102 research outputs found

    Design, development and orchestration of 5G-ready applications over sliced programmable infrastructure

    Get PDF
    5G networks design and evolution is considered as a key to support the introduction of digital technologies in economic and societal processes. Towards this direction, vertical industries' needs should be considered as drivers of 5G networks design and development with high priority. In the current manuscript, MATILDA is presented, as a holistic 5G end-to-end services operational framework tackling the overall lifecycle of design, development and orchestration of 5G-ready applications and 5G network services over programmable infrastructure, following a unified programmability model and a set of control abstractions

    SDN and NFV for satellite infrastructures

    Get PDF
    The integration of SDN and NFV enablers into the satellite network could prove to be an essential means to save on physical sites, improve the time to bring new services to the market and open new ways to improve network resiliency, availability and efficiency. It can be considered that the above two enablers can play a central role in the integration of satellite to terrestrial technologies by using federated management of the network resources.Peer ReviewedPostprint (author's final draft

    On the virtualization and dynamic orchestration of satellite communication services

    Get PDF
    Key features of satellite communications such as wide-scale coverage, broadcast/multicast support and high availability, together with significant amounts of new satellite capacity coming online, anticipate new opportunities for satellite communications services as an integral part within upcoming 5G systems. To materialize these opportunities, satellite communications services have to be provisioned and operated in a more flexible, agile and cost-effective manner than done today. In this context, this paper describes a solution for the virtualization and dynamic orchestration of satellite communication services that builds on the introduction of Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies within the satellite ground segment systems. Along with the description of the main system architecture traits, the flowchart of a general procedure for the dynamic instantiation of virtualized satellite networks on top of a SDN/NFV-enabled satellite ground segment system is provided. The paper also presents experimental results for the dynamic customization of satellite network services through the implementation of a set of virtualized satellite network functions that can be orchestrated over general purpose open virtual platforms.Peer ReviewedPostprint (author's final draft

    Integração de funções de rede virtualizadas e funções de rede físicas

    Get PDF
    Network Functions Virtualization (NFV) and Software Defined Networking (SDN) have been in the center of network evolution, promising a more flexible and efficient way of managing networks through the on-demand instantiation of network functions (NFs) and reconfigurability of the network as necessary. Nevertheless, as new mechanisms are developed, such technologies require testing before their adoption into real-world deployments. This is where this dissertation contributes, by proposing and evaluating a system architecture that integrates a physical wireless testbed with a cloud-based environment. This allows physical wireless nodes to become part of the cloud environment, enabling its use and configuration as virtual NFs (VNFs). Results showcased the system feasibility, with the testbed being able to instantiate on-demand virtual and physical NFs, in the physical wireless nodes and in an OpenStack data-center.A Virtualização de Funções de Rede e as Redes Definidas por Software têm estado no centro da evolução das redes, prometendo uma forma mais flexível e eficiente de as gerenciar através da instanciação on-demand de Funções de Rede e da sua reconfiguração conforme o necessário. No entanto, à medida que novos mecanismos são desenvolvidos, é também necessário a realização de testes sobre estas tecnologias antes destas serem adotadas em implementações em contexto real. É aqui que esta dissertação contribui, propondo e avaliando uma arquitetura de sistema que integra um testbed físico sem fios, com um ambiente baseado em nuvem. Isto permite que os nós sem fios físicos se tornem parte do ambiente de nuvem, permitindo o seu uso e configuração como Funções de Rede Virtuais. Os resultados demonstraram a viabilidade do sistema, dada a capacidade da testbed em instanciar Funções de Rede virtuais e físicas quando requisitadas tanto nos nós sem fios físicos quanto no servidor OpenStack.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Network slicing architecture for SDM and analog-radio-over-fiber-based 5G fronthaul networks

    Get PDF
    \u3cp\u3eThe blueSPACE project focuses on the study of innovative technologies to overcome the limitations of current fronthaul networks. The key technology proposed is space-division multiplexing, which makes it possible to increase the capacity available in conventional single-mode fibers, effectively encompassing this capacity to the forecasted bandwidth demands imposed by 5G mobile communications. In this paper, we present the innovative optical fronthaul infrastructure proposed in the project and the tailored extensions to the European Telecommunications Standards Institute network function virtualization management and orchestration architecture for this enhanced infrastructure together with practical implementation considerations.\u3c/p\u3

    Dependability of the NFV Orchestrator: State of the Art and Research Challenges

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of network function virtualisation (NFV) represents a significant change in networking technology, which may create new opportunities in terms of cost efficiency, operations, and service provisioning. Although not explicitly stated as an objective, the dependability of the services provided using this technology should be at least as good as conventional solutions. Logical centralisation, off-the-shelf computing platforms, and increased system complexity represent new dependability challenges relative to the state of the art. The core function of the network, with respect to failure and service management, is orchestration. The failure and misoperation of the NFV orchestrator (NFVO) will have huge network-wide consequences. At the same time, NFVO is vulnerable to overload and design faults. Thus, the objective of this paper is to give a tutorial on the dependability challenges of the NFVO, and to give insight into the required future research. This paper provides necessary background information, reviews the available literature, outlines the proposed solutions, and identifies some design and research problems that must be addressed.acceptedVersio

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling

    ETSI MANO network orchestration

    Get PDF
    In the modern era there is a big change in the way computer networks are conceived and the old version defined by hardware implementation is leaving space for a new one based upon software functions. This innovation is the Network Function Virtualization and indeed aims at easing the management of networks and reducing the costs of their maintenance by deploying Virtual Network Functions in standard general purpose servers. The transition to this solution involved the necessity to improve the performance of virtualization techniques and with the development of new solutions now it is possible to run multiple different functions in the same physical machine. This means that also the cloud computing benefits from this technology, having computing, storaging and networking resources all easily manageable and accessible due to their separation from the hardware underneath. Therefore it is important that while building this architecture the components are properly working and interacting together and that the virtualization techniques do not produce too much overhead compared to the performance of the hardware implementation. In this essay will be discussed the Network Function Virtualization and the Open Source MANO project, focusing on its descriptors architecture and functioning. To better demonstrate how to create network topologies through these files, some examples are created and analyzed

    Satellite gateway diversity in SDN/NFV-enabled satellite ground segment systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper explores how to use Software Defined Networking (SDN) and Network Functions Virtualization (NFV) as two emerging technologies to support Satellite Gateway Diversity (GWD) solution in the forward link to provide next generation satellite system with higher capacity enhancement, failover and resiliency management. In this context, the gateway handover along with efficient traffic steering techniques are used to cope with the cases where gateway feeder links experience outage due to meteorological conditions or gateway failure. The handover typically implies that additional traffic is addressed towards another satellite gateway to handle the capacity reduction. Toward this objective, we propose an architecture framework to support GWD using SDN/NFV-enabled satellite ground segment and we evaluate our solution on a proof of concept experimental testbed based on OpenSAND emulated satellite network. The results show that our proposal can provide reasonably flexibility to handle failover and resiliency.Peer ReviewedPostprint (author's final draft
    corecore