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Abstract 

We consider SU(N) gauge theory in 1+1 dimensions coupled to chiral fermions in the adjoint representation of the 
gauge group. With all fields in the adjoint representation the gauge group is actually SlJ( N) /.&,I. which possesses nontrivial 
topology. In particular, there are N distinct topological sectors and the physical vacuum state has a structure analogous 
to a 6 vacuum. We show how this feature is realized in light-front quantization for the case N = 2, using discretization 
as an infrared regulator. In the discretized form of the theory the nontrivial vacuum structure is associated with the zero 
momentum mode of the gauge field A+. We find exact expressions for the degenerate vacuum states and the analog of 
the B vacuum. The model also possesses a condensate which we calculate. We discuss the difference between this chiral 
light-front theory and the theories that have previously been considered in the equal-time approach. 

1. Introduction 

The unique features of light-front quantization [ l] 

make it a potentially powerful tool for the study of 
QCD. Of primary importance in this approach is the 
apparent simplicity of the vacuum state. Indeed, naive 
kinematical arguments suggest that the physical vac- 
uum is trivial on the light-front. This cannot really be 
true, of course, particularly in view of the important 
physics associated with the QCD vacuum. Thus it is 
crucial to understand the ways in which vacuum struc- 
ture can be manifested in light-front quantization. 

There has recently been significant progress in this 
regard. If one uses discretization [2] as an infrared 
regulator (i.e. imposes periodic or antiperiodic bound- 
ary conditions on some finite interval in x- ) , then any 
vacuum structure must necessarily be connected with 
the k+ = 0 Fourier modes of the fields. Studies of 
model field theories have shown that the zero modes 
can in fact support certain kinds of vacuum structure; 

the long range phenomena of spontaneous symmetry 
breaking [ 31 as well as the topological structure [ 4,5] 
can in fact be reproduced with a careful treatment of 
the zero mode(s) of the fields in a quantum field the- 
ory defined in a finite spatial volume and quantized at 
equal light-front time. 

These phenomena are realized in quite different 
ways. For example, spontaneous breaking of Z2 sym- 
metry in &+, occurs via a constrained zero mode of 
the scalar field [ 61. There the zero mode satisfies a 
nonlinear constraint equation that relates it to the dy- 
namical modes in the problem. At the critical coupling 
a bifurcation of the solution occurs. These solutions in 
turn lead to new operators in the Hamiltonian which 
break the Z2 symmetry at and beyond the critical cou- 
pling. Quite separately, a dynamical zero mode was 
shown in Ref. [ 41 to arise in pure SU( 2) Yang-Mills 
theory in If1 dimensions. A complete fixing of the 
gauge leaves the theory with one degree of freedom, 
the zero mode of the vector potential A+. The theory 
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has a discrete spectrum of zero-P+ states correspond- 
ing to modes of the flux loop around the finite space. 
Only one state has a zero eigenvalue of the energy 
P-, and is the true ground state of the theory. The 
nonzero eigenvalues are proportional to the length of 
the spatial box, consistent with the flux loop picture. 
This is a direct result of the topology of the space. As 
the theory considered there was a purely topological 
field theory, the exact solution was identical to that 
in the conventional equal-time approach on the anal- 
ogous spatial topology [ 71. 

In the present work we shall focus on the vacuum 
structure and condensate of QCDi+r coupled to ad- 
joint fermionic matter. For vector-like coupling this 
model has been studied in the limit of large NC [ 81, 
for N, = 2 at finite temperature [ 91, and for 2 and 3 
colors in equal-time quantization in the small-volume 
limit [ lo]. It is interesting in that it possesses a vac- 
uum structure analogous to a 8 vacuum. As first shown 
in Ref. [ 111, for SU( N) gauge fields the vacuum has 
a 2~ topological structure. Furthermore, for N = 2 
there is a nonvanishing bilinear condensate [ 93. 

