1,408,295 research outputs found

    Gross plastic deformation of axisymmetric pressure vessel heads

    Get PDF
    The gross plastic deformation and associated plastic loads of four axisymmetric torispherical pressure vessels are determined by two criteria of plastic collapse: the ASME twice elastic slope (TES) criterion and the recently proposed plastic work curvature (PWC) criterion. Finite element analysis was performed assuming small and large deformation theory and elastic–perfectly plastic and bilinear kinematic hardening material models. Two plastic collapse modes are identified: bending-dominated plastic collapse of the knuckle region in small deformation models and membrane-dominated plastic collapse of the cylinder or domed end in large deformation models. In both circumstances, the PWC criterion indicates that a plastic hinge bending mechanism leads to gross plastic deformation and is used as a parameter to identify the respective plastic loads. The results of the analyses also show that the PWC criterion leads to higher design loads for strain hardening structures than the TES criterion, as it takes account of the effect of strain hardening on the evolution of the gross plastic deformation mechanism

    Characterising gross plastic deformation in design by analysis

    Get PDF
    An investigation of three simple structures is conducted to identify and characterise the condition of gross plastic deformation in pressure vessel design by analysis. Limit analysis and bilinear hardening plastic analysis is performed for three simple example problems. It is found that previously proposed plastic criteria do not fully represent the effect of the hardening material model on the development of the plastic failure mechanism. A new criterion of plastic collapse based on the curvature of the load–plastic work history is therefore proposed. This is referred to as the Plastic Work Curvature or PWC criterion. It is shown that salient points of curvature correspond to critical stages in the physical evolution of the gross plastic deformation mechanism. The PWC criterion accounts for the effect of the bilinear hardening model on the development of the plastic mechanism and gives an enhanced plastic load when compared to the limit load

    A plastic load criterion for inelastic design by analysis

    Get PDF
    The allowable plastic load in pressure vessel design by analysis is determined by applying a graphical construction to a characteristic load-deformation plot of the collapse behavior of the vessel. This paper presents an alternative approach to the problem. The plastic response is characterized by considering the curvature of a plot of plastic work dissipated in the vessel against the applied load. It is proposed that salient points of curvature correspond to critical stages in the evolution of the gross plastic deformation mechanism. In the proposed plastic work curvature (PWC) criterion of plastic collapse, the plastic load is defined as the load corresponding to zero or minimal plastic work curvature after yielding and the formation of plastic mechanisms have occurred. Application of the proposed criterion is illustrated by considering the elastic-plastic response of a simple cantilever beam in bending and a complex three-dimensional finite element analysis of a nozzle intersection. The results show that the proposed approach gives higher values of plastic load than alternative criteria when the material exhibits strain hardening. It is proposed that this is because the PWC criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation

    Characterising plastic collapse of pipe bend structures

    Get PDF
    Two recently proposed design by analysis criteria of plastic collapse based on plastic work concepts, the plastic work (PW) criterion and the plastic work curvature (PWC) criterion, are applied to a strain hardening pipe bend arrangement subject to combined pressure and in-plane moment loading. Calculated plastic pressure-moment interaction surfaces are compared with limit surfaces, large deformation analysis instability surfaces and plastic load surfaces given by the ASME Twice Elastic Slope criterion and the tangent intersection criterion. The results show that both large deformation theory and material strain hardening have a significant effect on the elastic-plastic response and calculated static strength of the component. The PW criterion is relatively simple to apply in practice and gives plastic load values similar to the tangent intersection criterion. The PWC criterion is more subjective to apply in practice but it allows the designer to follow the development of the gross plastic deformation mechanism in more detail. The PWC criterion indicates a more significant strain hardening strength enhancement effect than the other criteria considered, leading to a higher calculated plastic load

    Design by analysis of ductile failure and buckling in torispherical pressure vessel heads

    Get PDF
    Thin shell torispherical pressure vessel heads are known to exhibit complex elastic-plastic deformation and buckling behaviour under static pressure. In pressure vessel Design by Analysis, the designer is required to assess both of these behaviour modes when specifying the allowable static load. The EN and ASME boiler and pressure vessel codes permit the use of inelastic analysis in design by analysis, known as the direct route in the EN Code. In this paper, plastic collapse or gross plastic deformation loads are evaluated for two sample torispherical heads by 2D and 3D FEA based on an elastic-perfectly plastic material model. Small and large deformation effects are considered in the 2D analyses and the effect of geometry and load perturbation are considered in the 3D analysis. The plastic load is determined by applying the ASME twice elastic slope criterion of plastic collapse and an alternative plastic criterion, the Plastic Work Curvature criterion. The formation of the gross plastic deformation mechanism in the models is considered in relation to the elastic-plastic buckling response of the vessels. It is concluded that in both cases, design is limited by formation of an axisymmetric gross plastic deformation in the knuckle of the vessels prior to formation of non-axisymmetric buckling modes

