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ABSTRACT

Radio fingerprinting creates a way to uniquely identify devices based on slight variations
in the signal they transmit. These variations occur due to fluctuations in the manufacturing
processes of wireless hardware. Prior work in this area has focused on IoT devices to determine
the best way to translate this practice into a network security context. Here, we extend this prior
work to utilize radio fingerprinting to identify signals from UAV devices. We used a UAV
device with a Zigbee antenna to collect data, which supports the possibility of identifying these
devices through radio fingerprinting. This paper should serve as a starting point for future
researchers to replicate the data collection procedure in order to test Zigbee UAV data against
current radio fingerprinting protocols. The references section contains a link to a GitHub
repository with code and sample data for replicating the process.
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1. INTRODUCTION

Background

Radio fingerprinting is a practice that utilizes process variations during the manufacturing
of wireless hardware in order to distinguish devices' radio signals from each other. These
variations include but are not limited to: I/Q imbalance, phase noise, frequency or sampling
offset [3], and harmonic distortions [4]. Fingerprinting operates at the physical layer and
provides an alternate authentication method for devices when the more traditional cryptographic
methods are unavailable [1] due to compatibility concerns, limited resources, or compromised
credentials. Creating models for this authentication method, however, is a challenging task. One
must consider the robustness and accuracy of their data collection schemes and how much time
is required to train the system to identify these devices. When it comes to creating models that
handle these items, Cekic, Gopalakrishnan, and Madhow [2] ask how to make a system only
learn the desired information rather than what it deems to be easiest. We extend this work to
discuss how to handle the accuracy and robustness of radio fingerprinting systems.

With additional research efforts, radio fingerprinting could provide a more reliable
method of authenticating devices. The difficulty of mimicking a specific hardware imperfection
makes duplication of signals more complicated for adversaries to spoof data or for one device to
pretend to be another. Current research on radio fingerprinting is primarily being done on IoT
devices using IEEE 802.11 (WiF1i) standards [8]; however, researchers could include standards

such as IEEE 802.15.4 (Zigbee) [9] and devices such as UAVs by expanding these efforts.

Current Practices

Researchers are currently exploring a couple of different methods of radio fingerprinting.
The first of these methods includes using deep learning algorithms to train a system to match
signals based on hardware differences [1][4]. Ongoing work seeks to optimize this system's
accuracy and find how often they must retrain models to identify machines based on their
signals. Other researchers are also using deep neural networks (DNN) to attempt radio
fingerprinting of IoT devices. According to Cekic, Gopalakrishnan, and Madhow [2], an

advantage of using DNNss is their lack of need for explicit training models to identify signals. Al-



Shawabka et al. [3] determined that convolutional neural networks (CNN) were sufficiently
accurate for data collection due to their ability to create multidimensional mappings and
compatibility across various devices and technologies.

While research on radio fingerprinting shows positive results, researchers are exploring
many options to improve the accuracy and robustness of radio fingerprinting for IoT devices.
Some are finding that they have to retrain deep learning models daily in order to keep up with the
changes in signals [1], while others are finding that the channels used for transmitting signals are
causing increased inaccuracy in the system [3]. To improve upon these findings, researchers are
introducing methods of equalizing data [3], averaging data over input values rather than different
types of machines [2], and exploring models for radio fingerprinting which do not require deep
learning.

Al-Shawabka et al. [3] express the need for a standard, diverse dataset to be used by
researchers. They collected bursts of data over ten days from twenty different devices placed in
various environments. They describe that each burst contains about 30 seconds of transmission,
and each occurs approximately one minute after the previous one. Having an openly available
data set to use as a standard, according to Al-Shawabka et al. [3], should help to improve the
accuracy with which research on radio fingerprinting is moving forward. Their work focused on
utilizing the IEEE 802.11 standard for data collection. We extend this work to provide a data

collection strategy for devices using the IEEE 802.15.4 standard.

Challenges

Challenges in this research area are primarily related to the ability to connect to a device
and accurately collect data from it in a timely fashion. As Al-Shawabka et al. [3] noted, even the
channel used for sending data could cause inaccuracies in identification models as the equalized
signal can make the desired imperfections harder to distinguish. The training of deep learning
models has also proved to be challenging for radio fingerprinting due to the need for retraining
on a regular basis [1]. Cekic, Gopalakrishnan, and Madhow [2] propose the challenge of
modeling the collected material to receive the desired data from a device.

Regarding Zigbee and UAV devices, the challenge of device connection is significant.