We shall consider here a chiral version of the model 
described in [lo]. In the conventional light-front ap- 
proach ’ , the chiral nature of the theory is automatic 
for massless fermions in 1 +l dimensions [ 121. In or- 
der to obtain the theory discussed in Ref. [lo], it is 

necessary to include additional degrees of freedom, 
initialized along a second null plane, which represent 
the left-handed particles. We hope to report on this in 
the near future. The topological classification of the 
vacua is unaffected by the chiral nature of the theory, 
however. Thus we expect to find N degenerate vacua 
for SU( N) gauge fields even in the chiral model. For 
the case N = 2 considered here we shall indeed find 
two vacuum states. As suggested above, the physics 
of these states is closely connected to the only zero 
mode in the theory, that of A+. The properties of this 
mode, in turn, are tied up with issues of gauge fixing, 
Gribov horizons, etc. 

It is always a delicate matter to consistently formu- 
late a chiral gauge theory with an anomaly. There is 
an extensive literature on this subject, including re- 
cent results for QCDr+i [ 131. We will not dwell on 
this issue since it does not appear to be central to the 
structure of the condensate. 

’ That is, with all fields initialized on a single null plane. 

The chiral nature of the theory we consider implies 
that any condensate that we will find will be funda- 
mentally different in structure from the one found in 
[ lo]. As discussed in [ lo], by considering the spec- 
tral flow of the fermions under large gauge transfor- 
mations it can be shown that the vector-like model has 
a .\IpyI. condensate for SU(2) and a (?@P)* conden- 
sate for SU(3). As we shall see, an analogous argu- 
ment leads us to anticipate a condensate for Y alone 
in the chiral model. Since we are able to find the ex- 
act vacua in the light-front formulation we are able to 
find an exact expression for the condensate. 

Similar theories coupled to adjoint scalars have also 
been studied recently [ 141. Here the scalar field can 
be thought of as the kl = 0 remnant of the transverse 
gluon component in QCDz+r. The study of these the- 
ories is part of a long-term program to attack QCDs+i 
through the zero mode sectors starting with studies of 
lower dimensional theories which are themselves zero 
mode sectors of higher dimensional theories. A com- 
plete gauge fixing has recently been given for QEDs+i 
which further supports this program [ 151. In all of 
these cases, the central problem was to disentangle the 
dependent from the independent fields in the context 
of a particular gauge fixing. 

These issues become phenomenologically interest- 
ing in the context of recent work on collinear QCD, or 
the “tube” model [ 161. In this approach one consid- 
ers dimensionally reduced QCD, which takes the form 
of an effective two-dimensional theory. While these 
theories contain fundamental fermions, the connection 
between the spectra of QCDt+r with fundamental and 
adjoint fermions [ 171 makes them an interesting sub- 
ject. It would also be natural to consider dimension- 
ally reduced supersymmetric theories, which would 
include adjoint fermions of the type discussed here. 
In addition, dimensionally reduced pure glue QCD al- 
ready has an adjoint scalar which might behave simi- 
larly to adjoint fermions [ 141. The issue of the spec- 
tral density of states in theories of this type arises in 
contexts such as matrix models. Finally, this entire 
class of models is very interesting for studying issues 
of confinement, screening and the comparison of the 
behavior of massive and massless theories with frac- 
tional charges 1181. 

The remainder of the paper is organized as follows. 
In the next section we define the theory, including the 
gauge fixing, and outline our calculational scheme. 
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Section 3 is devoted to the definition of the currents 
and charge operators, which are important for defin- 
ing a suitable physical subspace. Next we study the 
vacuum sector of the theory and find the two ground 
states. In Section 5 we discuss the condensate and ob- 
tain an exact expression for it. Section 6 contains some 
discussion and directions for future work. 

