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Abstract

Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated

by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading

and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria

of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered.

The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure

and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric

strengthening, whereas the moment–pressure load case exhibits significant geometric weakening.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Industrial piping is subject to many different kinds of

loading but for the purposes of code design three categories

of load type are defined: sustained load, occasional load and

expansion load. Sustained loads arise from the mechanical

forces acting on the system under design conditions and

include pressure, self-weight, fluid weight and insulation

weight. Occasional loads also arise from mechanical forces

but are expected to occur during only a small proportion of

the plant life, such as intermittent operational loads or

overload due to fault conditions. Expansion loads arise

when the piping system experiences changes in temperature

over the operating cycle. This causes cyclic thermal

expansion of the piping material, inducing thermal stress

in the components and reaction forces at connections to

plant, supports and anchors.

Piping design codes seek to prevent failure due to the

action of these loads. The codes guard against failure

through appropriate choice of material and limiting the

loads acting on the system. Three main types of failure

are considered in routine design: gross plastic defor-

mation, incremental plastic collapse (ratchetting) and

fatigue. Gross plastic deformation is the fundamental

ductile failure mode associated with static loading. It is

prevented by restricting the magnitude of sustained and

occasional loads. Ratchetting is a ductile failure mode

associated with cyclic loading. It is prevented by limiting

the magnitude of the static sustained loads plus the cyclic

thermal expansion loads. Fatigue failure may occur at

stress concentrations in the system after a finite number

of load cycles, which in turn may determine the design

life of the piping system.

The magnitude of thermal stresses resulting from cyclic

loading is a function of the flexibility of the system.

Ratchetting problems can be minimised by ensuring the

system has sufficient flexibility to absorb thermal expansion

without inducing excessive stresses, deformations or

connection forces in the system. System flexibility is

enhanced by incorporating flexible components in the

system. These may be specific expansion–absorption

components, such as expansion bellows, but the preferred
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method is to specify a layout such that thermal expansion is

absorbed by the bends in the piping system.

Pipe bends are more flexible than similar lengths of

straight pipe, due to the complex deformation they exhibit

under bending loads. When a pipe bend is subject to a

bending load, the cross-section of the pipe changes shape

from a circle to an oval, sometimes referred to as the von

Karman effect [1]. The deformation of the cross-section

may enhance or reduce the strength and stiffness of the

bend, depending on the direction of the moment. When the

bend is pressurised, the behaviour becomes more complex

again, due to coupling between the pressure and bending

responses.

When a pressurised pipe bend is subject to a bending

moment, the pressure acts against the ovalisation defor-

mation. Rodabaugh and George [2] presented the first

coupled pressure–bending analysis in 1957, in which a

linear work term was included in an energy analysis of a

bend under an in-plane moment. However, Crandall and

Dahl [3] showed that the relationship between pressure and

ovalisation is non-linear, even for small deformation of the

cross-section. Thus, the small displacement theory of [2]

does not describe the true nature of the pressure–bending

effect, although it is included as an option in some piping

design codes.

1.1. Inelastic analysis of pipe bends

Much of the recent work on the behaviour of pipe bends

has been based on plastic analysis and, in particular, limit

load concepts. Theoretical limit analysis assumes an elastic-

perfectly plastic material model and small deformation

theory. The theoretical limit load is the load at which such

an idealised structure can no longer maintain equilibrium

with externally applied loads. Limit analysis provides a

robust failure load definition provided the basic assumption

of small deformation theory is appropriate.

When a structure experiences large deformations during

loading, the load carrying capacity may be reduced or

enhanced. When a pipe bend is subject to a closing moment

its cross-section flattens, reducing the capacity of the bend

to resist moment loading. This effect is called geometric

weakening. Opening moments have the opposite effect,

increasing the depth of the cross-section and increasing the

resistance to bending. This behaviour is called geometric

strengthening. These effects can be accounted for in design

if large deformation (or non-linear geometry) effects are

included in an inelastic analysis.

