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Abstract—Partial discharge (PD) is a well-known 

indicator of the failure of insulators in electrical plant.  

Operators are pushing toward lower operating cost and 

higher reliability and this stimulates a demand for a 

diagnostic system capable of accurately locating PD 

sources especially in ageing electricity substations. Existing 

techniques used for PD source localisation can be 

prohibitively expensive. In this paper, a cost-effective radio 

fingerprinting technique is proposed. This technique uses 

the Received Signal Strength (RSS) extracted from PD 

measurements gathered using RF sensors. The proposed 

technique models the complex spatial characteristics of the 

radio environment, and uses this model for accurate PD 

localisation. Two models were developed and compared: k-

nearest neighbour and a feed-forward neural network 

which uses regression as a form of function approximation. 

The results demonstrate that the neural network produced 

superior performance as a result of its robustness against 

noise.      

Keywords – Partial discharge; localisation; fingerprinting.  

I.  INTRODUCTION  

A significant cause of plant failure in electrical substations is 

attributable to insulation degradation [1], and this impacts both 

availability and operating expenditure. Insulation degradation 

may be due to the presence of bubbles, voids, foreign particles 

and other impurities inside the insulation medium [2]. 

Irrespective of the causal mechanism, insulation degradation 

gives rise to partial discharges (PD), which increase in 

severity as the deterioration progresses [3] [4] and this in turn 

further degrades the quality of the insulation as part of a 

vicious cycle of breakdown. These discharges are therefore 

symptoms of insulation breakdown. In this context, PD is 

defined as a localised dielectric breakdown in a portion of an 

electrical insulation between two conducting terminals. If PD 

can be detected early, preventative maintenance can be 

employed to: minimise the likelihood of outages caused by 

catastrophic failure of equipment, increase plant life, and 

minimise costs. 

 

PD produces impulsive electromagnetic emissions in form of 

radio frequency (RF) energy. It also produces light, heat, 

acoustic emissions in audible or ultrasonic ranges and also 

chemical reactions [5]. Consequently, several methods have 

been developed to detect PD; these methods include acoustic 

detection [6], chemical detection [5], detection by electrical 

contact [7] and radio frequency sensing [8]. Radio frequency 

sensing is attractive in terms of cost and convenience but can 

only be effective for PD monitoring if PD source locations can 

be determined with sufficient accuracy.  

We propose to deploy a matrix of low cost radio sensors in the 

form of a wireless sensor network using commercial off-the-

shelf components. However, a trade-off exists between cost 

and complexity. The low cost of the proposed solution allows 

a monitoring system to be permanently deployed and thus 

continuously monitor the substation in real-time. In the 

proposed approach, sensor nodes emit an emulated PD signal 

in a specific (short) timeslot particular to that node. All other 

nodes monitor these emulated signals allowing a database to 

be constructed of the spatial propagation characteristics across 

the substation environment. It is this propagation database 

which, when suitably interpolated can be used to locate 

sources of PD. 

 

The location of PD can be estimated using its measured 

Location Dependent Parameters (LDPs) [9]. Typical LDPs 

include the Time of Arrival (ToA), Time Difference of Arrival 

(TDoA), Angle of Arrival (AoA) and/or received signal 

strength (RSS) [10].  

 

ToA, TDoA and AoA based techniques have been 

successfully implemented for PD location estimation but 

require significant complexity and hence, cost [9] [11]. 

Specifically, with TDoA, accurate source localisation is only 

possible with tight synchronisation across all receivers, while 

AoA requires an array of antennas at the receiver and relies on 

direct Line Of Sight (LOS) path for accurate location 

estimation [12]. 

 

Conversely, an RSS-based technique presents itself as a cost-

effective and low-complexity solution for the PD localisation 

problem [12] [13]. RSS measurement does not require any 

special hardware and demands only very loose 

synchronisation between the receivers.  Theoretically, a well-

known propagation model can be used to estimate the distance 

between the transmitting source and each receiver node. The 

distance difference could then be employed with 



multilateration techniques to estimate the location of the PD 

source.  