2. Definition of the theory and gauge fixing 

We consider an SlJ( N) gauge field coupled to ad- 
joint fermions in one space and one time dimension. 
Since all fields transform according to the adjoint rep- 
resentation, gauge transformations that differ by an el- 
ement of the center of the group actually represent the 
same transformation and so should be identified. Thus 
the gauge group of the theory is SU( N) /ZN, which 
has nontrivial topology: IIt [ SU( N)/ZN] = Z,, so 
that one expects N topological sectors. This situation 
differs from the case when the matter fields are in the 
fundamental representation, where the gauge group is 
SU( N) and the first homotopy group is trivial. 

The Lagrangian for the theory is 

.C = -iTr( Fp“Fp,,) + iTr($yfi E, r+G) , (2.1) 

where D, = 3, + ig[A,, ] and F,, = apA,, - 
&A, + ig[ A,, A,,]. We employ light-front quantiza- 

tion, defining xf = (x0 f x1 ) /fi and taking x+ to 
be the evolution parameter. A convenient representa- 
tion of the gamma matrices is r” = a* and y’ = ia’, 
where @ are the Pauli matrices. With this choice, the 
Fermi field may be taken to be hermitian. It is natu- 
ral in light-front quantization to break the Fermi field 

into two components 

T& G $O+P ; (2.2) 

in two dimensions (only) these are the same as chiral 
projections, so that 

.! 0 *R 
27 y 

+qF= ( > 0 ’ 
iyOy-yr = ;L . 

( > 
(2.3) 

When the fermions are massive, q+ appears to be the 
only independent degree of freedom. For the massless 
theory considered here, both *+ and V!__ must be 
considered to be independent fields [ 121. 

We shall focus on the case N = 2, in which case 
the matrix representation of the fields makes use of 
the SU(2) generators 7“ = Cra/2. It is convenient to 
introduce a color helicity basis, defined by r* 3 r1 f 
ir* with r3 unchanged. These satisfy [r+, r-1 = r3 

and [ 73, r* ] = kt7*. In terms of this basis the matrix- 
valued fields are given by, for example, 

AIL = Aljr3 + Ayr+ + A/“_r-, (2.4) 

where A$ E A: f iA;. (Note that (A/“+)+ = A/“_.) 
The Fermi field will be similarly written as 

TRIL = $RILr3 + +R/Lr+ + $&L7-9 (2.5) 

with 4~1~ = q&, + i*$,. Under a gauge transfor- 
mation the gauge field transforms in the usual way and 
the Fermi field transforms according to 

*R/L * U*R,LU-’ , (2.6) 

where U is a spacetime-dependent element of SU( 2). 
We shall regulate the theory by putting it in a light- 

front spatial box, -L < x- < L, and imposing peri- 
odic boundary conditions for the gluon fields Ap and 
anti-periodic boundary conditions for the Fermi field. 
In this approach, the subtle aspects of formulating the 
model have to do with the zero-momentum modes of 
the fields. It is here, also, that any nontrivial vacuum 
structure must reside. 

In the present model the subtlety is in fixing the 
gauge. It is most convenient in light-front field theory 
to choose the light-cone gauge A+ = 0. Here, however, 
since the gauge transformation must be periodic up to 
an element of the center of the gauge group (here Z2), 
we cannot gauge the zero mode of A+ to zero [ 191. 
Thus we choose d-A+ = 0. We can make a further 
global (i.e. x--independent) rotation so that the zero 

mode of A+ has only a color 3 component, 

A+ = u(x+)r3 E V(n+) , (2.7) 

and simultaneously rotate A- so that it has no color 
3 zero mode [ 41. 

At this stage the only remaining gauge freedom in- 
volves certain “large” gauge transformations, which 
we shall denote Tn. This freedom is best studied in 
terms of the dimensionless variable z = guL/n-, which 
T, shifts by an integer: 

T,zT,-‘=z fn. (2.8) 
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In addition, T, generates a space-dependent phase ro- 
tation on the matter field 4~1~ 

Tn&lLTn-’ = ~~~~~~~~~~~~~ , (2.9) 

which however preserves the anti-periodic boundary 
condition on (PRIL. This gauge freedom is an example 
of the Gribov ambiguity [ 203. We can use it to bring 
z to a finite domain, for example 0 < z < 1 or -1 < 
z < 0. Once this is done all gauge freedom has been 

exhausted and the gauge fixing is completed. Only 
physical degrees of freedom remain. 

