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Abstract

Despite common use of antidepressants to treat postpartum depression, little is known

about the impact of antidepressant use on postpartum brain activity. Additionally, although

oxytocin has been investigated as a potential treatment for postpartum depression, the inter-

action between antidepressants and exogenous oxytocin on brain activity is unknown. We

explored postpartum depressed women’s neural activation in areas identified as important

to emotion and reward processing and potentially, antidepressant response: the amygdala,

nucleus accumbens and ventral tegmental area. We conducted a secondary analysis of a

functional imaging study of response to sexual, crying infant and smiling infant images in 23

postpartum depressed women with infants under six months (11 women taking antidepres-

sants, 12 unmedicated). Participants were randomized to receive a single dose of oxytocin

or placebo nasal spray. There was significantly higher amygdala activation to sexual stimuli

than either neutral or infant-related stimuli among women taking antidepressants or receiv-

ing oxytocin nasal spray. Among unmedicated women receiving placebo, amygdala activa-

tion was similar across stimuli types. There were no significant effects of antidepressants

nor oxytocin nasal spray on reward area processing (i.e., in the nucleus accumbens or ven-

tral tegmental area). Among postpartum women who remain depressed, there may be sig-

nificant interactions between the effects of antidepressant use and exogenous oxytocin on

neural activity associated with processing emotional information. Observed effect sizes

were moderate to large, strongly suggesting the need for further replication with a larger

sample.

Introduction

Antidepressants are a standard treatment for postpartum depression (PPD) [1]. However, the

effect of antidepressants on the postpartum brain are understudied, as most studies of
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antidepressant action have investigated males only [2]. This is a major knowledge gap, given

the sex/gender differences noted in antidepressant response [3] as well as in the systems that

underlie the putative antidepressant mechanisms such as serotonin transport [4] and func-

tional connectivity [5]. The experience of pregnancy, parturition, and providing maternal care

may alter neuroendocrine function in ways that interact with antidepressant actions [6, 7].

Also, there is increasing interest in the impact of antidepressants on neuroendocrine sys-

tems relevant to PPD. In particular, oxytocin–a neuropeptide that mediates social behaviors

such as maternal [8] and sexual behaviors [9]–may play a role in depression [10], particularly

in postpartum [11]. In postpartum women, oxytocin appears to facilitate adaptive reorganiza-

tion of key neural structures in the hypothalamus, hippocampus, and amygdala [12, 13].

Endogenous oxytocin during the postpartum period may also buffer against the negative

effects of cortisol and other aspects of stress reactivity [14–16]–a much needed adaptation to a

very stressful time of life. In fact, low endogenous oxytocin has been associated with risk of

PPD [11, 17, 18].

As oxytocin may play a role in PPD, exogenous oxytocin administration has been proposed

both as a primary treatment [19], or as an adjunctive to antidepressant treatment [20]. While

rodent models suggest exogenous oxytocin may improve PPD-like symptoms [21], clinical tri-

als in human mothers have not shown clear benefits [22–25]. These conflicting reports have

generally either excluded women taking antidepressants or considered medicated and unmed-

icated women together, complicating interpretation. Moreover, the effects of oxytocin on anti-

depressant action in depressed mothers are potentially different from a general depressed

population [26, 27], underscoring the need to examine interactions of oxytocin and antide-

pressant use in the context of PPD specifically.

As a secondary analysis of a previously collected dataset, we explored brain activity in

women with PPD who were or were not taking antidepressants, and who received either pla-

cebo or an oxytocin nasal spray. While the sample size is small, exploring these data could

reveal some clues for further study. Brain response data are scant for postpartum depressed

women, and there is even less known about PPD women on antidepressants. Because of the

vast amount of information collected during functional neuroimaging, it is particularly impor-

tant to have as much specificity as possible in pre-defining analyses; this specificity relies on

evidence from prior research. Thus, although the exploratory results in the present study are

in and of themselves only suggestive, they could be critical to future research. As such, we

explored neural activity in areas of most interest to researchers in the areas of emotion process-

ing and antidepressant treatment mechanisms.