However, most practical radio environments are complex and 

are not well described by ready-made models in literature and 

hence large localisation errors would result [14]. This 

motivates an investigation into the possibility of localisation 

using RSS-based fingerprinting [14] to improve the accuracy 

of PD source localisation in electrical substation. The 

fingerprinting technique captures and utilises the patterns 

exhibited by the PD signals at different locations within the 

propagation environment to estimate the PD location. The 

experimental results show that the fingerprinting technique 

achieves acceptable accuracy.  

 

The rest of this paper is organised as follows. Section 2, 

provides the formulation of the problem. Section 3 describes 

the RSS-based fingerprinting localisation scheme. Section 4 

describes the experimental procedure, data preparation and 

visualisation. The results are presented and discussed in 

section 5 with conclusions in section 6. 

II. PROBLEM FORMULATION 

 

The problem of PD localisation considers sources of unknown 

PD location radiating electromagnetic (EM) signals from 

defective insulation systems. These EM signals propagate 

away from the source and are measured using receivers placed 

in the vicinity of the discharge site as illustrated in Figure 1. 

The area used for the experiment is modelled as a finite 

location space },...,{ 1 n
llL =  of  discrete locations. The 

location space is taken as a set of physical locations with x  

and y coordinates: 

 )},(.,..),,({ 111 nnn yxlyxlL ===            (1) 

where ),(
ii
yx , ni ≤≤1 , represents the location of a PD 

source. 

Suppose there are m reference antennas (sensor nodes) placed 

in the environment, the received signal strength (RSS) vector 

received at a reference antenna  can be denoted as; 

 ),,...,( 1 knkk rrR =                            (2) 

where kjr , mk ≤≤1 , nj ≤≤1 , represents the RSS value 

received by the 
th
k  reference antenna from the 

thj  PD 

source and n is the number of PD sources in the location 

space. The aim is to estimate the location of the PD source 

),(
ii
yx  in the location space L , given the set of RSS 

vectors
k
R , mk ≤≤1 received at reference antennas. Both 

the antennas and the PD sources are assumed to be stationary 

during measurement.  

 

 
 

Figure 1 RF measurement of PD signals 

III. RSS-BASED FINGERPRINTING 

 

The fingerprinting technique is one of the most viable methods 

for RSS-based location estimation due to its ability to adapt to 

the variation of indoor and challenging propagation 

environments [15]. It is normally executed in two phases; the 

training phase and the estimation phase [14] [16]. In the 

training phase, the aim is to construct a training database 

(radio map) that stored pre-recorded RSS from receivers at 

reference points. The database is built on the assumption that 

each point within the environment has a unique RF 

characteristic. In the estimation phase, the PD source location 

is estimated by comparing the real-time RSS against the 

records in the radio map through statistical learning methods. 

The basic structure of the fingerprinting system is as shown in  

Figure 2. 

The location fingerprint )],...,(),,[( 21 mii RRRyx  is created using 

the reference points ),(
ii
yx

 
and RSS of the PD signals 

obtained from the corresponding reference point.  

Mathematically, the fingerprinting training database can be 

expressed as: 

),(...,),,(),,( 2211 NN XRXRXRD =                          (3)  

 

where 
kR  represent the fingerprint from the th

k  antennas and!

nX  represent the position of PD given by ].,[ iin yxX =  N  

denotes the size of the fingerprinting database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Basic structure of fingerprinting system  
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The radio map contains all such vectors for a grid of locations 

within the environment used. There are several techniques that 

can be used to train the database and estimate the location of 

the source; these include distance dependent algorithms, such 

as K nearest neighbour [14] and pattern matching algorithms 

using Neural Networks [17].  

A. K-nearest neighbour localisation algorithm 

 

K-nearest neighbour (K-NN) is one of the simplest supervised 

learning algorithms used for location estimation. It estimates 

the location of a target based on a similarity measure in the 

signal space. In this paper, the Euclidean distance [14] is used 

as a similarity measure to determine the K-nearest neighbours 

of the target. The Euclidean distance is calculated as  

 

 ∑
=

−=

m

k

kjkt rrED

1

2)(                                               (4) 

 

where 
ktr  is the  RSS value from PD of interest observed at k

reference antenna and kjr  is the RSS value recorded in the 

radio map. 