After gauge fixing T, is no longer a symmetry of the 
theory, but there is a symmetry of the gauge-fixed the- 
ory that is conveniently studied by combining Tl with 
the so-called Weyl symmetry, denoted by R. Under R, 

RzR-’ = -_z and Rc$~,LR-’ = qbi,L . (2.10) 

This is also not a symmetry of the gauge-fixed theory, 
as it takes z out of the fundamental domain. The sym- 
metry Tt R, however, which is closely related to charge 
conjugation, plays an important role in the gauge-fixed 
theory as will be discussed in detail below. 

The Hamiltonian P- takes a very standard form 

L 

P- =g 
s 

dx-Tr (AJ’) + ‘tLd+ud+u, (2.11) 

-L 

where A s A- and J+ = l/&[q~,*~]. The field 
A is nondynamical and is obtained by solving Gauss’ 

law, 

-D!.A = gJ+ . (2.12) 

Resolving this into its color components we have 

-$_A3 = gJ3+ (2.13) 

-(a_ + igreQ2A+ = g.J; (2.14) 

-(a_ - ig~)~A_ = gJ: . (2.15) 

The first of these can be solved for the normal mode 
part of A3 (recall that the zero mode has been gauged 
away). Because of the boundary conditions and the 
restriction of u to a finite domain, the covariant deriva- 
tives appearing in the second and third equations have 
no zero eigenvalues. Thus they can be inverted to solve 
for A+ and A-. The only part of Gauss’ law that re- 
mains to be implemented is the zero mode of the first 

equation, which reduces to the vanishing of the zero 
mode of J3+. This condition must be imposed on the 
states and defines the physical subspace of the theory: 

Q3 Id-w) = 0 9 

where 

Q3 = &-J;. 

-L 

(2.16) 

(2.17) 

After implementing the solution of Gauss’ law we 
have 

p- = 2(2ny z 
Ld -g2j&-Tr (.J+$J+) , 

-L 

(2.18) 

where rTT, is the momentum conjugate to the quantum 
mechanical degree of freedom z = gvL/r, defined 
so that [z,n-,] = i. In this form it is clear that the 
dynamical variables are *R and z . We shall use a Fock 
space representation for the Fermi degrees of freedom 
and a Schrodinger representation for the z degree of 
freedom. Thus states will be written as tensor products 
of the general form $( z > ~9 IFock), and rr, will be 
represented as a derivative operator: n; = -id,. The 
Fourier expansion of ‘l!~ has the usual form 

(2.20) 

where the sums are over the positive half odd integers 

and k,’ = nr/L. The Fock operators obey the standard 
commutation relations 

{ai, a,} = {bi, b,} = {& dm} = &,, . (2.21) 

These result in the Heisenberg equation correctly re- 
producing the equation of motion for TR, 

D+‘?R = &‘+‘I!R + ig[ A, 9~1 = 0. (2.22) 

In addition, of course, [z, TR] = [ rz, *,q] = 0. 
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3. Current operators and the physical subspace 

Next let us discuss the definition of the current Jf 
and the associated charge operator in more detail. The 
relation 

Jf = +&?I (3.1) 

is ill-defined as it stands. We shall regulate it using a 
gauge invariant point splitting: 

x exp ig 
(s 

zI_,-uT3dx- ),P,(x-)] . (3.2) 

We find that the current J+ acquires a gauge correction 

J+ = J’+ + $u(n+)~~, (3.3) 

where J’+ is the naive normal-ordered current. This 
result is potentially upsetting, as the charge calcu- 
lated from this current would seem to have an un- 
wanted time dependence. Note, however, that any X-- 
independent piece of the current JT couples to the 
zero mode of Ax, which has been gauged to zero [see 
Eq. (2.1 l)] . Therefore what enters the dynamics is 
not the full current but the current with the “anomaly” 
(and any other color 3 zero mode) removed. It fol- 
lows that J” is what will appear in the equations of 
motion. In particular, Gauss’ law takes the form 