The literature on inelastic analysis of pipe bends under

single and combined loads has recently been reviewed by

Shalaby and Younan [4] and Chattopadhyay et al. [5]. The

first plastic analysis of a pipe bend under in plane bending

was a finite element method presented by Marcal [6]. Other

workers, including Spence and Findlay [7] and Calladine [8],

have presented analytic bending solutions based on limit

theorems and plasticity theory. Goodall presented the first

large deformation analysis of thin elbows under in plane

bending [9] and the first lower bound solution for a thin elbow

under combined loading [10]. However, Goodall’s combined

loading solution indicated that internal pressure reduces the

limit load, which contradicted empirical observation of

ductile failure. Dhalla [11] investigated modelling plastic

collapse of bends by elastic–plastic shell finite element

analysis, considering mesh convergence requirements, the

effect of attached straight runs and the interaction between

material and geometric non-linearities.

Shalaby and Younan [4] presented failure surfaces for a

range of isolated 908 pipe bends subject to combined

internal pressure and closing in-plane moments. The

pressure and moment loads were applied simultaneously;

that is, proportional loading was applied. The bends were

modelled using the ABAQUS finite element program pipe

bend element ELBOW31B [12], which invokes the von

Karman assumption that the bending moment (and defor-

mation) is constant along the element. This assumption

neglects the effect of attached straight pipes or flanges at the

ends of the bend on the deformation. The analysis assumed

an ideal elastic-perfectly plastic material and large defor-

mation theory and, consequently, different behaviour is

found for closing and opening moments.

Chattopadhyay et al. [5] calculated collapse loads for a

range of 908 bends with attached straight pipes under

combined pressure and in-plane bending loads using the

NISA 3D finite element program [13]. The piping system

was modelled using 3D solid finite elements and included

strain hardening and large deformation effects. The pressure

Nomenclature

D diameter of pipe cross-section

E elastic modulus

h pipe bend factor Rbt=r2
m

L length of straight pipe

M applied moment

ML limit moment (instability/collapse)

mL normalised limit moment ML=4r2
mtsy

m normalised moment M=4r2
mtsy

P applied internal pressure

p normalised internal pressure Prm/tsy

Rb mean bend radius

rm mean radius of elbow cross-section

t elbow wall thickness

z moment multiplier

sy yield stress

n Poisson’s ratio
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and moment loads were applied sequentially. Pressure was

applied to a constant value and then the moment was

applied. It is suggested that this is the most likely situation

in practice, as “.pressure generally does not increase

during service, whereas bending moment may increase

significantly in an accidental condition.” Closed-form

equations for the collapse surface of the bends were

formulated from the results of the finite element analysis.

The literature shows that assumptions made in the

elastic–plastic analysis of pipe bends under combined

loading can significantly affect the calculated ductile failure

load. The object of the present paper is to investigate two

related concepts in analysis of pipe bends: the basic

definition of ductile failure and the effects of load history

on the calculated failure load.

2. Analysis

The three piping systems considered comprise a 908 bend

and two attached equal length straight pipe runs terminating

at stiff flanges, as illustrated in Fig. 1. The mean cross-

sectional radius of the bend and straights was set at

rmZ250 mm. The bend radius ratio Rb/rm was fixed at 3

and the bend radius to thickness ratio rm/t and bend factor

ðhZRbt=r2
mÞ were varied by changing the wall thickness, t.

Three values of thickness were considered: tZ15, 20 and

28 mm, giving pipe bend factors, h in the range 0.18–0.336.

The pipe bend geometry parameters are summarised in

Table 1.

The length of the attached straight piping was chosen to

ensure that the bend response was independent of the semi-

rigid flanges at the end of the runs. A sensitivity analysis

showed that this condition was met for all three systems for

a straight length LZ10rm.

An elastic-perfectly plastic material model was used

in all the analyses. The material property values

used were elastic modulus, EZ200 GN/m2, yield stress,

syZ300 MN/m2 and Poisson’s ratio, nZ0.3.

2.1. Finite element modelling

The piping system configuration has two planes of

symmetry and as such can be modelled by a quarter finite

element mesh, with appropriate symmetry boundary

conditions applied.