In order to estimate the location of PD, the algorithm 

computes the distance in signal space between the PD 

measurement and the recorded data, and returns the K 

neighbours closest to that PD source. The estimated location 

of the PD is the average the K-nearest neighbours. 

The value of the parameter k is determined by the empirical 

rule [18] 
TNk = , where 

TN is the number of samples for 

which their locations are to be estimated. 

B. Neural network localisation algorithm 

 

Another approach is to use a feed forward neural network [17] 

for location fingerprinting. This approach can be regarded as a 

function approximation problem consisting of a nonlinear 

mapping of the PD received signal strength input onto the dual 

output variables representing the location coordinates of the 

PD source.  

The multi-layered perceptron (MLP) [13] model has been 

used. The network consists of an input layer, a hidden layer 

and an output layer as shown in Figure 3. A sigmoidal 

activation function was used in the hidden layer to provide 

robustness against extreme values and a linear activation 

function in the input and output layers.  

 

 

 

 

 

 
 

 

 

 
Figure 3 Basic model of localisation neural network 

During the learning phase, the neural network is trained to 

form a set of fingerprints (RSS values) as a function of PD 

location. Each sample is presented to the inputs and the error 

between the network outputs and the desired outputs is 

obtained. The neuron weights are then adjusted to minimise 

error. The input values can be regarded as the vector sum of 

the true input value and random noise. As long as the noise 

has zero mean, the weight updates due to the noise component 

will cancel out with a sufficient number of samples. This noise 

immunity makes neural networks attractive for these 

applications.  In the testing phase the unseen RSS values of 

PD collected from other locations are applied to the input of 

the neural network. The output of the neural network gives the 

estimated location of the PD.        

 In this paper, all the fingerprints formed from the PD data 

collected by three antennas have been applied to the input of 

the neural network. During the training process, K-fold cross- 

validation is used to determine the optimal configuration of 

the neural network. In k-fold cross-validation the original 

training data is randomly divided into k equal size sub sets 

(the folds). In each case, one of the k subsets is used as 

validation data and the remaining are used for training. The 

cross-validation process is repeated k times and the average of 

the k results from the folds gives the test accuracy of that 

particular network. In this work, a 10-fold cross validation is 

used. From all the networks tested by cross validation the 

feedforward 3-4-2 structure of the neural network with four 

neurons in the hidden layer has the best accuracy. The 

Bayesian Regularisation (BR) learning algorithm is used to 

train the network which maximises generalisation. The 

training of the network is done off-line using the database 

created by the emulated PD events. The unseen PD data are 

then presented to the network. The neural network uses the 

knowledge acquired during training to provide interpolated 

values for the coordinates of the unseen data. 
 

IV. EXPERIMENTAL PROCEDURE 

In order to assess the viability of deploying a matrix of sensors 

in an electrical substation for PD monitoring, a measurement 

campaign was carried out in a laboratory which is a 19.20 m x 

8.40 m rectangular space at the University of Strathclyde, 

Glasgow. The laboratory contained a great deal of clutter 

including metallic objects which gives rise to a complex 

multipath-rich radio environment. Although the radio 

environment in the lab cannot be expected to approximate that 

within an electrical substation, it is sufficiently complex to 

enable evaluation of the finger printing techniques being 

investigated. Figure 4 shows the measurement space and 

geometry. A 1 m x 1 m grid map of 152 points was 

constructed in the floor of the laboratory. Pulse emulated PDs 

were generated at the predefined grid points (black dots) using 

a picosecond pulse generator.  The pulse duration was 10 ps 

and the pulse repetition frequency was 100 kHz. Three 

omnidirectional antennas (173 MHz) were deployed in the 

laboratory at predefined locations as shown in Figure 4 to 

capture the PD signals.  