-D:A = gJ’+. (3.4) 

Since the zero mode of Jz does not appear in the 
dynamics of the theory, one can ask how it is to be 
defined. As we have seen, it is necessary to define 
the current in such a way that its zero mode has no 
gauge correction. The presence of such a term would 
be quite unpleasant as the charge, which is supposed to 
project out physical states, would be time-dependent. 
Another property that the charge should possess is 
Tt R symmetry. In order to discuss this it is helpful 
to consider the transformation properties of the fields 
and the naive charge 

(3.5) 

under Tl and R. From Eq. (2.9) we see that T, gives 
rise to a spectral flow, 

TIbnTI-’ = b,,-l , n> l/2 (3.6) 

TI d,,T,-’ = d,,+] (3.7) 

T, b,,2T;.1 = df,2 . (3.8) 

This leads to 

TIQ;T~-’ = Q; - 1. (3.9) 

In addition, TI shifts z by unity [ Eq. (2.8) 1. Under R 
symmetry, meanwhile, we find from Eq. (2.10) that 

Rb,R-’ = dn, 

which gives 

(3.10) 

RQ$R-’ = -Q;. (3.11) 

Its action on z is to take z + -z [Eq. (2.10) ]. 
Putting these together we find 

T, RQ;R-‘T,-’ = 1 - Q; 

and 

(3.12) 

T, RzR-IT,-’ = -_z - 1. (3.13) 

This represents a symmetry of the theory since it maps 
the fundamental domain -1 < z < 0 onto itself. In 
fact, Tl R represents a reflection of the fundamental 
domain about its midpoint z, = -l/2, coupled with 
a spectral flow of the fermionic degrees of freedom. 
It is straightforward to check that the Hamiltonian 
Eq. (2.18) commutes with Tl R. 

Now the charge operator we use to select the phys- 
ical subspace must also be invariant under Tl R, so 
that the physical subspace is mapped into itself under 
the transformation. Clearly, Qi is not invariant and so 
cannot be used for this purpose. Note, however, that 
two applications of the transformation T, R leave Q{, 
as well as the fundamental domain, invariant. Thus if 
we define the physical subspace to consist of all states 
annihilated either by Qi or by 1 - Q$, then it will be 
invariant under the TlR transformation and this will 
represent a true symmetry of the theory. As this has all 
the properties we require, we shall adopt it as the def- 
inition of the physical subspace. Note that it is stable 
under time evolution, since [ Qi. P-1 = 0. 
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4. Vacuum states of the theory 

The Fock state containing no particles will be called 
1 Vo). If it is one of a set of states that are related to 
one another by rr transformations, and which will be 
denoted 1 VM), with M any integer. These are defined 

by 

KM) = VrPIVo), (4.1) 

where ( TI ) -’ = T_ 1. It is straightforward to determine 
the particle content of the 1 VM) . Consider, for example, 
the TI transform of 

b;,,b,,&) = 0 3 

which is 

(4.2) 

T~b;,2T,-1T,bI,zTI-1T$f,) = 0. 

Using Eq. (2.9) we have 

(4.3) 

dl,Zd/,#) = 0 

which implies 

(4.4) 

dj,,d,,zlV) = Iti) (4.5) 

and therefore /VI) will have one d1/2 background par- 
ticle. One can show that IVl) has no other content; 

Iv) = 10; 0; l/2) zz dt,,(O; 0; 0), using theFock space 

notation i{na}; {nb}; {nd}). Under the R transforma- 
tion d -+ b, so that 

RIV,) = IV-,) EZ IO; 1/2;0). (4.6) 

Similar relations hold for the state / VM) where --co < 
M < 00 and M < 0 correspond to states with back- 
ground b particles. 