Zigbee devices do not use IP addresses, so one must use a different method to find the signal



being sent. UAV devices are meant to be mobile devices, so timely, accurate data collection and

a fast enough connection to find the signal are significant factors that researchers must consider.

Equipment Requirements

In order to replicate or extend work on this project, one must first meet specific software
and hardware requirements. First [7], a computer running Ubuntu 20.04.4 or better is necessary
to download GNU radio 3.11 and the projects containing the Out of Tree blocks required for the
Zigbee protocol. These projects include the gr-foo and gr-ieee802-15-4 libraries linked in the
Wime installation instructions [6]. The machine also needs an updated version of Python; the
laptop used in this work was running Python 3.8.10. Wireshark must also be downloaded to
observe the data collected. A USRP with a VERT2450 antenna and a Zigbee UAV device are
also required. XCTU and QGroundControl (Figure 2.4 and Figure 3.2) must also be downloaded
to verify the connection to the Zigbee UAV. The Zigbee device used in this project was only the

brain and the controller chip for ease of transport and use for data collection (Figure 1.1).

se-nahose—06

Figure 1.1 Final Equipment Setup



2. METHODOLOGY

Wime Zigbee Transceiver

Core to this project was an inspection of the Zigbee transceiver flowgraph provided by
Wime [5]. This flowgraph was designed to use a single USRP device to send and receive test
messages and export data into the Wireshark application. We made edits to this flowgraph
(Figure 2.1) to see additional information with a GUI Frequency Sink block and to test how
sending more than one message affected the output by adding additional Message Strobe blocks,

expanding the values in the RIME Stack block, and adding additional Socket PDU blocks.
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Figure 2.1 Edited Wime Transceiver

This flowgraph includes multiple custom out-of-tree blocks that require additional
downloads to use. The RIME stack block provides a network layer to connect to transmitter
ports. It determines which channels to broadcast to and provides addresses for the Socket PDU
blocks to connect to when sending messages. This block also provides a loopback connection to
the MAC block. The IEEE802.15.4 MAC block controls frame rate and determines which
sources and destinations are allowed to connect to the flowgraph. Finally, the IEEE802.15.4 O-
QPSK PHY block provides the physical layer to connect our source to our sink blocks. This



block must be obtained by first running the appropriate flowgraph provided with the gr-ieee802-
15-4 package download.

There are two options to run this flowgraph in GNU Radio. The first is the standard way
of clicking the play button at the top of the application and allowing it to run that way. However,
when using Wireshark, you cannot see the data presented in real-time with this method, as it will
not open automatically. A better option is to edit the transceiver.sh file provided in the gr-
ieee802-15-4 download apps folder to run with the correct file path. Then you will run
" /transceiver.sh" in the terminal to run the flowgraph, open Wireshark, and view the data that the

USRP has pulled into the output file in real-time.

Transmitters and Receivers

To learn more about how the out-of-tree blocks were working in Wime’s project, we split
the functionality between individual transmitters and receivers. Because the Wime flowgraph's
out-of-tree blocks combined these functionalities, it was difficult to determine where the split
between the receiver and transmitter was supposed to be. Ultimately, I came to the flowgraphs

shown in Figure 2.2 and Figure 2.3.
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UHD: USRP Source
Dovice Address: add..68,10.2
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Figure 2.2 Receiver
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Figure 2.3 Transmitter

Each flowgraph appeared to work individually with an examination of the frequency

graphs, but it was unclear if they were working together to send and receive messages.

Zigbee UAVs

As this was the first time the GNU Radio download used here had connected to a Zigbee device,
it did not have the same configuration set up beforehand as the USRPs. XCTU was used to scan
the laptop ports for the UAV device connections and return information about the device that

was necessary for its connection to GNU radio.
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Figure 2.4 XCTU Output



Unlike the USRP devices, Zigbee devices do not connect with I[P Addresses but with
MAC addresses. GNU Radio, however, does not support this type of connection. Although
Zigbee devices do have serial numbers, and GNU Radio supports a serial connection for USRP
devices, the Zigbee UAV would not connect to the laptop in order to form a connection in this
manner. We decided to use a packet sniffing procedure to collect data from the Zigbee UAV
device.