The systems were modelled in ANSYS [14] using plastic

shell elements SHELL43. A convergence study was

performed to establish a suitable mesh density for the

model. The finite element mesh used in the study is shown in

Fig. 2. The bend was discretised by 15 elements along the

straight run, eight elements along the (half) bend and 24

elements around the half-pipe circumference. The flanges

were simulated by elastic beam elements BEAM4 with

elastic modulus an order of magnitude greater than the pipe

material. A web of radial beam elements from the centre of

the pipe-end to the flange was included to allow the bending

moment to be applied as a point load at the centre of the end.

The bend is subject to in-plane moment and pressure

loading. The moment was applied as a point load to the node

at the centre of the web of beams at the end of the straight.

The system was assumed to be closed at the ends, such that

the internal pressure gives rise to an axial thrust in the

system. This was applied to the flange as an edge pressure,

which remains normal to the end of the pipe during

deformation. Three loading sequences were considered in

the investigation. In proportional loading, the internal

pressure and moment are applied to the model simul-

taneously. In P–M loading, the internal pressure is applied

to a pre-determined value then held constant as the moment

is applied. In M–P loading, the moment is applied to a pre-

determined value then held constant as the internal pressure

is applied. Moment–pressure interaction surfaces were

constructed by performing elastic–plastic analysis of each

piping system for 13 different load combinations, ranging

from bending only to pressure only.

2.2. Definition of failure load

Several terms are used in the literature to define the

ductile or inelastic collapse load of pressurised components,

Fig. 1. Pipe bend attached to two straight runs subject to in-plane bending.

Table 1

Pipe bend geometry parameters

Mean radius,

rm (mm)

Thickness,

t (mm)

rm/t Rb/rm Pipe bend

factor, h

250 15 16.67 3 0.18

250 20 12.50 3 0.24

250 28 8.93 3 0.336

Fig. 2. Finite element mesh.
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such as pipe bends and piping systems. The theoretical limit

load of a structure is a well-defined concept. It is calculated

by limit analysis, which assumes perfect plasticity and small

deformation theory. However, in practice the expression

‘limit load’ is often used in a general sense to define the load

at which ductile failure occurs, as observed experimentally

or calculated by elastic–plastic analysis including strain

hardening and/or large deformation theory. In this paper, the

definitions of plastic failure mode proposed by Gerdeen [15]

are used.

The limit load denotes the theoretical limit load

in accordance with the definition of limit analysis.

The limit load is the maximum load satisfying equilibrium

between external and internal forces under these conditions.

The theoretical limit load is independent of the load path

leading to collapse.

The plastic instability load is a structural instability

load that depends on the yield strength of the material and

the influence of significant changes in shape of the

structure. Calculation of this load requires large defor-

mation effects to be included in an elastic–plastic analysis.

Gerdeen states that “At the plastic instability load the

load–deflection curve is characterised by zero slope

(horizontal tangent).” This state may not actually be

achieved in load-controlled non-linear finite element

analysis, as the solution may fail to converge whist the

characterising load–deformation curve has a non-zero

slope. Here, the plastic instability load is taken as the last

converged solution in an elastic–plastic analysis including

large deformation effects. Depending on the particular

structural configuration, the plastic instability load may be

dependent on the load path leading to collapse.

Fig. 3. (a) Twice elastic slope method, (b) tangent intersection method.

Fig. 4. von Mises equivalent plastic strain distribution at failure: (a) pressure only limit analysis, (b) pressure only large deformation analysis, (c) moment only

limit analysis, (d) moment only large deformation analysis.
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Gerdeen defines the plastic load as the load at which

“.significant plastic deformation occurs.”, determined

by applying a criterion of plastic collapse to a

characteristic load–deformation curve for the structure.

Plastic analysis may include strain hardening effects,

large strain theory and large deformation theory, at the

discretion of the analyst. As in the case of plastic

instability load, the plastic load depends on the order in

which the loads are applied.

Several criteria of plastic collapse have been proposed

for pressure vessel design. The ASME Boiler and

Pressure Vessel Code Section VIII Div 2 [16] specifies

use of the Twice Elastic Slope (TES) criterion. This is a

graphical criterion in which load is plotted as the

ordinate and deformation as the abscissa, as illustrated

in Fig. 3a. The plastic collapse load is defined by

plotting a straight line from the origin with twice the

slope of the initial elastic response: that is

tan fZ2 tan q. The plastic load Pf is that corresponding

to the intersection point of the curves. Guidelines on

the choice of deformation parameter are given by

Gerdeen [15]. The TES criterion was used by Chatto-

padhyay et al. [5] to define plastic loads. Shalaby and

Younan [4] used a similar criterion to define plastic

loads. In their double angle method, a line is taken from

the origin at twice the angle of the initial elastic response

(with respect to the load axis), such that fZ2q. Shalaby

and Younan also calculated plastic instability loads in

accordance with Gerdeen’s definition.