These states are related by gauge transformations 
and are therefore “physically equivalent,” but for dif- 
ferent values of z , since TI shifts z by unity. In a given 
domain, for example -1 < z < 0, these states are to 
be considered as inequivalent. Note that only j Vo) and 
IV,) are in the physical subspace as we have defined 
it; the first is annihilated by Q4 while the second is 
annihilated by 1 - Qi. 

As discussed previously, we shall use a Schrodinger 
representation for the gauge degree of freedom de- 
scribed by z and rZ. In this mixed representation, 
states are written in the form 

4uz)l~~~~: I%); {%f)). (4.7) 

The object is now to find the lowest-lying eigenstates 
of the Hamiltonian P- which are linear combinations 
of states of this form. 

The Hamiltonian is given by 

P- .----~2]dxVTr(J’-&J’). 
g= d2 

2(2n-12 dz2 _L 

(4.8) 

It is convenient to separate P- into a “free” part and 
an interaction, 

P_=P,fP;-. (4.9) 

PO- includes all z-dependent c-numbers and one- 
body Fock operators that arise from normal ordering 
Eq. (4.8)) and has the form 

PO = C(z) + V(z), (4.10) 

where C( z ) is a c-number function of z and 

V(z) = c (&(z)a:a, +%(z)bri;b, 

+D,,(:)d;d,) . (4.11) 

The explicit forms of C(z), A,(z), B,(z), and 
D, (z, ) are given in the Appendix. P,- is a normal- 
ordered two body interaction. We do not display it 
here as it is unnecessary for our present purposes. 
Note that Pou itself is invariant under Tl and R: 

T,P,TI-’ = P,(z), RP, R-’ = P; . (4.12) 

This is not true of C (z ) and V( z ) individually. 
Consider a possible vacuum state l( z ) 1 Vo), where 

we choose the fundamental domain -1 < z < 0. 
We consider a matrix element of P- acting between 
this state and an arbitrary Fock state. The only non- 
vanishing matrix element is 

(M#-L(z)lv,) = EOS(Z) (4.13) 

which leads to Schriidinger equation for l( z ) : 

s2 d2 s” 
--- + ,C(z) l(z) = EOS(Z) . 

(2g)2 dz2 1 (4.14) 
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Fig. I. The potential C(z) as a function of z = gvL/2r, and the Fig. 2. The potentials C(z) and C( z + 1) in the fundamental 
associated wavefunction. modular domain and the associated wave functions. 

The ‘cpotential” C(z) is shown in Fig. 1 and has a 
minimum at z = 0. It is straightforward to solve this 
quantum mechanics problem with the boundary condi- 
tions %( 0) = 0 and l( - 1) = 0. These boundary con- 
ditions are the result of a number of studies [ 7,211 of 
the behavior of states at the boundaries of Gribov re- 
gions (in our case, the integer values of z ) . The shape 
of the wave function is shown in Fig. 1. To discuss the 
symmetries of this theory we will find it convenient to 
define /(z ) outside of the fundamental domain. We 
shall define it to be symmetric about z = 0 since C (z ) 
is symmetric about z, = 0. 

ate vacua for this theory in the domain -1 < z < 0. 
From Fig. 2 we see that these states are reminiscent 
of the equal-time result [lo]. There are some signif- 
icant differences with the equal-time results however. 
On the light-front we have an exact expression for the 
vacuum states, while in the equal-time approach this 
could only be determined approximately. 