Prior meta-analyses of mixed groups of depressed men and women (non-postpartum) have

indicated that antidepressant treatment is associated with changes in activation to visual emo-

tional stimuli in the limbic system, including the amygdala, and increased activation in the

mesolimbic “reward systems” including the nucleus accumbens (NAc) and ventral tegmental

area (VTA) [28]. Antidepressant response in non-postpartum depression has been predicted

by changes in activation to these areas [29–33]. The amygdala, VTA and NAc also appear to be

sites of significant structural and functional change during the postpartum period [34, 35].

Not surprisingly, these areas become particularly neuroplastic in response to the increased

oxytocin signaling during pregnancy and postpartum [36].

Although increased neuroplasticity is beneficial for adapting the brain to the new demands

of motherhood, it may also contribute to increased risk of PPD if reorganization is disrupted

(e.g., by significant life stressors [37, 38]), leading to persistently maladaptive patterns of acti-

vation [39]. This is particularly true for women with histories of early life stressors, as the

degree to which oxytocin release leads to increased neuroplasticity may depend on prior stress

experiences [40]. That is, women with a history of childhood trauma may be at increased risk
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of reproductive mood disorders associated with the increased neuroplasticity induced by oxy-

tocin [41]. There is some evidence that antidepressants can reverse the structural modifica-

tions in the amygdala, VTA and NAc that may underlie PPD [37]. In rodent models of PPD,

postpartum depressive-like behavior is associated with structural changes to the NAc and

amygdala, but citalopram administration reverses these changes [42]. Similarly, while gesta-

tional stress appears to disrupt typical neuroplasticity in postpartum rats, these effects are

reversed with fluoxetine treatment [37, 43]. Based on these data, we selected the amygdala,

VTA, and NAc as our regions of interest (ROI): each has been shown relevant for antidepres-

sant response (including in PPD), each undergoes significant re-organization during the post-

partum period, and each has been shown to be responsive to oxytocin.

We hypothesized that, relative to unmedicated PPD women, PPD women taking antidepres-

sants would exhibit lower amygdala activation to sexual stimuli. In a non-postpartum context,

antidepressant use is associated with lower sexual interest in women [44], as well as lower amyg-

dala response to sexual images [45]. Healthy (non-depressed) postpartum women have signifi-

cantly lower amygdala response to sexual images than nulliparous women [46]; insofar as

antidepressants result in bringing PPD women’s neural responses closer to those of healthy post-

partum women, we should expect antidepressants to be associated with lower amygdala response

to sexual images. Furthermore, contrasting amygdala responses to sexual vs. infant related stimuli

may be a marker of initial neuroadaptation to motherhood, as increasing response to infant sti-

muli and decreasing response to sexual stimuli in the early months postpartum may reflect

increased investment in the current offspring vs. potential new offspring [46, 47]. Thus, we addi-

tionally hypothesized that, for activation of the amygdala and reward areas (VTA, NAc), the rela-
tive difference between infant and sexual images would be greater in PPD women taking

antidepressants than in unmedicated PPD women, in whom responses would be more muted.

As antidepressants have been shown to amplify reward activation in non-postpartum con-

texts [32, 48], we hypothesized that PPD women taking antidepressants would have signifi-

cantly higher VTA and NAc activation to positive emotional images (smiling infants, sexual

images) relative to unmedicated women. This means we expected different effects of antide-

pressants on amygdala vs. reward area processing of sexual images: decreasing activation in

the former while increasing the latter. Such effects would parallel report of women’s subjective

experience of postpartum sexuality: while women’s sexual interest decreases in the postpartum

period, the degree of pleasure from sexual activity remains stable [49, 50].

Animal models suggest that oxytocin may mediate some of the antidepressant effects of

SSRIs [51, 52], and data from clinical studies in humans show resting levels of oxytocin increase

following antidepressant administration [53].These findings hint at possible parallel mecha-

nisms underlying both antidepressant use and oxytocin response. Thus, we hypothesized that

the effects of oxytocin on neural activation to emotional stimuli would differ in women who

were taking vs. not taking antidepressants. If there are similar systems underlying the response

to both antidepressants and oxytocin in postpartum depressed women, we should expect the

effects of exogenous oxytocin to be relatively less noticeable among women taking antidepres-

sants. However, given the dearth of prior research, we did not have a priori hypotheses regard-

ing how the combination of exogenous oxytocin and antidepressants would impact contrasts

between stimuli types, or differences in activation of amygdala vs. reward processing areas.