In the present investigation, it was found that the

twice elastic slope criterion could not be applied to a

large number of configurations, as the instability load

was reached before the collapse limit line intersected the

load–deformation curve. An alternative plastic collapse

criterion was therefore used to define plastic load: the

tangent intersection method [15]. The tangent intersection

method defines the plastic collapse load as the point of

intersection of tangents drawn to the initial elastic and

final plastic responses of the structural response curve, as

illustrated in Fig. 3b.

Fig. 5. von Mises equivalent stress distribution at failure: (a) pressure only limit analysis, (b) pressure only large deformation analysis, (c) moment only limit

analysis, (d) moment only large deformation analysis.
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3. Results

The results of the analyses are presented in non-

dimensional form. Internal pressure, P, is normalised with

respect to the hoop stress of a thin walled cylinder, such that

the normalised pressure p is

p Z
Prm

syt

Moment, M, is normalised with respect to the limit moment

of a straight pipe under pure bending, such that normalised

moment m is

m Z
M

4r2
msyt

3.1. Pressure-only and bending-only loading

The piping systems fail by different collapse mechanisms

under pressure-only and bending-only loads. The equivalent

plastic strain distributions in the bend region at collapse for

the small and large deformation solutions are shown for the

hZ0.24 system in Fig. 4. Under pressure-only loading, first

yield occurs in the middle of the bend at the intrados. As

pressure increases, the plastic zone spreads along the bend

towards the junction with the straight run. There is also

some limited plastic redistribution in the circumferential

direction but at failure, unstable or gross plastic deformation

is restricted to a relatively small plastic zone around the

intrados, as shown in Fig. 4a and b for small and large

deformation analyses, respectively. The calculated limit

pressure (small deformation collapse load) was close to that

of a straight pipe. The plastic instability pressure (large

deformation collapse load) was very close to the limit

pressure (about 2% lower). This indicates that large

deformation effects are not significant in pressure-only

loading.

The evolution of the plastic failure mechanism under

bending-only loading is distinctly different from the

pressure-only case. First yield occurs in the middle of the

bend at the crown and, as the load is increased, the plastic

zone spreads both axially along the crown towards the

straight run and circumferencially outwards, towards the

extrados and the intrados. Almost the entire bend experiences

plastic deformation before failure occurs, as shown in Fig. 4c

and d for small and large deformation analyses, respectively.

The limit moment of the bend was significantly lower than

the limit moment of a similar straight pipe. Further, the limit

and plastic instability loads differ significantly. In the

hZ0.24 bend, plastic instability collapse occurred at around

80% of the limit load, indicating that large deformation

effects significantly influence the response.

Contour plots of the von Mises equivalent stress at

the outer surface of the hZ0.24 system are shown in Fig. 5

for pressure and moment only loading, large and small

deformation theory. (The maximum stress shown on

the plots appears to exceed sy due to the stress-plotting

algorithm: perfect plasticity was assumed throughout.)

These figures clearly illustrate the different forms of ductile

failure mechanism that occur under pressure and moment

only loading.

3.2. Combined loading limit loads

In limit theory, the limit load is path independent; that is,

independent of the loading sequence. This was verified for

the finite element model used in the investigation by

calculating the limit load of the hZ0.24 bend for the three

load sequences. Limit load surfaces obtained for pro-

portional loading, P–M loading and M–P loading are shown

in Fig. 6a. The curves are almost coincident for most of

the pressure range but there is a difference between the

P–M curve and the others at high values of pressure/low

values of moment. In the normalised moment range 0–0.25,

the pressure on the proportional loading and M–P limit

surfaces exceed the limit pressure of the vessel. In the case

of P–M loading, the maximum initial pressure that can be

applied is, by definition, the limit pressure. Consequently,

the behaviour shown by the other loading sequences cannot

be obtained for P–M loading. The slight differences around

the limit pressure region are due to numerical effects in the

non-linear solution.

