293,672 research outputs found

    Comparative Analysis of the Type III Secretion System Effector Repertoires of Pseudomonas savastanoi Pathovars Pathogenic on Woody Hosts

    Get PDF
    Comunicación de tipo pósterThe species Pseudomonas savastanoi, a member of the Pseudomonas syringae complex, includes four pathovars causing knots or excrescences in woody hosts: P. savastanoi pv. savastanoi (Psv), pv. fraxini (Psf), pv. nerii (Psn) and pv. retacarpa (Psr), comprising isolates from olive, ash, oleander and broom plants, respectively. Pathogenicity of P. savastanoi is dependent, among other factors, on the type III secretion system (T3SS) and its effector (T3E) repertoire. Furthermore, a putative role in the interaction with woody hosts has been suggested for several of these T3E. The recent availability of the genome sequences of several P. savastanoi strains isolated from different hosts has facilitated bioinformatics predictions of their T3SS genes and T3E pools, the study of their distribution in other strains of the P. syringae complex isolated from woody hosts and the functional analysis of several of these secreted proteins. As previously reported for Psv, Psn and Psf, here we show that pathogenicity of Psr ICMP16945, is also dependent on the T3SS. Psv strains NCPPB 3335, ICMP4352 and PseNe107 share a core set of at least 22 T3E, 18 of which are also encoded in Psn ICMP16943, Psf ICMP7711 and Psr ICMP16945. However, these three strains encode truncated versions of 1-2 of these 18 T3E and, Psr ICMP16945 contains three pathovarspecific T3E. Our results also show that several T3E, including HopAO1, are phylogenetically clustered across the P. syringae complex according to the woody/herbaceous nature of their host of isolation, suggesting host specialization of these effectors in this complex.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity

    Get PDF
    Aim: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. Material and Results: Forty pseudomonads were isolated from the rhizosphere of healthy white and red cocoyam plants appearing in natural, heavily infested fields in Cameroon. In vitro tests demonstrated that Py. myriotylum antagonists could be retrieved from the red cocoyam rhizosphere. Except for one isolate, all antagonistic isolates produced phenazines. Results from whole-cell protein profiling showed that the antagonistic isolates are different from other isolated pseudomonads, while BOX-PCR revealed high genomic similarity among them. 16S rDNA sequencing of two representative strains within this group of antagonists confirmed their relatively low similarity with validly described Pseudomonas species. These antagonists are thus provisionally labelled as unidentified Pseudomonas strains. Among the antagonists, Pseudomonas CMR5c and CMR12a were selected because of their combined production of phenazines and biosurfactants. For strain CMR5c also, production of pyrrolnitrin and pyoluteorin was demonstrated. Both CMR5c and CMR12a showed excellent in vivo biocontrol activity against Py. myriotylum to a similar level as Ps. aeruginosa PNA1. Conclusion: Pseudomonas CMR5c and CMR12a were identified as novel and promising biocontrol agents of Py. myriotylum on cocoyam, producing an arsenal of antagonistic metabolites. Significance and Impact of the Study: Present study reports the identification of two newly isolated fluorescent Pseudomonas strains that can replace the opportunistic human pathogen Ps. aeruginosa PNA1 in the biocontrol of cocoyam root rot and could be taken into account for the suppression of many plant pathogens

    Response to fungal exudates of the rhizosphere isolate Pseudomonas sp. UMAF110 involves a GGDEF/EAL domain-containing protein

    Get PDF
    Pseudomonas sp. UMAF110, isolated from rhizosphere soil in Spain, display in vitro antagonism towards the pythopathogenic fungus Rosellinia necatrix and is able grow in fungal exudates (BM-RE medium). A transposon mutant library of this strain was constructed and several mutants were selected by their reduced competitiveness in BM-RE medium. Pseudomonas sp. UMAF110-G3, which contains the transposon into a gene encoding a putative REC/PAS/GGDEF/EAL protein, was selected for further characterization. Blastn searches using the sequence of the gene interrupted by the transposon in UMAF110-G3, here called cmpA (c-di-GMP Metabolizing Protein), yielded a single positive hit (98% cover, 78% identity) with a gene from a terpene-degrading Pseudomonas sp. strain isolated from soil. Context analysis of the cmpA gene in Pseudomonas sp. UMAF110 showed that this gene is located downstream from several genes involved in flagellar motility/chemotaxis. RT-PCR experiments further confirmed that cmpA form a transcriptional unit with the che gene cluster. Expression analysis of cmpA by qRT-PCR clearly showed upregulation of this gene after transfer of Pseudomonas sp. UMAF110 cells to BM-RE medium, suggesting a role for this operon in response to fungal exudates. Deletion of cmpA in Pseudomonas sp. UMAF110 did not affect the ability of the strain to form biofilms under the conditions tested. However, overexpression of wild type CmpA in Pseudomonas putida KT2440 negatively regulated biofilm formation in this strain. Together, these results suggest that CmpA could be involved in signal transduction pathways regulating flagellar motility/chemotaxis in response to fungal exudates.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction

