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 CURRENT
OPINION Pharmacogenomics insights into precision

pediatric oncology

Kristie N. Ramosa, David Gregornikb and Kenneth S. Ramosc

Purpose of review

Pharmacogenomic insights provide an opportunity to optimize medication dosing regimens and patient
outcomes. However, the potential for interindividual genomic variability to guide medication dosing and
toxicity monitoring is not yet standard of care. In this review, we present advances for the thiopurines,
anthracyclines and vincristine and provide perspectives on the actionability of pharmacogenomic guidance
in the future.

Recent findings

The current guideline on thiopurines recommends that those with normal predicted thiopurine
methyltransferase and NUDT15 expression receive standard-of-care dosing, while ‘poor metabolizer’
haplotypes receive a decreased 6-mercaptopurine starting dose to avoid bone marrow toxicity. Emerging
evidence established significant polygenic contributions that predispose to anthracycline-induced
cardiotoxicity and suggest this knowledge be used to identify those at higher risk of complications. In the
case of vincristine, children who express CYP3A5 have a significantly reduced risk of peripheral
neuropathy compared with those expressing an inactive form or the CYP3A4 isoform.

Summary

The need for adequately powered pediatric clinical trials, coupled with the study of epigenetic mechanisms
and their influence on phenotypic variation and the integration of precision survivorship into precision
approaches are featured as important areas for focused investments in the future.
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INTRODUCTION

Pharmacogenomics is one of the earliest and most
impactful applications of genetic insight into the
practice of medicine; with its roots tracing back to
the recognition that genetic variation in the
enzymes involved in drug metabolism can signifi-
cantly impact drug response and toxicity [1]. With
the advent of advanced high throughput molecular
technologies, the field of pharmacogenomics con-
tinued to evolve from the study of single genes and
enzymes to genome-wide assessments of individu-
alized drug responses. Pharmacogenomic insights
pose an opportunity for providers to optimize med-
ication dosing regimens based on the genetic char-
acteristics of individual patients, and while it has yet
to become standard of care, preemptive pharmaco-
genomics testing has gained considerable popularity
among patients and their families, as well as medical
providers. The application of pharmacogenomics-
based interventions in pediatric oncology is of par-
ticular interest, however significant challenges to
widespread implementation remain.

To help facilitate the use of genotype results in
medical decision-making, the Clinical Pharmacoge-
netics Implementation Consortium (CPIC) was
established to provide freely accessible peer-
reviewed, and evidence based guidelines for gene-
drug pairs that can be utilized to incorporate phar-
macogenomic results into patient care. To date,
CPIC has created and curated information on
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specific pharmacogenes with the goal of defining
genetic variants associated with star allele haplo-
types, assessing functional status for each haplo-
type, and assigning a predicted phenotype for
each possible diplotype [2]. Although CPIC has
certainly facilitated the translation of pharmacoge-
nomic knowledge from the bench to the bedside,
the potential for interindividual genomic variability
to guide medication dosing and toxicity monitoring
on a widespread level has yet to be fully actualized.

In this review, we focus on pharmacogenomic
advances for three frequently used drug classes in
pediatric oncology, with thiopurines being the only
one for which specific CPIC recommendations are
available in the United States, and with anthracy-
clines and vincristine chosen as representative clas-
ses of chemotherapeutic agents for which emerging
pharmacogenomic evidence will likely inform clin-
ical management in the future. Lastly, we provide
perspectives on future advances in the field of pre-
cision pediatric oncology and the actionability of
pharmacogenomic guidance in the future.

THIOPURINES

The thiopurines, including azathioprine, 6-mercap-
topurine (6-MP), and thioguanine, were among the
first identified drugs to be impacted by clinically
significant genetic variations in drug-metabolizing
enzymes. Both thioguanine and 6-MP are utilized in
the treatment of pediatric acute lymphoblastic leu-
kemia (ALL) and acute myeloid leukemia, and
depending on the protocol, can be required for up
to 2 years as an integral part of maintenance che-
motherapy for pediatric ALL treatment [3]. Thiopur-
ine toxicity is widespread and includes pancreatitis,
hepatitis, sinusoidal obstruction syndrome, and
myelosuppression [4

&

], with variations in key
enzymes (namely, TMPT and NUDT15) resulting
in heightened risk for life-threating bone marrow
toxicity [5].