Fig. 6. (a) Limit load surfaces for the hZ0.24 bend evaluated by

proportional and sequential loading. (b) Von Mises stress distribution at

limit load, PZ10 MPa and MZ756 kN m.
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A contour plot of the von Mises equivalent stress at limit

collapse (PZ10 MPa and MZ756 kN m) is shown in

Fig. 6b. The stress distribution at collapse is similar to the

moment loading limit analysis stress distribution shown in

Fig. 5c.

3.3. Combined loading instability loads

In plastic instability analysis, the failure load is path

dependent. Plastic instability load surfaces are shown in

Fig. 7a–c for the hZ0.18, 0.24 and 0.36 systems,

respectively. Proportional loading, P–M loading and M–P

loading curves are compared with the limit load surface.

Clearly, the order of loading significantly affects the

calculated collapse load.

The proportional loading and P–M loading sequences

give very similar failure surfaces. At low normalised

pressures (less than 0.2), the ovalisation of the cross-section

leads to instability at loads below the limit load; that is, the

structure exhibits geometric weakening. As the pressure

increases, the ovalisation is countered by the internal

pressure, which seeks to expand the cross-section as a

uniform circle. At normalised pressures above 0.2, signifi-

cant geometric strengthening is observed but reduces as the

limit pressure is approached.

The M–P loading sequence gives a distinctly different

failure surface to the proportional and P–M load sequences.

Under the M–P load sequence, the initial bending moment

causes the section to ovalise. Subsequent pressurisation

counters the ovalisation until the cross-section becomes

essentially circular and, as pressure increases, a failure

mechanism similar to the pressure-only mechanism forms.

The form of this mechanism is effectively independent of

the initial bending load.

3.4. Combined loading plastic loads

Plastic loads are defined by applying a specific criterion

of plastic collapse to a characteristic load–deformation

curve obtained by plastic analysis (incorporating strain

hardening and/or large deformation effects). Following

guidance from Gerdeen [15], the characteristic response

curves for proportional and P–M loading were moment/

end–rotation curves. For proportional loading, the moment

was plotted against rotation of the flange for the full range

of moment load applied. For P–M sequential loading, the

pressure was initially applied to a constant value.

This caused minor rotation of the flange. The moment was

Fig. 8. Typical pressure–rotation curve from moment–pressure large

deformation analysis.

Fig. 7. Plastic instability load surfaces for the (a) hZ0.18, (b) hZ0.24,

(c) hZ0.36 (limit load surface shown for comparison).
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then applied and a moment–rotation curve plotted, taking

the initial pressure induced rotation as a datum.

In the M–P load sequence, an initial constant moment is

applied and then the pressure is increased until collapse

occurs. The most significant load parameter in this case is

probably pressure (the methodology is subjective) and,

following Gerdeen’s recommendations, the appropriate

deformation parameter is change in volume. Unfortunately,

change in volume is not calculated in a conventional

structural analysis and an alternative deformation

is required. It was decided to use end rotation as

the deformation parameter for M–P loading. The initial

moment was applied to a constant value. The pressure was

then applied and a moment–rotation curve plotted, taking

the initial moment induced rotation as a datum. A typical

pressure–rotation curve is shown in Fig. 8. The curve does

not include the initial rotation due to application of the

moment. In practice, the initial rotation may be significantly

greater than the subsequent changes in rotation when the

pressure is applied. Clearly, it is not possible to apply either

the twice elastic slope or tangent intersection constructions

to such a plot. For this reason, no plastic loads were

calculated for M–P loading.

The characteristic load–deformation curves obtained for

proportional and P–M loading for the configurations

considered had a wide range of forms. Fig. 9a–c shows

three typical response curves. Fig. 9a shows a smooth

curve with a gradual transition from elastic behaviour to

steady-state plastic behaviour. The plastic pressures

obtained by applying the twice elastic slope and tangent

intersection methods are unambiguously defined for this

response and indicated on the figure. Fig. 9b shows a

different form of curve, in which the plastic response has

two distinct regions with different slope. In this case, the

tangent could be drawn from either slope, so there is some

doubt as to which is the appropriate plastic pressure. Fig. 9c

poses a different problem. The plastic response is initially

concave for most of the curve but exhibits a short horizontal

plateau just before failure. Large differences in plastic

pressure may be obtained in this case, depending on how the

criterion is applied.