    Get PDF
    The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae

    Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection

    Get PDF
    Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF

    Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

    Get PDF
    We announce here the genome sequencing of Pseudomonas sp. strain 11/12A from Lake Washington sediment. From the genome content, a versatile lifestyle is predicted but not one of bona fide methylotrophy. With the availability of its genomic sequence, Pseudomonas sp. 11/12A presents a prospective model for studying microbial communities in lake sediments

    Pseudomonas aeruginosa bacteremia in patients undergoing liver transplantation: An emerging problem

    Get PDF
    In our institution, Pseudomonas aeruginosa bacteremia appeared to occur with increasing frequency in patients undergoing liver transplantation. We thus conducted a prospective study to define risk factors and outcome in these patients. Over a 19-month period 6% of liver transplants were followed by Pseudomonas bacteremia. The mean age was 46 years (range, 24 to 67 years). The interval between transplantation and onset of bacteremia was 3 to 372 days (mean, 80). The incidence of Pseudomonas bacteremia in liver transplants was three times that of other transplants (heart, lung, kidney). Ninety one percent of infections were nosocomial. Polymicrobial bacteremia occurred in 30% of episodes. The portal of entry was respiratory in 30%, abdominal in 35%, and biliary in 13%. Four patients had recurrent Pseudomonas bacteremia: liver abscess (1), biliary obstruction (2), subhepatic abscess (1). Survival at 14 days was 70%. Survival rates were significantly lower for patients with hypotension, on mechanical ventilators, and increasing severity of illness (p < 0.05). Survival was higher when bacteremia occurred within the first 30 days after transplantation compared to after 30 days. A large number (43.4%) of Pseudomonas bacteremias occurred after transplant surgery or biliary tract manipulation, while the patient was receiving a prophylactic regimen of cefotaxime and ampicillin. P. aeruginosa is an important pathogen in the liver transplant recipient; prevention may be possible for a subgroup of patients with the use of prophylactic antibiotics with activity against P. aeruginosa

    T helper cell subsets specific for pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis

    Get PDF
    Background: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. Methods: Peripheral blood human memory CD4+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. Results: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. Conclusions: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions

    Features associated to woody hosts in the bacterial pathogen of olive plants Pseudomonas savastanoi pv. savastanoi

    Get PDF
    The causal agent of olive knot disease, Pseudomonas savastanoi pv. savastanoi, belongs to the Pseudomonas syringae complex, a bacterial group causing diseases in a broad variety of both woody and herbaceous plant species. Here we summarize our results regarding a set of P. savastanoi pv. savastanoi features exclusively found in the genomes of bacteria from the P. syringae complex isolated from woody hosts. Comparative genomics and evolutionary studies allowed us to identify a 15 kb genomic island (WHOP, from woody host and Pseudomonas), carrying a set of genes involved in degradation of phenolic compounds and exclusively found in bacterial pathogens of woody hosts. Deletion of several WHOP-encoded genes in Pseudomonas savastanoi pv. savastanoi NCPPB 3335 revealed that they play a role in the virulence of the strain in woody olive plants but not in in vitro-grown (nonwoody) plants. In addition, several type III secretion system effectors belonging to the HopAF, HopAO and HopBL families were shown to be clustered across the P. syringae complex according to the woody/herbaceous nature of their host of isolation. Further functional analyses of these virulence factors are needed to facilitate the design of novel strategies directed to control bacterial pathogens of woody hosts.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Efficacy of Pseudomonas chlororaphis subsp. aureofaciens SH2 and Pseudomonas fluorescens RH43 isolates against root-knot nematodes (Meloidogyne spp.) in kiwifruit

    Get PDF
    The Root-knot nematodes, Meloidogyne spp., are parasites of many crops and orchards, including kiwifruit trees. The Islamic Republic of Iran is among the leading kiwifruit producers in the world and M. incognita has been found as the dominant species responsible for severe loss of this crop. In order to evaluate the eff ectiveness of antagonistic bacteria on larval mortality, number of galls per plant and egg masses of nematode reduction, fifty local bacterial strains were isolated from root surrounding soils of kiwifruit plants in the northern production areas in Iran. Bacterial antagonists were characterized by morphological, physiological, biochemical and molecular methods. Two representative strains, showing the best nematicidal activity, were identif ed as Pseudomonas chlororaphis subsp. aureofaciens (isolate Sh2) and Pseudomonas fluorescens (isolate Rh43). They increased the percentage of larval mortality to 56:38% and 54:28% respectively in assays in vitro and showed excellent performance also in vivo with consistent reduction of number of galls (67:31% and 55:63%, respectively) and egg mass (86:46% and 84:29%, respectively) in plants. This study indicates that Pseudomonas chlororaphis subsp. aureofaciens isolate Sh2 and Pseudomonas fluorescens isolate Rh43 are good potential biocontrol agents for containing root-knot nematodes in kiwifruit trees.peer-reviewe
    • …
    corecore