The parts of the Zigbee UAV device connect and begin communicating with each other
automatically once plugged in, so we prompted the USRP device to run the flowgraph (Figure
2.6), pull in the packet information sent by the Zigbee UAV, and display it in Wireshark.
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Figure 2.6 Packet Sniffing Flowgraph

This flowgraph disabled the transmitting block (Message Strobe) and the Packet Pad2
block from the Wime version to create a packet-sniffing receiver. The IEEE802.15.4 MAC block
takes information about the UAV’s source address, destination address, and destination PAN as
inputs, and the source and sink blocks take the address of the USRP device as input, per usual.
When you run the flowgraph, information is sent to Wireshark every time the USRP detects a

packet with the appropriate source and destination information.



3. RESULTS

Collecting data [7] from a Zigbee UAV device is possible using packet sniffing. Figure

3.1 shows how the Wireshark software presents this data.

No. Time Source Destination Protocol Length Info
- 10.000000 Ox0103 ©x0203 IEEE 802.15.4 93 Data, Dst: 0x0203, Src: ©Ox0103
| 2 0.000503 IEEE 882.15.4 5 Ack
I 3 0.096725 0Ox0103 OxB203 .4 Bx0203, : BxB183
4 0.097264 IEEE 802.15.4 5 Ack
5 0.135389 0Ox0103 ©Ox0203 IEEE 802.15.4 106 Data, Dst: Ox8203, Src: Ox8103
6 0.135911 IEEE 802.15.4 5 Ack
7 0.258639 0Ox0103 OxX0203 IEEE 802.15.4 77 Data, Dst: 0x0203, Src: Ox0103
8 0.259149 IEEE 802.15.4 5 Ack
9 0.276947 0Ox0103 Ox0203 IEEE 802.15.4 106 Data, Dst: Ox0203, Src: OxP103
10 ©.277491 IEEE 802.15.4 5 Ack
11 ©.319436 0Ox0103 0x0203 IEEE 802.15.4 34 Data, Dst: 0x0203, Src: Ox0103
12 ©.319950 IEEE 802.15.4 5 Ack
13 ©.375874 0x0103 0x0203 IEEE 802.15.4 53 Data, Dst: 0x0203, Src: Ox0103
14 ©.376423 IEEE 802.15.4 5 Ack
15 ©.500405 0x0103 0x0203 IEEE 802.15.4 93 Data, Dst: 0x0203, Src: ©Ox0103
16 ©.500900 IEEE 882.15.4 5 Ack
17 ©.625839 0Ox0103 0x0203 IEEE 802.15.4 53 Data, Dst: 9x0283, Src: 8x0183
18 A _A26299 TEEE _8A2 15 4 5 Ack

Figure 3.1.1 Wireshark Data Scroll

~ Frame 3: 48 bytes on wire (384 bits), 48 bytes captured (384 bits)
Encapsulation type: IEEE 802.15.4 Wireless PAN (104)
Arrival Time: Mar 3, 2023 16:18:56.148188000 CST
[Time shift for this packet: ©.000990000 seconds]
Epoch Time: 1677881936.148188000 seconds
[Time delta from previous captured frame: 0.096222000 seconds]
[Time delta from previous displayed frame: 0.096222000 seconds]
[Time since reference or first frame: ©.096725000 seconds]
Frame Number: 3
Frame Length: 48 bytes (384 bits)
Capture Length: 48 bytes (384 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: wpan:data]
- IEEE 862.15.4 Data, Dst: 8x0203, Src: 0x9103
» Frame Control Field: @x8861, Frame Type: Data, Acknowledge Request, PAN ID Compression, Destination Addressing Mode: Short/16-bit, Frame Version: IEEE Std 802.15.4-2003, Source Addressing Mode: Shor.
Sequence Number: 133
Destination PAN: 0x3332
Destination: 6x6203
Source: 0x0103
FCS: @xbe12 (Correct)
[Ack In: 4]
~ Data (37 bytes)
Data: b66©fd1 1f 12066
[Length: 37]

Figure 3.1.2 Wireshark Data Information

J0EE f1 88 B85 32 33 03 02 03 01 b6 G0 fd 17 00 00 62 A-:23: 00 e
1010 B3 @1 fd 00 00 04 45 4b 46 32 20 49 4d 55 31 200 .- - EK F2 IMU1
1BZ20 66 6T 72 63 65 64 20 T2 65 73 65 74 c2 dc 12 b forced r eset-. .-

Figure 3.1.3 Wireshark Received Message

In using the USRP to capture packets and send them to Wireshark, we are not only able

to see messages that the parts of the device are sending to each other but also acknowledgments



of those messages. This data can also be verified by examining the UAV’s QGroundControl

software, as shown in Figure 3.2.