 

Figure 5 shows a sample of the recorded signal trace. The PD 

source was attached to a 70 ~ 1000 MHz omnidirectional 

antenna which was made movable from one grid point to 
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another. It is assumed there were no changes in the 

experimentation environment between measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Layout Grid for Measurement Campaign 

 
 

Figure 5 Pulse signal 

During the calibration phase, 20 PD measurements were 

collected at each of the 152 grid points bringing the total 

calibration data collected from the three receive antennas to 

9120. For test dataset, PD data was collected at 36 spatially 

uniform inter-grid locations (red crosses). These signals were 

captured and recorded using a multichannel 40 GS/s digital 

oscilloscope. The oscilloscope analogue bandwidth is 9 GHz. 

The PD data acquired from measurement were sampled at 2 

GS/s. This sampling rate allows the signals to be captured with 

high resolution.  
 

A. Data preparation and visualisation 

 

The PD parameter used in this work is received signal energy 

(RSE). The calculated average values of energies of the 20 

received PD pulses at each grid point and inter-grid point 

forms the training and testing data set respectively. This brings 

the total number of training and test data to 456 and 108 

respectively. Figure 6 shows the RSE pattern at various points 

in the radio environment for each of the three antennas. The 

figures reveal the complexity of the radio environment, which 

does not fit any well-known propagation model. The 

complexity of the signal attenuation with distance is a result of 

noise and multipath distortions/shadowing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Variation of RSS in propagation environment for antenna1, 2 & 3 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

This section provides an empirical evaluation of the 

performance of the fingerprinting based localisation 

techniques described in Section 3. The average RSE used here 

is the test data taken from 36 spatially uniform locations 

(Figure 4). The performance of the localisation techniques is 

evaluated based on statistical error metrics. The localisation 

error is taken to be the Euclidean distance between the 

estimated location and the true location of the PD source. The 

cumulative density function (CDF) of the distance error is 

used to describe the performance of the algorithms. This is 

chosen because it shows how consistent the algorithms work 

or perform and it captures both the accuracy and precision of 

the algorithms.  

Figure 7 shows the CDF of the localisation error for the K-

nearest neighbour and neural network fingerprinting 

techniques. The k-NN algorithm achieves a precision of 80 %  

of locations with an error less than 3 m. The maximum error 

for k-NN is 6.37 m for 3 % of the cases.  

On the other hand, the neural network algorithm achieves 

more than 85 % of locations with an error less than 3 m. The 

maximum localisation error is 4.18 m for 3 % of the cases. 
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Table 1 gives a summary of the error measures for both k-NN 

and neural network fingerprinting algorithms.  The 95 % 

confidence interval (CI) is computed assuming a normal 

distribution of the errors. 95 % CI indicates the probability 

that the true value of the parameter (mean or standard 

deviation) of the localisation error lies in the confidence range. 

From the result shown in Table 1, we are 95 % confident that 

the value of the mean error for k-NN and neural network 

algorithms lie in the range 1.16 to 2.28 m and 1.31 to 2.04 m 

respectively. It can be seen that both algorithms are practically 

feasible with mean localisation error of less than 2 m. 

However, the neural network is more robust due to its lower 

error standard deviation. 

 
Figure 7 CDF of localisation error for fingerprinting techniques 

Table 1 Summary of error measures for the models 

Parameter Model 95% Confidence Interval 

Lower 

boundary 

(m) 

Upper 

boundary 

(m) 

Mean & 

Standard 

deviation 

values (m) 

Mean K-NN 1.16 2.28 1.72 

Neural 

Network 

1.33 2.04 1.68 

Standard 

Deviation 

K-NN 1.35 2.16 1.66 

Neural 

Network 

0.85 1.36 1.05 

 

VI. CONCLUSIONS 

 

An implementation of an RSS-based fingerprinting technique 

for PD source localization has been described. The proposed 

technique is based on the construction of a fingerprinting 

database of RSS extracted from PD measurement. The k-

nearest neighbour and neural network algorithms are used to 

construct the database and locate the PD sources. The 

performance of the fingerprinting technique based on k-

nearest neighbour and neural network has been evaluated 

using empirical test data. The results (average localisation 

error less than 2 m) demonstrate that fingerprinting 

localisation is practical for a PD detection and localisation 

systems. Neural networks can yield superior performance as a 

result of their robustness in the presence of noise. 
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