241 research outputs found

    Heterogeneity in structurally arrested hard spheres

    Get PDF
    When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states

    Structure, compressibility factor and dynamics of highly size-asymmetric binary hard-disk liquids

    Full text link
    By using event-driven molecular dynamics simulation, we investigate effects of varying the area fraction of the smaller component on structure, compressibility factor and dynamics of the highly size-asymmetric binary hard-disk liquids. We find that the static pair correlations of the large disks are only weakly perturbed by adding small disks. The higher-order static correlations of the large disks, by contrast, can be strongly affected. The compressibility factor of the system first decreases and then increases upon increasing the area fraction of the small disks and separating different contributions to it allows to rationalize this non-monotonic phenomenon. Furthermore, adding small disks can influence dynamics of the system in quantitative and qualitative ways. For the large disks, the structural relaxation time increases monotonically with increasing the area fraction of the small disks at low and moderate area fractions of the large disks. In particular, "reentrant" behavior appears at sufficiently high area fractions of the large disks, strongly resembling the reentrant glass transition in short-ranged attractive colloids and the inverted glass transition in binary hard spheres with large size disparity. By tuning the area fraction of the small disks, relaxation process for the small disks shows concave-to-convex crossover and logarithmic decay behavior, as found in other binary mixtures with large size disparity. Moreover, diffusion of both species is suppressed by adding small disks. Long-time diffusion for the small disks shows power-law-like behavior at sufficiently high area fractions of the small disks, which implies precursors of a glass transition for the large disks and a localization transition for the small disks. Therefore, our results demonstrate the generic dynamic features in highly size-asymmetric binary mixtures.Comment: 9 pages, 12 figure

    The effect of annealing on the elastoplastic and viscoelastic responses of isotactic polypropylene

    Full text link
    Observations are reported on isotactic polypropylene (i) in a series of tensile tests with a constant strain rate on specimens annealed for 24 h at various temperatures in the range from 110 to 150 C and (ii) in two series of creep tests in the sub-yield region of deformation on samples not subjected to thermal treatment and on specimens annealed at 140 C. A model is developed for the elastoplastic and nonlinear viscoelastic responses of semicrystalline polymers. A polymer is treated an equivalent transient network of macromolecules bridged by junctions (physical cross-links, entanglements and lamellar blocks). The network is assumed to be highly heterogeneous, and it is thought of as an ensemble of meso-regions with different activation energies for separation of strands from temporary nodes. The elastoplastic behavior is modelled as sliding of meso-domains with respect to each other driven by mechanical factors. The viscoelastic response is attributed to detachment of active strands from temporary junctions and attachment of dangling chains to the network. Constitutive equations for isothermal uniaxial deformation are derived by using the laws of thermodynamics. Adjustable parameters in the stress-strain relations are found by fitting the experimental data.Comment: 29 pages, 14 figure

    Dynamics and correlation length scales of a glass-forming liquid in quiescent and sheared conditions

    Full text link
    We numerically study dynamics and correlation length scales of a colloidal liquid in both quiescent and sheared conditions to further understand the origin of slow dynamics and dynamic heterogeneity in glass-forming systems. The simulation is performed in a weakly frustrated two-dimensional liquid, where locally preferred order is allowed to develop with increasing density. The four-point density correlations and bond-orientation correlations, which have been frequently used to capture dynamic and static length scales ξ\xi in a quiescent condition, can be readily extended to a system under steady shear in this case. In the absence of shear, we confirmed the previous findings that the dynamic slowing down accompanies the development of dynamic heterogeneity. The dynamic and static length scales increase with α\alpha-relaxation time τα\tau_{\alpha} as power-law ξταμ\xi\sim\tau_{\alpha}^{\mu} with μ>0\mu>0. In the presence of shear, both viscosity and τα\tau_{\alpha} have power-law dependence on shear rate in the marked shear thinning regime. However, dependence of correlation lengths cannot be described by power laws in the same regime. Furthermore, the relation ξταμ\xi\sim\tau_{\alpha}^{\mu} between length scales and dynamics holds for not too strong shear where thermal fluctuations and external forces are both important in determining the properties of dense liquids. Thus, our results demonstrate a link between slow dynamics and structure in glass-forming liquids even under nonequilibrium conditions.Comment: 9 pages, 17 figures. Accepted by J. Phys.: Condens. Matte

    Diffusion Dynamics, Moments, and Distribution of First Passage Time on the Protein-Folding Energy Landscape, with Applications to Single Molecules

    Full text link
    We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We obtain information for the first passage-time (FPT) distribution and its moments. The results show a dynamic transition temperature below which the FPT distribution develops a power-law tail, a signature of the intermittency phenomena of the folding dynamics. We also discuss the possible application of the results to single-molecule dynamics experiments

    Activity of Platinum/Carbon and Palladium/Carbon Catalysts Promoted by Ni2P in Direct Ethanol Fuel Cells