Info: EKF2 IMU1l initial yaw alignment complete
Debug: Lua: No scripts to run
Debug:

Lua: Mo scripts to run
EKF2 IMU1 tilt alignment complete
EKF2 IMUL1 tilt alignment complete
Lua: Mo scripts to run
Lua: Mo scripts to run

Info: EKF2 IMUL initial vaw alignment complete

Info: EKF2 IMU1l initial yaw alignment complete

Figure 3.2 QGroundControl Messages

The calibration messages in Wireshark are the same as those in QGroundControl,
verifying that the USRP is pulling the data as expected.

Figure 3.3 shows one area that may require further examination. These unknown
messages and malformed packets show that bleed is occurring in the channel, which could lead

to inconsistencies if additional research uses this data.

No. Time Source  Destination Protocol Length Info
166 7.000085 ©x0103 Ox0203 IEEE 802.15.4 53 Data, Dst: 0x8203, Src: @x0103
167 7.000597 IEEE 802.15.4 5 Ack

7.125154 0x0103 0x0203 LwMesh 53 Lightweight Mesh, Nwk_Dst: @x00.
169 7.125673 IEEE 802.15.4 5 Ack

7.255467 LwMesh 77 Encrypted data (55 byte(s))
171 7.255975 IEEE 802.15.4 5 Ack

- LwMesh 1086 Encrypted data (84
173 7.274156 IEEE 802.15.4 5 Ack

7.318969 34 Unknown Command
175 7.319341 IEEE 802.15.4 5 Ack
176 7.375252 ©x0E00 Oxilcfd ZigBee 53 Route Request, Dst: ©xa3@0, Src..
177 7.375758 TIEEE 802.15.4 5 Ack
178 7.378684 ©x0E00 Oxilcfd ZigBee 53 Route Request, Dst: ©xa3@0, Src..

179 7.379210 IEEE 802.15.4 5 Ack

DxE10: 0 LwMesh 53 Encrypted data (31
181 7.500261 IEEE 802.15.4 5 Ack
7.536408 ©x0103 OX <] LwMesh 38 Encrypted data (16
183 7.536922 IEEE 802.15.4 5 Ack
7.625002 6 06 DX 53 Unknown Command

IEEE 802.

7.749680 53 Many-to-One Route Request, Dst:.

187 7.750183 IEEE 802.15.4 5 Ack

7.757119 ©x0103 0x6203 LwMesh 53 Encrypted data (29 byte(s)) NO .
189 7.757629 TIEEE 802.15.4 5 Ack
190 7.823614 0x0203 0x0103 IEEE 802.15.4 34 Data, Dst: 0x0103, Src: 0x0203
191 7.824082 IEEE 802.15.4 5 Ack

Figure 3.3 Wireshark Malformed Data
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It is left for future research, however, that converting the collected data from Wireshark's

hex output to binary makes it viable for use in radio fingerprinting equations.
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4. CONCLUSION

Radio fingerprinting provides researchers with a more accurate and robust method for
identifying devices based solely on differences in their radio signals. Because these differences
are difficult to mimic or spoof on a different device, those using radio fingerprinting can be
certain that they are identifying the correct device. Most research on this topic has been
conducted on 10T devices using standard WiFi protocols. As the research expands, smart devices
running Zigbee protocols and UAVs are being added to the equation.

Zigbee devices not using IP addresses poses a challenge when collecting data, but using a
USRP device to packet sniff via a GNU Radio flowgraph makes it possible. We can collect this
data in Wireshark and then translate it into binary for use in deep learning and machine-learning
algorithms currently being used for IoT devices.

Knowing that it is possible to collect this data allows for numerous follow-up questions
for future researchers to examine. The first and likely most important of these questions is
whether the data is compatible with the current radio fingerprinting formulas. If it is
incompatible, what needs to change to make it compatible? Based on the data we collected in
Wireshark, there is also the question of determining the validity of the collected data. Even when
giving GNU Radio a specific source, destination, and channel to sniff from, it still pulled
extraneous and malformed data. Specifically for UAV devices in relation to radio fingerprinting,
there are questions of range issues or the ability to collect a sufficient amount of data quickly
enough to identify the device if it is moving at a great speed. UAVs also tend to travel in
swarms, leading to a question of how to distinguish one from another in that setting.

Research into radio fingerprinting is still in such early stages that the answers may take
some time, especially with the increased complexity of adding UAVs. Being able to collect data,
however, is a significant first step into being able to test the extent that this research can strive

for in years to come.
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