The first thiopurine pharmacogene to be impli-
cated in the development of thiopurine toxicity was
TMPT, which catalyzes the methylation of 6-MP and
its downstream metabolites to facilitate their
removal and preclude any further bio-activation
[6]. There is inherited variation in thiopurine meth-
yltransferase (TPMT), with certain allelic variants
resulting in increased production of thioguanine
nucleotide metabolites and ultimately resulting in
further nucleic acid damage and cell death [4

&

]. To
date, CPIC provides information on more than 40
star allele haplotypes for the TMPT enzyme [2], with
different star alleles and suballeles having variable
metabolic activity and predisposition to thiogua-
nine toxicity [7]. This information has been used
to assign pediatric patients with a metabolic phe-
notype (based on the predicted functional activity
of their haplotype), and is subsequently used to
designate normal, intermediate, or poor metaboliz-
ers of thiopurines.

To date, the �1 allele correlates with normal
thiopurine metabolic function, TMPT2, �3A, �3B,
�3C, �4, �11, �14, �15, �23, �30, and �41 are termed
as ‘no function’ alleles, and all other star alleles are
denoted to be of uncertain function. The most
common TPMT phenotype is TPMT�1/�1, which
accounts for 90% of enzyme variants across most
bio-geographical and ancestral groups [8] and rep-
resents individuals that are ‘normal metabolizers’ of
thiopurines. Alternatively, those that carry a star
allele of uncertain function have been designated
as ‘possible intermediate metabolizers’, those that
carry a normal function allele in combination with a
no function allele (e.g., TMPT �1/�2 and TMP �1/�3A)
have been deemed as ‘intermediate metabolizers’,
and those with two ‘no function’ alleles are consid-
ered to be ‘poor metabolizers’ of thiopurines. These
metabolic phenotypes were among the first to be

KEY POINTS

� Although the lack of adequately powered clinical
pediatric trials during development and post marketing
surveillance of drugs continue to be major limitations,
other barriers include the storage of genomic data in
the electronic health record and the lack of coverage of
genotype testing by many insurance plans.

� TMPT and NUDT15 metabolic phenotypes were among
the first to be utilized in pharmacogenomic-mediated
dose adjustments and continue to be of clinical
significance in mitigating thiopurine toxicity.

� Numerous SNPs and genes have been associated with
the development of Anthracycline-induced
cardiotoxicity, with many of these genes involving the
phosphatidylinositol signaling system,
glycosylphosphatidylinositol-anchored proteins, axonal
pathways, ATP-binding cassette transporters, and
retinoic acid receptor.

� The role of the CYP3A subfamily of the cytochrome
P450 monooxygenases in vincristine-induced peripheral
neuropathy has been studied by several groups and
highlights the potential role of pharmacogenes in
interindividual differences related to drug
bioavailability, efficacy, clearance, and toxicity.

� Complex gene-environment-lifestyle interactions likely
account for many of the observed inconsistencies
described in the medical literature for pharmacogenes,
and clinicians must be cognizant that these genes, like
other genes, are subject to complex interactions that
define specific response profiles.
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utilized in pharmacogenomic-mediated dose adjust-
ments and continue to be of clinical significance in
mitigating thiopurine toxicity.

