585 research outputs found

    Pharmacogenomic testing and its future in community pharmacy

    Get PDF
    Although it is common to see pharmacogenomic testing used North America and Australia, it is not yet part of practice in the UK. With the promise of genomic screening becoming part of the NHS, pharmacists must equip themselves with a knowledge of how the process works. Source: Shutterstock.com In January 2019, the UK government unveiled its ten-year plan for NHS England and emphasised the role pharmacists can play in promoting patient self-care[1]. There was also a focus on delivering value from medicines and reducing avoidable medicines related-harm, which costs the NHS a minimum of £98.5m per year[2]. This coincides with the NHS Genomic Medicine Service, which will be rolled out across England from April 2020, meaning that the routine use of genomic screening and personalised treatments will be the new normal in the NHS[3],[4]. Pharmacists’ advice currently relies on knowledge of observable patient characteristics, such as age, weight, comorbidities and concurrent medicines, while largely disregarding genetics. However, it is estimated that genetic factors could contribute to between 25–50% of inappropriate drug responses[5]. Knowing exactly which medicine to use for a patient and which to avoid can be a challenging task in clinical practice. However, pharmacogenomics can provide the prescriber with additional information on some of the unobserved patient characteristics that affect drug response — this can assist with both drug selection and safety. Therefore, the combination of this pharmacogenomic information along with other factors influencing pharmaceutical care may provide an opportunity to deliver more ‘personalised’ medicine, facilitating better selection and reducing the need for ‘trial and error’ prescribing

    Exome-wide analysis of the discovehr cohort reveals novel candidate pharmacogenomic variants for clinical pharmacogenomics

    Get PDF
    Recent advances in next-generation sequencing technology have led to the production of an unprecedented volume of genomic data, thus further advancing our understanding of the role of genetic variation in clinical pharmacogenomics. In the present study, we used whole exome sequencing data from 50,726 participants, as derived from the DiscovEHR cohort, to identify pharmacogenomic variants of potential clinical relevance, according to their occurrence within the PharmGKB database. We further assessed the distribution of the identified rare and common pharmacogenomics variants amongst different GnomAD subpopulations. Overall, our findings show that the use of publicly available sequence data, such as the DiscovEHR dataset and GnomAD, provides an opportunity for a deeper understanding of genetic variation in pharmacogenes with direct implications in clinical pharmacogenomics

    PASSPORT-seq: A Novel High-Throughput Bioassay to Functionally Test Polymorphisms in Micro-RNA Target Sites

    Get PDF
    Next-generation sequencing (NGS) studies have identified large numbers of genetic variants that are predicted to alter miRNA-mRNA interactions. We developed a novel high-throughput bioassay, PASSPORT-seq, that can functionally test in parallel 100s of these variants in miRNA binding sites (mirSNPs). The results are highly reproducible across both technical and biological replicates. The utility of the bioassay was demonstrated by testing 100 mirSNPs in HEK293, HepG2, and HeLa cells. The results of several of the variants were validated in all three cell lines using traditional individual luciferase assays. Fifty-five mirSNPs were functional in at least one of three cell lines (FDR ≀ 0.05); 11, 36, and 27 of them were functional in HEK293, HepG2, and HeLa cells, respectively. Only four of the variants were functional in all three cell lines, which demonstrates the cell-type specific effects of mirSNPs and the importance of testing the mirSNPs in multiple cell lines. Using PASSPORT-seq, we functionally tested 111 variants in the 3' UTR of 17 pharmacogenes that are predicted to alter miRNA regulation. Thirty-three of the variants tested were functional in at least one cell line

