization-scheme-independent commensurate scale relations are established which connect the hard scattering subprocess amplitudes that control exclusive processes to other QCD observables such as the heavy quark potential and the electron-positron annihilation cross section. The commensurate scale relation connecting the heavy quark potential, as determined from lattice gauge theory, to the photon-to-pion transition form factor is in excellent agreement with γeπ0e\gamma e \to \pi^0 e data assuming that the pion distribution amplitude is close to its asymptotic form 3fπx(1x)\sqrt{3}f_\pi x(1-x). We also reproduce the scaling and normalization of the γγπ+π\gamma \gamma \to \pi^+ \pi^- data at large momentum transfer. Because the renormalization scale is small, we argue that the effective coupling is nearly constant, thus accounting for the nominal scaling behavior of the data. However, the normalization of the space-like pion form factor Fπ(Q2)F_\pi(Q^2) obtained from electroproduction experiments is somewhat higher than that predicted by the corresponding commensurate scale relation. This discrepancy may be due to systematic errors introduced by the extrapolation of the γpπ+n\gamma^* p \to \pi^+ n electroproduction data to the pion pole.Comment: 22 pages, Latex, 7 Latex figures. Several references added, discussion of scale fixing revised for clarity. Final version to appear in Phys. Rev.

    Renormalized Effective QCD Hamiltonian: Gluonic Sector

    Get PDF
    Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.Comment: 25 pages, no figures, revte

    The Mandelstam-Leibbrandt Prescription in Light-Cone Quantized Gauge Theories

    Get PDF
    Quantization of gauge theories on characteristic surfaces and in the light-cone gauge is discussed. Implementation of the Mandelstam-Leibbrandt prescription for the spurious singularity is shown to require two distinct null planes, with independent degrees of freedom initialized on each. The relation of this theory to the usual light-cone formulation of gauge field theory, using a single null plane, is described. A connection is established between this formalism and a recently given operator solution to the Schwinger model in the light-cone gauge.Comment: Revtex, 14 pages. One postscript figure (requires psfig). A brief discussion of necessary restrictions on the light-cone current operators has been added, and two references. Final version to appear in Z. Phys.

    Towards testing the Maldacena Conjecture with SDLCQ

    Get PDF
    We consider the Maldacena conjecture applied to the near horizon geometry of a D1-brane in the supergravity approximation and present numerical results of a test of the conjecture against the boundary field theory calculation using supersymmetric discrete light-cone quantization (SDLCQ). We present numerical results with approximately 1000 times as many states as we previously considered. These results support the Maldacena conjecture and are within 10-15% of the predicted numerical results in some regions. Our results are still not sufficient to demonstrate convergence, and, therefore, cannot be considered to a numerical proof of the conjecture. We present a method for using a ``flavor'' symmetry to greatly reduce the size of the basis and discuss a numerical method that we use which is particularly well suited for this type of matrix element calculation.Comment: 6pp., 2 figures, uses elsart.cl
    corecore