The second thiopurine pharmacogene of signif-
icance is NUDT15, which encodes for the nucleotide
diphosphatase enzyme that catalyzes the conver-
sion of active thiopurine metabolites into their inac-
tive forms (thus preventing their incorporation into
RNA and DNA) [9,10]. Although studies on the
genetic variation of NUDT15 are relatively imma-
ture in comparison with those on TPMT, CPIC and
the Pharmacogene Consortium have reported 20
star allele haplotypes in the NUDT15 gene [2,10].
To date, NUDT15�1 is considered to have normal
function, NUDT15�2, �3, and �9 are designated as
‘no function’ alleles, �4 through �8 are deemed as
‘uncertain function’, and �10 through �20 have yet
to be annotated [2]. Accordingly, NUDT15�1/�1 is
designated as a ‘normal metabolizer’, those with a
normal function allele combined with a ‘no func-
tion’ allele are termed ‘intermediate metabolizers’,
and those with two ‘no function’ alleles are pre-
dicted to be ‘poor metabolizers’ of thiopurines [2].

The CPIC guideline on thiopurines utilizes these
pharmacogenomics insights to provide recommen-
dations for initial dose selections as a function of
both TMPT and NUDT15 genotypes [3] and serves as
the most widely recognized example of the utility of
pharmacogenomics in cancer therapeutics. Cur-
rently, those with normal predicted TPMT and
NUDT15 phenotypes receive standard-of-care dos-
ing for thiopurines (e.g., 6-MP at a starting dose of
75 mg/m2/day during maintenance chemotherapy
for pediatric ALL) [2], whereas those with ‘poor
metabolizer’ haplotypes require a decreased 6-MP
starting dose to avoid potentially life-threatening
bone marrow toxicity, thus exemplifying one of the
many ways in which the incorporation of pharma-
cogenomic knowledge can be utilized to decrease
the risk of chemotherapy-related toxicities in pedi-
atric oncology patients.

ANTHRACYCLINES

The anthracyclines, including doxorubicin and dau-
norubicin, are another important class of chemo-
therapeutic agents utilized in the treatment of a
various pediatric leukemias, lymphomas, and sarco-
mas [11,12]. Anthracyclines function as antineo-
plastic drugs by intercalating into DNA, disrupting
topoisomerase IIa-mediated DNA repair, and ulti-
mately causing DNA damage and cellular apoptosis
[13]. Despite the indication for anthracyclines in
numerous chemotherapy protocols, their use is
often complicated and subsequently limited by
anthracycline-induced cardiotoxicity (ACT). ACT

is widespread and ranges from asymptomatic sys-
tolic dysfunction to overt congestive heart failure
[14,15], and while the exact mechanism of ACT
continues to be debated, free-radical-mediated oxi-
dative damage and mitochondrial dysfunction are
believed to play a significant role in the develop-
ment of cardiotoxicity [11,15].

ACT is dose-dependent and cumulative, with
those receiving higher doses and chest irradiation
at greater risk. Cardiotoxicity can be observed in
patients treated with lower doses of doxorubicin or
daunorubicin, indicating that variations in individ-
ual susceptibility can play a significant role in risk
stratification [14,16,17]. Given that conventional
biomarkers often remain within normal limits until
myocardial damagehas ensued, the detection of early
and asymptomatic cardiotoxicity remains a critical
challenge. With nearly 60% of all pediatric cancer
survivors having a history of prior anthracycline and/
or chest radiation exposure [18,19], there is an ongo-
ing need to identify genetic risks, discover predictive
biomarkers, and implement standardized screening
protocols to mitigate life-threatening ACT.

