234 research outputs found

    Radio Fingerprinting of UAVs: An Exploration of Zigbee Data Collection

    Get PDF
    Radio fingerprinting creates a way to uniquely identify devices based on slight variations in the signal they transmit. These variations occur due to fluctuations in the manufacturing processes of wireless hardware. Prior work in this area has focused on IoT devices to determine the best way to translate this practice into a network security context. Here, we extend this prior work to utilize radio fingerprinting to identify signals from UAV devices. We used a UAV device with a Zigbee antenna to collect data, which supports the possibility of identifying these devices through radio fingerprinting. This paper should serve as a starting point for future researchers to replicate the data collection procedure in order to test Zigbee UAV data against current radio fingerprinting protocols. The references section contains a link to a GitHub repository with code and sample data for replicating the process

    Spatial & Temporal Agnostic Deep-Learning Based Radio Fingerprinting

    Get PDF
    Radio fingerprinting is a technique that validates wireless devices based on their unique radio frequency (RF) signals. This method is highly feasible because RF signals carry distinct hardware variations introduced during manufacturing. The security and trustworthiness of current and future wireless networks heavily rely on radio fingerprinting. In addition to identifying individual devices, it can also differentiate mission-critical targets. Despite significant efforts in the literature, existing radio fingerprinting methods require improved robustness, scalability, and resilience. This study focuses on the challenges of spatial-temporal variations in the wireless environment. Many prior approaches overlook the complex numerical structure of the in-phase and quadrature (I/Q) data by treating real and imaginary components separately. This approach results in the loss of essential information encoded in the signal\u27s phase and amplitude, leading to lower accuracy. This thesis proposes several enhancements. First, we treat the entire complex structure of the I/Q data as a single input to a complex-valued convolutional neural network (CVNN), thereby improving the model\u27s accuracy. Second, conduct extensive experiments to determine optimal pre-processing parameters, ensuring that over-optimistic conclusions about RF fingerprinting performance are avoided. Third, we compare various activation functions and transfer learning-based fine-tuning and a triplet network to address the variations the wireless environment introduces in scenarios involving different locations and times. We use the concept of a ``device rank\u27\u27 metric to perform device identification with certainty based on RF fingerprinting. Our work concretely proves that CVNN outperforms CNN for radio fingerprinting. Concatenated Rectified Linear Units (CReLU) activation function and fine-tuning-based transfer learning perform the best for cross-location and time device fingerprinting. Adviser: Nirnimesh Ghos

    Efficient wireless location estimation through simultaneous localization and mapping

    Get PDF
    Conventional Wi-Fi location estimation techniques using radio fingerprinting typically require a lengthy initial site survey. It is suggested that the lengthy site survey is a barrier to adoption of the radio fingerprinting technique. This research investigated two methods for reducing or eliminating the site survey and instead build the radio map on-the-fly. The first approach utilized a deterministic algorithm to predict the user's location near each access point and subsequently construct a radio map of the entire area. This deterministic algorithm performed only fairly and only under limited conditions, rendering it unsuitable for most typical real-world deployments. Subsequently, a probabilistic algorithm was developed, derived from a robotic mapping technique called simultaneous localization and mapping. The standard robotic algorithm was augmented with a modified particle filter, modified motion and sensor models, and techniques for hardware-agnostic radio measurements (utilizing radio gradients and ranked radio maps). This algorithm performed favorably when compared to a standard implementation of the radio fingerprinting technique, but without needing an initial site survey. The algorithm was also reasonably robust even when the number of available access points were decreased.Ph.D.Committee Chair: Owen, Henry; Committee Member: Copeland, John; Committee Member: Giffin, Jonathon; Committee Member: Howard, Ayanna; Committee Member: Riley, Georg

    A Radio-fingerprinting-based Vehicle Classification System for Intelligent Traffic Control in Smart Cities

    Full text link
    The measurement and provision of precise and upto-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic controls systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data such as velocity of individual vehicles as well as vehicle type information can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%

    Localisation of partial discharge sources using radio fingerprinting technique

    Get PDF
    Partial discharge (PD) is a well-known indicator of the failure of insulators in electrical plant. Operators are pushing toward lower operating cost and higher reliability and this stimulates a demand for a diagnostic system capable of accurately locating PD sources especially in ageing electricity substations. Existing techniques used for PD source localisation can be prohibitively expensive. In this paper, a cost-effective radio fingerprinting technique is proposed. This technique uses the Received Signal Strength (RSS) extracted from PD measurements gathered using RF sensors. The proposed technique models the complex spatial characteristics of the radio environment, and uses this model for accurate PD localisation. Two models were developed and compared: k-nearest neighbour and a feed-forward neural network which uses regression as a form of function approximation. The results demonstrate that the neural network produced superior performance as a result of its robustness against noise

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems
    • …
    corecore