54,467 research outputs found

    Oxytocin in pregnancy and the postpartum: relations to labor and its management.

    Get PDF
    The purpose of this study was to examine variations in endogenous oxytocin levels in pregnancy and postpartum state. We also explored the associations between delivery variables and oxytocin levels. A final sample of 272 mothers in their first trimester of pregnancy was included for the study. Blood samples were drawn during the first trimester and third trimester of pregnancy and at 8 weeks postpartum. Socio-demographic data were collected at each time point and medical files were consulted for delivery details. In most women, levels of circulating oxytocin increased from the first to third trimester of pregnancy followed by a decrease in the postpartum period. Oxytocin levels varied considerably between individuals, ranging from 50 pg/mL to over 2000 pg/mL. Parity was the main predictor of oxytocin levels in the third trimester of pregnancy and of oxytocin level changes from the first to the third trimester of pregnancy. Oxytocin levels in the third trimester of pregnancy predicted a self-reported negative labor experience and increased the chances of having an epidural. Intrapartum exogenous oxytocin was positively associated with levels of oxytocin during the postpartum period. Our exploratory results suggest that circulating oxytocin levels during the third trimester of pregnancy may predict the type of labor a woman will experience. More importantly, the quantity of intrapartum exogenous oxytocin administered during labor predicted plasma oxytocin levels 2 months postpartum, suggesting a possible long-term effect of this routine intervention, the consequences of which are largely unknown

    Effect of oxytocin on free intracellular Ca2+ levels and progesterone release by human granulosa-lutein cells

    Get PDF
    Oxytocin and its receptor are found in the corpus luteum in a variety of species, including the human. In the present study we used fura-2 microfluorimetry to investigate whether activation of the oxytocin receptor of cultured human granulosa-lutein cells causes intracellular calcium (Ca2+) signals and affects progesterone release. Although after 1 day in culture, cells were not responsive to oxytocin, the number of responsive cells increased steadily during the first 3 days in culture, reaching a maximum on days 4 and 5 (59-66%) and then declined again until day 8. Effective oxytocin concentrations were apparently independent of the culture day, and concentrations as low as 10 nmol/L increased intracellular free Ca2+ levels from 70-140 nmol/L (basal levels) to maximal peak levels of 800 nmol/L. The oxytocin-induced Ca2+ signal was not affected by removal of extracellular Ca2+ with EGTA. Moreover, depletion of intracellular Ca2+ stores by ionomycin treatment rendered the cells unresponsive to oxytocin, pointing also at the intracellular source of the oxytocin-inducible Ca2+ signal. Interestingly, after one single stimulation with oxytocin, cells became refractory to additional stimuli, and only extremely high concentrations of oxytocin induced a second increase in intracellular free Ca2+. To examine the possible effects of oxytocin on progesterone release by cultured cells, we incubated cells on culture day 2 (20% responsive cells in the fura measurements) and culture day 5 (66% responsive cells in the fura measurements) for 24 h with oxytocin (10 nmol/L) and hCG (10,000 IU/L). Although hCG significantly stimulated progesterone release, oxytocin alone was without a stimulatory effect on either day. However, a significant augmentation of the effect of hCG on progesterone release was found in incubations of cells on day 5. Interestingly, the effects of hCG also included stimulation of oxytocin release by cultured granulosa-lutein cells into the culture medium, as determined by RIA. In summary, our data indicate the presence of a functional oxytocin receptor on human granulosa-lutein cells that is linked to Ca2+ as a second messenger released from intracellular Ca2+ stores. The number of oxytocin-responsive cells increases during differentiation in culture. Moreover, oxytocin release induced by hCG and a stimulatory effect of oxytocin on the hCG-induced progesterone production during the period of maximal responsiveness of cultured cells were found. We, therefore, propose that oxytocin may have autocrine and/or paracrine functions in human granulosa-lutein cells, including fine-tuning of progesterone release

    Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.

    Get PDF
    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social behaviours--is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signalling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation through activation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle but instead leads to premature sarcopenia. Considering that oxytocin is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle ageing

    Microbial lysate upregulates host oxytocin

    Full text link
    Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.Published versio

    Intranasal Inhalation of Oxytocin Improves Face Processing in Developmental Prosopagnosia

    Get PDF
    Developmental prosopagnosia (DP) is characterised by a severe, lifelong impairment in face recognition. Little work has attempted to improve face processing in these individuals, but intriguingly, recent evidence suggests oxytocin can improve face processing in both healthy participants and individuals with autism. This study examined whether oxytocin could also improve face processing in individuals with DP. Ten adults with the condition and 10 matched controls were tested using a randomized placebo-controlled double-blind within-subject experimental design (AB-BA). Each participant took part in two testing sessions where they inhaled 24IU of oxytocin or placebo spray and completed two face processing tests: one assessing face memory and the other face perception. Results showed main effects of both participant group and treatment condition in both face processing tests, but the two did not interact. Specifically, the performance of DP participants was significantly lower than control performance under both oxytocin and placebo conditions, but oxytocin improved processing to a similar extent in both groups

    Neural correlates of emotion processing comparing antidepressants and exogenous oxytocin in postpartum depressed women: An exploratory study

    Get PDF
    Despite common use of antidepressants to treat postpartum depression, little is known about the impact of antidepressant use on postpartum brain activity. Additionally, although oxytocin has been investigated as a potential treatment for postpartum depression, the interaction between antidepressants and exogenous oxytocin on brain activity is unknown. We explored postpartum depressed women’s neural activation in areas identified as important to emotion and reward processing and potentially, antidepressant response: the amygdala, nucleus accumbens and ventral tegmental area. We conducted a secondary analysis of a functional imaging study of response to sexual, crying infant and smiling infant images in 23 postpartum depressed women with infants under six months (11 women taking antidepressants, 12 unmedicated). Participants were randomized to receive a single dose of oxytocin or placebo nasal spray. There was significantly higher amygdala activation to sexual stimuli than either neutral or infant-related stimuli among women taking antidepressants or receiving oxytocin nasal spray. Among unmedicated women receiving placebo, amygdala activation was similar across stimuli types. There were no significant effects of antidepressants nor oxytocin nasal spray on reward area processing (i.e., in the nucleus accumbens or ventral tegmental area). Among postpartum women who remain depressed, there may be significant interactions between the effects of antidepressant use and exogenous oxytocin on neural activity associated with processing emotional information. Observed effect sizes were moderate to large, strongly suggesting the need for further replication with a larger sample

    A New Strategy to Stabilize Oxytocin in Aqueous Solutions: I. The Effects of Divalent Metal Ions and Citrate Buffer

    Get PDF
    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl2, MgCl2, or ZnCl2 and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca2+, Mg2+, or Zn2+, while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions

    Inter-institutional variations in oxytocin augmentation during labour in German university hospitals : a national survey

    Get PDF
    There are several international guidelines on oxytocin regimens for induction and augmentation of labour, but no agreement on a standardised regimen in Germany. This study collated and reviewed the oxytocin regimens used for labour augmentation in university hospitals, with the long-term aim of contributing to the development of a national clinical guideline
    corecore