    Get PDF
    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2P in direct ethanol fuel cells. The Ni2P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2P (30 wt%) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2P/C-30% catalyst showed a maximum power density of 21 mWcm<sup>-2</sup>, which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd- Ni2P/C-30% catalyst exhibited a maximum power density of 90 mWcm<sup>-2</sup>. This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation

    Electrostatic-Assembly-Driven Formation of Supramolecular Rhombus Microparticles and Their Application for Fluorescent Nucleic Acid Detection

    Get PDF
    In this paper, we report on the large-scale formation of supramolecular rhombus microparticles (SRMs) driven by electrostatic assembly, carried out by direct mixing of an aqueous HAuCl4 solution and an ethanol solution of 4,4′-bipyridine at room temperature. We further demonstrate their use as an effective fluorescent sensing platform for nucleic acid detection with a high selectivity down to single-base mismatch. The general concept used in this approach is based on adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by SRM, which is accompanied by substantial fluorescence quenching. In the following assay, specific hybridization with its target to form double-stranded DNA (dsDNA) results in desorption of ssDNA from SRM surface and subsequent fluorescence recovery

    Specificity quantification of biomolecular recognition and its implication for drug discovery

    Get PDF
    Highly efficient and specific biomolecular recognition requires both affinity and specificity. Previous quantitative descriptions of biomolecular recognition were mostly driven by improving the affinity prediction, but lack of quantification of specificity. We developed a novel method SPA (SPecificity and Affinity) based on our funneled energy landscape theory. The strategy is to simultaneously optimize the quantified specificity of the “native” protein-ligand complex discriminating against “non-native” binding modes and the affinity prediction. The benchmark testing of SPA shows the best performance against 16 other popular scoring functions in industry and academia on both prediction of binding affinity and “native” binding pose. For the target COX-2 of nonsteroidal anti-inflammatory drugs, SPA successfully discriminates the drugs from the diversity set, and the selective drugs from non-selective drugs. The remarkable performance demonstrates that SPA has significant potential applications in identifying lead compounds for drug discovery

    Host-Guest Interaction Dictated Selective Adsorption and Fluorescence Quenching of a Luminescent lightweight Metal-Organic Framework toward Liquid Explosives

    Get PDF
    In this article, we report the successful preparation of a Mg-based luminescent MIL-53 metal–organic framework (MOF), namely [Mg2(BDC)2(BPNO)]·2DMF (1) (BDC = 1,4-benzene dicarboxylate, BPNO = 4,4’- dipyridyl-N,N’-dioxide, DMF = N,N-dimethylformamide) in a mixed solvent containing a 2 : 3 volume ratio of DMF and ethanol (EtOH) under solvothermal conditions. Desolvated compound 1a can be used as an absorbent for selective adsorption and separation of liquid explosives, including nitroaromatic (nitrobenzene (NB)) and nitroaliphatic (nitromethane (NM) and nitroethane (NE)) compounds, through single crystal-to-single crystal (SC–SC) transformations. As one of the weakly luminescent MOFs, the luminescence of compound 1a could be quenched by the incorporation of the three liquid nitro explosives. On the basis of single crystal analysis, we provide direct evidence that both the selective adsorption and fluorescence quenching of the desolvated compound 1a are dictated by host–guest interactions between guest liquid explosives and the host framework. Such findings differ from those reported in previous works, which were dominated by surficial close contact interactions. Moreover, based on the experimentally obtained single-crystal structures, we explain that the luminescence of 1a follows the intraligand π*→π emission states or weak ligand to ligand charge transfer (LLCT), with little incorporation of intraligand charge transfer (ILCT)

    A Potent Lead Induces Apoptosis in Pancreatic Cancer Cells

    Get PDF
    Pancreatic cancer is considered a lethal and treatment-refractory disease. To obtain a potent anticancer drug, the cytotoxic effect of 2-(benzo[d]oxazol-3(2H)-ylmethyl)- 5-((cyclohexylamino)methyl)benzene-1,4-diol, dihydrochloride (NSC48693) on human pancreatic cancer cells CFPAC-1, MiaPaCa-2, and BxPC-3 was assessed in vitro. The proliferation of CFPAC-1, MiaPaCa-2, and BxPC-3 is inhibited with IC50 value of 12.9±0.2, 20.6±0.3, and 6.2±0.6 µM at 48 h, respectively. This discovery is followed with additional analysis to demonstrate that NSC48693 inhibition is due to induction of apoptosis, including Annexin V staining, chromatins staining, and colony forming assays. It is further revealed that NSC48693 induces the release of cytochrome c, reduces mitochondrial membrane potential, generates reactive oxygen species, and activates caspase. These results collectively indicate that NSC48693 mainly induces apoptosis of CFPAC-1, MiaPaCa-2, and BxPC-3 cells by the mitochondrial-mediated apoptotic pathway. Excitingly, the study highlights an encouraging inhibition effect that human embryonic kidney (HEK-293) and liver (HL-7702) cells are more resistant to the antigrowth effect of NSC48693 compared to the three cancer cell lines. From this perspective, NSC48693 should help to open up a new opportunity for the treatment of patients with pancreatic cancer
    corecore