To date, numerous single-nucleotide polymor-
phisms (SNPs) and genes have been associated with
the development of ACT. In a genome-wide model
that utilized International HapMap cell lines, 137
SNPs spanning 30 genes were found to be signifi-
cantly associated with daunorubicin cardiotoxicity,
with many of these genes involving the phosphati-
dylinositol signaling system, glycosylphosphatidy-
linositol-anchored proteins, and axonal pathways
[20]. Subsequent studies found that polymorphisms
in genes encoding for ATP-binding cassette (ABC)
transporters were associated with ACT [21–24], with
ABCB1 rs2235047 and ABCC1 rs4148808 variants
associated with a higher risk of ACT across various
pediatric malignancies [23,24], and the ABCC5
rs7627754 TT genotype [21] as well as ABCC1 gene
variants (rs3743527 and rs246221) associated with
ACT in pediatric ALL [22]. On a larger scale, the
rs6759892 variant in UGT1A6 (which encodes for a
glucuronosyltransferase) has been found to be sig-
nificantly associated with the development of ACT
[23–25], and more recently, a genome-wide associ-
ation study implicated the missense variant
rs2229774 in Retinoic acid receptor gamma (RARG)
(which encodes for a retinoic acid receptor) with
heightened susceptibility to ACT [26]. Conversely,
variants in genes encoding for solute carriers (which
play an important role in the absorption and excre-
tion of drugs) appear to confer a lesser risk of ACT,
with the genetic variants rs7853758 in SLC28A3,
rs9614091 in SLC10A2, and rs4877847 in SLC28A3
found to be protective against the development of
ACT for more than 5 years after completion of
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anthracycline therapy [23,24]. Together, these data
highlight the polygenic contributions that predis-
pose to the development of ACT and suggest that it
may be possible to discriminate between those at
higher and lower risk for development of this life-
threatening complication.

These pharmacogenomics data have been uti-
lized to develop evidence-based clinical practice
recommendations by the Canadian Pharmacoge-
nomics Network for Drug Safety, whose Clinical
Practice Recommendations Group suggests pharma-
cogenomic testing for UGT1A6�4 rs17863783,
RARG rs2229774, and SLC28A3 rs7853758 variants
in pediatric cancer patients with an indication for
doxorubicin or daunorubicin therapy [27]. Future
directions include the incorporation of additional
genetic, epigenetic, and clinical risk factors to guide
anthracycline dosing and frequency of biomarker
monitoring with the goal of eventually implement-
ing practice guidelines to mitigate the risk of ACT.

VINCRISTINE

Vincristine is another frequently used chemothera-
peutic agent in the treatment of several pediatric
malignancies, and functions as an antineoplastic
drug by interfering with microtubule formation
during mitotic spindle assembly, which ultimately
leads to cell death [28]. Vincristine therapy is com-
monly associated with a severe, dose-limiting
peripheral sensory-motor neuropathy [29–31] that
typically resolves within a few months of cessation
of therapy, however severe neurotoxicity is not
experienced by all patients [32]. The pattern of
selective vincristine-induced peripheral neuropathy
(VIPN) suggests that an individual’s response to
vincristine is subject to genetic, environmental,
and/or lifestyle factors. To date, most pharmacoge-
nomics studies of VIPN-affected children have
emphasized DNA sequence variations with lesser
attention given to the influence on epigenetic modi-
fiers on genome function.

The role of the CYP3A subfamily of the cyto-
chrome P450 monooxygenases in VIPN has been
studied by several groups and highlights the poten-
tial role of pharmacogenes in interindividual differ-
ences related to drug bioavailability, efficacy,
clearance, and toxicity. The CYP3A subfamily
includes CYP3A4, CYP3A5, CYP3A7, and CYP3A43,
along with four pseudogenes and several function-
ally relevant transcript variants [33,34]. Children
who express the CYP3A5 isoform have been found
to have a significantly reduced risk of VIPN in
comparison with those who express either an inac-
tive form of CYP3A5 or an active form of CYP3A4
[35–37]. Several allelic variants of CYP3A5 have

been identified, with the CYP3A5 �1/�1 expressers
on one end of the genotypic spectrum and CYP3A5
nonexpressers (�3/�3 genotype) on the other, with
those expressing at least one copy of the CYP3A5 �1
allele found to exhibit greater expression than those
who are homozygous for other variants. CYP3A5 �3
creates a premature codon that alters mRNA splicing
and results in a truncated protein [38], and as a
result, CYP3A5 �3 homozygous individuals produce
attenuated levels of functional CYP3A5 protein.
Given that vincristine is preferentially metabolized
by CYP3A5 [39,40], its clearance is dependent on the
presence of a functional CYP3A enzyme. As a whole,
Asians and African Americans have a higher preva-
lence of nonfunctional CYP3A5 alleles (CYP3A5 �6,
�7), while a relatively large percentage of Caucasians
express a CYP3A4 �22 isoform with intermediate
metabolic capacity [41

&

], suggestive of an increased
risk for VIPN in these subpopulations and the poten-
tial use of CYP3A4 and CYP3A5 activity as future
biomarkers for vincristine efficacy and toxicity.