It was found that for a large number of load combi-

nations, the twice elastic slope criterion could not be applied

as instability collapse occurred before the collapse limit line

and load–deformation curve intersected. It was therefore

decided to use the tangent intersection criterion to define

plastic loads. Given the variation in form of characteristic

curve encountered, it was not possible to define a consistent

approach to applying the tangent intersection criterion to the

whole range of configurations. Defining the tangent point

and hence plastic load was therefore, to various degrees,

subjective.

The plastic load surfaces obtained by applying the

tangent intersection method to the proportional loading and

P–M loading curves for bend hZ0.24 are shown in Fig. 10.

The two plastic load curves are similar for low pressure but

clearly differ as the normalised pressure exceeds 0.8. The

differences between the two plastic load curves indicate that

they do not give a consistent measure of plastic load for the

configurations considered.

Fig. 9. Typical load–deformation curves showing twice elastic slope and possible tangent intersection constructions.

Fig. 10. Plastic loads for large deformation proportional and pressure–

moment loading. Limit and plastic instability loads shown for comparison.
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4. Discussion

The limit load, M–P plastic instability load, P–M plastic

instability load and P–M plastic load surfaces are compared

with the plastic loads given by Shalaby and Younan [4] and

Chattopadhyay et al. [5] in Fig. 11. The Chattopadhyay

solution for hZ0.18, Fig. 11a, is from their closed form

solution, as their FE results do not include this size of bend.

The Shalaby and Younan plastic loads are lower than the

other plastic load curves as expected, as these results are for

an isolated bend under pure bending, which does not benefit

from the strengthening effect of attached straight pipes. The

P–M plastic load curves from the present investigation and

Chattopadhyay results can be compared as both are for

bends with attached straights. The curves are, in fact, similar

for most of the load combinations considered. At low values

of pressure, the plastic load is less than the limit load. As

pressure increases, geometric strengthening is observed up

to almost pressure-only failure load evaluated in the present

investigation. In the P–M plastic load, the failure surface in

closed at a maximum plastic pressure. The Chattopadhyay

plastic load decreases slightly as the pressure approaches the

limit pressure but does not fall to zero, due to strain

hardening (included in the analysis).

The plastic load and the P–M plastic instability load are

similar for low pressures but differ greatly in the region

where geometric strengthening is most pronounced, from

around pZ0.1 to 0.6. The plastic criterion effectively

truncates most of the geometric strengthening effect

experienced by the bend.

The M–P plastic instability load surface is distinctly

different to the other curves, showing geometric weakening

for the full load range. This form of loading is unlikely in

practice but it may be important to note this effect in some

situations.

5. Conclusions

The results of the investigation show that geometric non-

linearity is a significant consideration when calculating

plastic failure loads of pipe bends subject to combined

loading. Significant geometric weakening is observed when

the closing bending moment dominates. At higher pressures,

both P–M loading and proportional loading cause consider-

able geometric strengthening. Calculating plastic loads for

the systems proved to be problematic. Plastic loads could

not be defined for M–P loading when rotation was used as a

deformation parameter, due to the general form of the

characteristic response curve. Many different forms of

characteristic curve were obtained for P–M loading and

proportional loading. The twice elastic slope criterion could

not be applied to the full range of configurations and plastic

load was determined by applying the tangent intersection

method. It was found that significant variation in calculated

plastic pressure was possible, depending on how the

criterion was interpreted. The P–M and proportional load

cases gave similar plastic instability failure surfaces but

when the tangent intersection method was applied they gave

distinctly different plastic load failure surfaces. This

demonstrates that the calculated plastic load depends on

the evolution of the failure mechanism rather than the actual

state of collapse.
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Fig. 11. Limit load, plastic instability load and plastic load surfaces

compared with Shalaby and Younan [4] and Chattopadhyay et al. [5]:

(a) hZ0.18, (b) hZ0.24, (c) hZ0.36.
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