The action of the operator Tt R on one of the states 
(VM) has strictly speaking only been defined up to a 

phase, 

Now let us consider the state b( z > I&). Projecting 
the matrix element of P-z( 2) 16) with 1 Vi) we find 

TIR(VM) = eiBMl&_M). (4.17) 

The phase IYM is arbitrary, except that it must satisfy 

ei6MeitLw = 1 7 (4.18) 

which follows from (Tl R) * = 1. We can now con- 
struct a vacuum state that is phase-invariant under the 
symmetry Tl R by superposing our two “n-vacua”: = E,&?(Z). (4.15) 

From the explicit forms of C ( z ) and Dr/2( z ) given in 
the Appendix it can be shown that C ( z ) + Dt/2( z ) = 
C( z + I > . This is of course just the realization of the 
Tt invariance of P,-. Setting f(z) = LJ(Z + 1) we 
find the EI E EO and the Schriidinger equation is 

2 
d* g" 

-&w 
+-2_c<z + 1) l(z+l) 1 

= EOY(Z + 1). (4.16) 

The functions C(z + l), {(z + l), C(z) and b(z) 
are shown in Fig. 2. From this figure it is clear that 
[(z ) 1 Vo) and 5 ( z + 1) I VI) are two degenerate vac- 
uum states in the domain -1 < z < 0. We have 
found what we believe are the two expected degener- 

z 

I@ = -$ri(zIl%) + eiea5(z + l)(K)1 , (4.19) 

where J’( z ) is normalized to one. It is typically nec- 
essary to build the theory on such a vacuum state in 
order to satisfy the requirements of cluster decompo- 
sition. 

Finally we would like to briefly discuss P+. We use 
an explicitly gauge-invariant form of P+ 

L 

P+ = -ixh 
s 

dx_Tr (qRD--yI~) . (4.20) 

-L 

This is a singular operator and requires regularization 
and renormalization. 
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We have done this in two ways, using the gauge- 
invariant point splitting discussed earlier and also a 5- 
function regularization. Both procedures give the same 
result: 

+ ;zQ; + 2~‘. (4.21) 
L, &I4 

One can explicitly show that this expression is TI 
and R invariant (of course, the exact form of the 
non-standard terms is essential for this result). The 
Poincare algebra here is essentially [P-, P+] = 0. 

Explicit calculation gives [P-, Pf ] = ? 27rZ Q5 - 
( 

(zr, fr,z) . 
> 

However the matrix element of the 

commutator with all physical states vanishes. Thus the 
Poincart algebra is valid in physical subspace. This re- 
sult rests on the fact that we only use the ground state 
wave function l (z ) to construct physical states. There 
are higher-energy solutions to the quantum mechan- 
ics problem in z; however, the energy differences are 
proportional to L since these energy levels are asso- 
ciated with quantized flux loops that circulate around 
the closed X- space. The spectrum of states associ- 
ated with these very high-energy states decouple in 
the continuum limit and can be ignored. 

5. The condensate 

It is generally accepted that QCD in 1+1 dimen- 
sions coupled to adjoint fermions develops a conden- 
sate. So far this condensate has only been calculated 
in various approximations. For the vector-like theory 
it has been calculated in the large-h’, limit in Ref. [ 81, 
at high temperature in [ 91, and in the small-volume 
limit for SU( 2) in Ref. [ lo]. The theory we are con- 
sidering here is a chiral theory with only right-handed 
fermions. It is natural to consider such a theory in 
a light-front quantized theory because the light-front 
projections Eq. (2.3) naturally separate the left- and 
right-handed parts of the theory. Since the theory con- 
sidered in Refs. [8,10] has both dynamical left- and 
right-handed fields we do not expect to obtain the same 
result as those calculations. 

Thetwovacuumstates~(z)~V$and~(z+l)~Vr)of 
our chiral theory are both exact ground states. Since we 

only have right-handed dynamical fermions we only 
have a spectral llow associated with the right-handed 
operators, and thus the two physical spaces in the fun- 
damental domain therefore differ by a single fermion. 
They effectively block diagonalize P- into two non- 
communicating sectors. One sector is built on a vac- 
uum with no background particles and the other built 
on a state with one background particle. Therefore the 
matrix element of any color singlet operator between 
these two sectors is expected to vanish. While this the- 
ory will not generate a fundamental color-singlet con- 
densate, it does develop a vacuum expectation value 
for the fermion field. 