Beyond the impact of the CYP3A subfamily on
vincristine metabolism, Ceppi et al. [42] reported
inverse associations between VIPN and variants of
ABCB1 and capping actin protein, gelsolin like (a
member of the gelsolin/villin family of actin-regu-
latory proteins). Variable associations have also
been reported for ABCC1 [43] and SLC5A7 (Solute
Carrier Family 5 Member 7) [44], with SLC5A7 of
potential interest from a pathogenetic perspective
given its role in autosomal dominant distal heredi-
tary motor neuronopathy type VIIA and the pres-
ence of multiple splice variants that contribute to
inter-individual variability [45]. Lastly, a genome-
wide association study of pediatric ALL patients
conducted by Diouf et al. [46] reported that the
severity of VIPN was higher in children with a
SNP in the promoter region of CEP72 (a centrosomal
protein involved in microtubule assembly), though
no such association was identified by Gutierrez-
Camino et al. [47] in a Spanish pediatric ALL cohort.
Additional studies are required to reconcile these
inconsistencies and examine the contributions of
additional genes involved in drug transport, micro-
tubule assembly, and neuronal function to further
elucidate the genetic and epigenetic causes of vin-
cristine-induced peripheral neuropathy.

CONCLUSION

Pharmacogenes can account for major interindivid-
ual differences in drug bioavailability, efficacy,
clearance, and toxicity. Genetic polymorphisms
are able to partially explain this variability, and
when the data are available, allow stratification of
individual patients into metabolic phenotype
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categories, although these genotype–phenotype
relationships are infrequently considered due to a
general lack of evidence-based recommendations to
guide clinical decision making. In this mini-review,
we highlighted three drug classes with noteworthy
pharmacogenomic insights, with thiopurines as the
only class to have widely recognized and accepted
pharmacogenomics-based dosing guidelines.
Although perhaps the most significant limitation
to the implementation of pharmacogenomics is the
lack of adequately powered pediatric clinical trials
during development and postmarketing surveil-
lance of drugs, other barriers include the storage
of genomic data in the electronic health record
and the lack of coverage of genotype testing by
many insurance plans.

Additional research is needed to evaluate phe-
notypic variations in pharmacogenes that are medi-
ated via epigenetic mechanisms. This is an
important dimension of genomics research that
remains largely underdeveloped in the field of phar-
macogenomics, a somewhat surprising finding
when considering the potential impacts of xeno-
biotics, diet, and lifestyle choices (such as smoking
and alcohol use) on drug metabolizing enzymes. It is
likely that complex gene-environment–lifestyle
interactions account for many of the observed
inconsistencies described in the medical literature,
and clinicians must be cognizant that pharmaco-
genes, like other genes, are subject to complex inter-
actions that define specific response profiles. As
such, development of precision-based approaches
to account for such interactions is necessary to
personalize drug treatments in ways that optimize
clinical efficacy and minimize toxicity.

Finally, it is important to integrate the principles
of precision survivorship into the practice of preci-
sion medicine. Clearly, the chemotherapeutic and
cell-based therapies being utilized in pediatric pop-
ulations have long-lasting consequences on the
health and wellbeing of these patients. In an era
where childhood cancer survivors are living years
beyond their diagnosis, efforts should be made to
capitalize on the advances in genomic medicine to
mitigate the side effects of chemotherapy and pre-
serve the quality-of-life of patient survivors for the
years to come.
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