    Pharmacogenomics insights into precision pediatric oncology

    Get PDF
    PURPOSE OF REVIEW: Pharmacogenomic insights provide an opportunity to optimize medication dosing regimens and patient outcomes. However, the potential for interindividual genomic variability to guide medication dosing and toxicity monitoring is not yet standard of care. In this review, we present advances for the thiopurines, anthracyclines and vincristine and provide perspectives on the actionability of pharmacogenomic guidance in the future. RECENT FINDINGS: The current guideline on thiopurines recommends that those with normal predicted thiopurine methyltransferase and NUDT15 expression receive standard-of-care dosing, while \u27poor metabolizer\u27 haplotypes receive a decreased 6-mercaptopurine starting dose to avoid bone marrow toxicity. Emerging evidence established significant polygenic contributions that predispose to anthracycline-induced cardiotoxicity and suggest this knowledge be used to identify those at higher risk of complications. In the case of vincristine, children who express CYP3A5 have a significantly reduced risk of peripheral neuropathy compared with those expressing an inactive form or the CYP3A4 isoform. SUMMARY: The need for adequately powered pediatric clinical trials, coupled with the study of epigenetic mechanisms and their influence on phenotypic variation and the integration of precision survivorship into precision approaches are featured as important areas for focused investments in the future

    Translating pharmacogenetics and pharmacogenomics to the clinic: progress in human and veterinary medicine

    Get PDF
    As targeted personalized therapy becomes more widely used in human medicine, clients will expect the veterinary clinician to be able to implement an evidence-based strategy regarding both the prescribing of medicines and also recognition of the potential for adverse drug reactions (ADR) for their pet, at breed and individual level. This review aims to provide an overview of current developments and challenges in pharmacogenetics in medicine for a veterinary audience and to map these to developments in veterinary pharmacogenetics. Pharmacogenetics has been in development over the past 100 years but has been revolutionized following the publication of the human, and then veterinary species genomes. Genetic biomarkers called pharmacogenes have been identified as specific genetic loci on chromosomes which are associated with either positive or adverse drug responses. Pharmacogene variation may be classified according to the associated drug response, such as a change in (1) the pharmacokinetics; (2) the pharmacodynamics; (3) genes in the downstream pathway of the drug or (4) the effect of “off-target” genes resulting in a response that is unrelated to the intended target. There are many barriers to translation of pharmacogenetic information to the clinic, however, in human medicine, international initiatives are promising real change in the delivery of personalized medicine by 2025. We argue that for effective translation into the veterinary clinic, clinicians, international experts, and stakeholders must collaborate to ensure quality assurance and genetic test validation so that animals may also benefit from this genomics revolution

    An integrative method for scoring candidate genes from association studies: application to warfarin dosing

    Get PDF
    BackgroundA key challenge in pharmacogenomics is the identification of genes whose variants contribute to drug response phenotypes, which can include severe adverse effects. Pharmacogenomics GWAS attempt to elucidate genotypes predictive of drug response. However, the size of these studies has severely limited their power and potential application. We propose a novel knowledge integration and SNP aggregation approach for identifying genes impacting drug response. Our SNP aggregation method characterizes the degree to which uncommon alleles of a gene are associated with drug response. We first use pre-existing knowledge sources to rank pharmacogenes by their likelihood to affect drug response. We then define a summary score for each gene based on allele frequencies and train linear and logistic regression classifiers to predict drug response phenotypes.ResultsWe applied our method to a published warfarin GWAS data set comprising 181 individuals. We find that our method can increase the power of the GWAS to identify both VKORC1 and CYP2C9 as warfarin pharmacogenes, where the original analysis had only identified VKORC1. Additionally, we find that our method can be used to discriminate between low-dose (AUROC=0.886) and high-dose (AUROC=0.764) responders.ConclusionsOur method offers a new route for candidate pharmacogene discovery from pharmacogenomics GWAS, and serves as a foundation for future work in methods for predictive pharmacogenomics

    Pharmacogene expression during progression of metabolic dysfunction-associated steatotic liver disease: Studies on mRNA and protein levels and their relevance to drug treatment

    Get PDF
    \ua9 2024. Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0–2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression
    • 

    corecore