This is consistent with the equal-time results [lo]. 
We find one type of particle is involved in the spectral 
flow because there is only a right-handed field, while 
for the chirally symmetric theory there are two types 
of particle involved in the spectral flow for SU( 2) and 
four for SU( 3). This is directly reflected in the struc- 
ture of the condensate: for chiral SU(2) the theory 
develops a condensate for ?, while for the vector-like 
theory a condensate arises for @* for SU( 2) and for 
(‘zr*)* for SU(3). 

It is straightforward to calculate the vacuum expec- 
tation value from Eq. (4.19) : 

L 

I 
dx- (el4R (x- > 10) 

-L 

=e -ioJz odzi(z+l)i(zL s CT 

-1 

(5.1) 

Since Eq. (4.19) is an exact expression for the vac- 
uum, Eq. (5.1) is an exact expression for the vacuum 
expectation value. 

6. Conclusions 

We have shown that in QCD coupled to chiral ad- 
joint fermions in two dimensions the light-front vac- 
uum is two-fold degenerate as one would expect on 
general grounds. The source of this degeneracy is quite 
simple. Because of the existence of Gribov copies, the 
one gauge degree of freedom, the zero mode of A’, 
must be restricted to a finite domain. The domains 
of this variable, which after normalization we call z, 
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are bounded by the integers. Furthermore there is a 
symmetry of the theory under reflections about the 
midpoint of the fundamental domain. Thus the poten- 
tial of the vacuum state in the variable z can either 
have a minimum at z = l/2 or have multiple minima. 
It has recently been seen that for adjoint scalars the 
minimum is at z = l/2. In the problem with adjoint 
fermions described here there are two minima at the 
ends of the domain. 

In the light-front formalism we obtain an exact ex- 

pression for the vacuum states and we can solve for 
their fermionic content exactly. We find that these 
states are very different. They differ because the Tt 
transformation gives rise to a spectral flow for the 
right-handed fermion; thus the two vacuum states dif- 
fer in the background fermion number and color that 
each carries. We form the analog of a 6 vacuum from 
these two-fold degenerate vacuum states which re- 
spects all of the symmetries of the theory. We find that 
field 4~ has a vacuum expectation value with respect 
to this 0 vacuum and we find an exact expression for 
this vacuum expectation value. 

It is of interest to study whether this Z,v vacuum 
structure has any effect on observable properties of the 
theory such as the spectrum of massive states. That 
is, do the masses depend on the parameter 0? For the 
vector-like theory this seems unlikely, because the the- 
ory with adjoint fermions has the same massive spec- 
trum as some theory with only fundamental fermions 
[ 171, where there is no hidden vacuum parameter. 
For the chiral model discussed here the answer to this 
question is unknown. 

This chiral theory differs from the theories that have 
been studied in the equal-time formulation [g-lo], 
because the equal-time theory has both dynamical left- 
and right-handed fields. We expect that if we were to 
couple together two light-front theories, one with dy- 
namical right-handed particles and the other with dy- 
namical left-handed particles, then the resulting degen- 
erate vacuum and condensate would be exactly calcu- 
lable and similar to those discussed in the equal-time 
theory. We shall discuss the details of such a theory 
elsewhere. 
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Appendix A. The gauge potential 

We list here the explicit forms of the functions C, 
A,, I?,, and D, discussed in Section 4. The c-number 
function C( z ) must be retained here since it is an 
operator in z space. The divergence is easily seen to 
be a true constant and therefore can be subtracted. 

C(z) = gx[ @+i+z)2 + (m+L zj2] 
n,m 

loo1 -- 
2 c P’ 

(A.1) 
p=l 

A 11 c[ 1 1 
II=- 

nl (n-m-z)2 + (n-m+z)2 

1 1 - 
(n-m+z)2 - (n+m-z)2 ’ I 

(A.2) 

B, = ; 
1 1 

(m-n+z)2 - (n+m-z)2 ’ 1 
(A.3) 

D 
1 1 

n= (m-n-@-(n+m+z)2 ’ (A*4) 1 
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