    Evaluation of high density polyethylene plastic bag performance towards edge and point stresses using taguchi method

    Get PDF
    Plastic bag are widely used due to it is low cost and convenience for packaging items. The problem with the strength of the plastic bag tends to tear easily and perforated. This study aims to validate the simulation results of High Density Polyethylene (HDPE) plastic towards HDPE plastic bags manufactured in UTHM and thus to evaluate the performance of plastic bag towards mass, edge and point stresses. The tensile test simulation was conducted using Solidworks 2017 to validate the HDPE plastic material properties by comparing the tensile test performed according to ASTM D882-18. The real life application was conducted to validate the simulation result by comparing plastic film’s displacement with different mass applied. Taguchi Method was used to arrange the edge and point stress test parameter with varied angle, mass, length and distance between the loads. The result showed that the error percentage for all loads was lower than 10.00 % for simulation compared to experimental tensile test. It also showed that error percentage was less than 5.00 % by comparing real life application and simulation results for displacement of plastic film. For mass stress test, the loads with 5.0 kg square base has the highest stress acted on the plastic film’s surface which is 22.399 MPa. For edge stress test, sample D with 1.0 kg, 20 mm of edge’s length and 20 ° of edge’s angle have highest maximum stress and displacement acted on plastic film’s surface which are 34.086 MPa and 84.94 mm respectively. For point stress test, sample G with 1.0 kg, 10 ° of angle and 30 mm of the distance between the point load have highest maximum stress and displacement acted on surface of plastic film which are 50.676 MPa and 63.64 mm accordingly. Both sample D and G were perforated since the maximum stress acted was exceed the tensile strength of HDPE plastic which is 28.4 MPa. The validation of HDPE plastic towards HDPE plastic bag manufactured in UTHM was proven from the result obtained. The plastic bag’s performance towards mass, edge and point stresses was successfully evaluated by using Finite Element Analysis and Taguchi Method

    Plastic load evaluation for a fixed tube sheet heat exchanger subject to proportional loading

    Get PDF
    The plastic load of pressurised components can be calculated based on both the twice elastic slope and tangent methods. Both methods are problematic since they rely on parameters that are localised and therefore have a strong dependency on the gradient of the stress–strain diagram in the plastic region. The criterion of curvature of plastic work is a suitable replacement for the above techniques. This method calculates total plastic work done on the structure and relates its change to the curvature of the load-plastic work plot. In this work the plastic load has been calculated for a fixed tube sheet exchanger according to curvature criteria using various hardening scenarios. Plastic loads calculated by other methods also have been reported. It has been indicated that tube sheet thickness calculated according to the classical ASME procedure can be significantly reduced when based on the curvature criteria

    Plastic collapse of pipe bends under combined internal pressure and in-plane bending

    Get PDF
    Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening

    Analysis of products from the pyrolysis of plastics recovered from the commercial scale recycling of waste electrical and electronic equipment

    Get PDF
    Three plastic fractions from a commercial waste electrical and electronic equipment (WEEE) processing plant were collected and investigated for the possibility of recycling them by batch pyrolysis. The first plastic was from equipment containing cathode ray tubes (CRTs), the second plastic was from refrigeration equipment, and the third plastic was from mixed WEEE. Initially, the decomposition of each of the plastics was investigated using a TGA linked to a FT-ir spectrometer which showed that the CRT plastic decomposed to form aliphatic and aromatic compounds, the refrigerator plastic decomposed to form aldehydes, CO2, aromatic, and aliphatic compounds, and the mixed WEEE plastic decomposed to form aromatic and aliphatic compounds, CO2, and CO. Each plastic mixture was also pyrolysed in a batch reactor to determine the halogen and metal content of the pyrolysis products, additionally, characterisation of the pyrolysis oils was carried out by GC-MS and the pyrolysis gases by GC-FID and GC-TCD. It was found that the halogen content of the oils was relatively low but the halogen and metal content of the chars was high. The pyrolysis oils were found to contain valuable chemical products and the pyrolysis gases were mainly halogen free, making them suitable as a fuel
    corecore