Methods

The present study was a secondary analysis from a larger investigation of differences in neural

activity between postpartum and nulliparous women; detailed description of study procedures

can be found in the primary publications [46, 47, 54].

SSRIs & oxytocin in postpartum depression

PLOS ONE | https://doi.org/10.1371/journal.pone.0217764 May 31, 2019 3 / 16

https://doi.org/10.1371/journal.pone.0217764


Participants

Women who were 3–6 months postpartum, breastfeeding at>75% of feedings, were recruited

and screened for depression with the Edinburgh Postnatal Depression Scale (EPDS, [55]).

Women with a history of psychosis or manic episodes were excluded. A total of 23 currently

depressed postpartum women (scoring� 12 on the EPDS) completed a scanning session and

provided complete data regarding medication use. Of these, 11 reported current use of an

SSRI antidepressant (sertraline, N = 8, fluoxetine, N = 2, citalopram, N = 1), while 12 reported

no antidepressant use. Both groups were similar in demographics (Table 1). Also, on the day

of the experimental session, participants completed the Center for Epidemiologic Study–

Depression scale (CES-D [56]); the medicated vs. unmedicated groups were similar in level of

self-reported depressive symptoms at the time of scanning.

Table 1. Demographics. There were no significant differences in demographics across medication group. CESD: Center for Epidemiologic Study–Depression scale.

Antidepressant group

(n = 11)

Unmedicated group

(n = 12)

Mean SD Mean SD
Age of participant (years) 30.82 4.94 30.17 5.47
CES-D Scale score on day of testing 23.73 9.00 24.91 12.13
Pre-trial urinary oxytocin (pg/mL) 10.01 6.64 9.76 6.74

n % n %
History of Psychotherapy

No history 2 18% 7 58%
Past, not current 2 18% 2 17%
Current 7 64% 3 25%

Menstrual period returned?

Yes 8 72% 7 58%
No 3 27% 5 42%

Race/Ethnicity

White 10 91% 8 66%
Non-white 1 9% 4 33%

Highest Education

High school 3 27% 4 33%
College degree 5 45% 7 58%
Postgraduate degree 3 27% 1 8%

Self-reported physical health

Fair 1 9% 2 17%
Good 9 81% 8 66%
Excellent 1 9% 2 17%

Lifetime number of live births

1 9 82% 8 66%
2 2 18% 2 17%
3 or more 0 0% 2 17%

Other medications on day of testing

None 8 10

Hormonal contraceptives 2 0

Antihistamines 1 1

Lansoprazole 0 1

Ibuprofen 1 0

https://doi.org/10.1371/journal.pone.0217764.t001
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Experimental procedure

To reduce variability in endogenous oxytocin, participants nursed their infant ~1 hour 15 min-

utes prior to imaging. All participants were administered nasal spray approximately 30 min

prior to imaging; nasal spray condition (oxytocin vs. placebo) was randomized and double-

blinded. Oxytocin nasal spray contained an inert carrier solution and 24IU of synthetic oxyto-

cin (Syntocinon, Novartis Pharma, Switzerland), while the placebo spray contained inert car-

rier only; these sprays have been shown to be indistinguishable to participants [57]. While the

elimination half-life of peripheral (plasma) oxytocin is relatively short (~20 minutes [58]), con-

centrations in cerebrospinal fluid peak approximately 45–75 minutes of nasal spray adminis-

tration [59].

Participants provided a urine sample before and after nasal spray application, which was

tested for oxytocin. These tests confirmed a significant increase in urinary oxytocin in the oxy-

tocin nasal spray group (Mpre = 7.29 pg/mL, SD = 2.14; Mpost = 44.37 pg/mL SD = 46.27; paired

t(10) = -2.63, p = .025), but not the placebo (Mpre = 12.34pg/mL, SD = 8.66; Mpost = 11.34 pg/

mL, SD = 11.80; paired t(10) = .25, p = .809). Baseline urinary oxytocin levels were similar

across medication groups (antidepressant M = 10.30 pg/mL, SD = 6.86; unmedicated M = 9.76

pg/mL, SD = 6.74), and were in the same range reported in prior research on urinary oxytocin

in postpartum women [60, 61]. Antidepressant use did not predict changes in urinary oxytocin

(F(1, 24) = 1.14, p = .296).

Following nursing and nasal spray administration, participants viewed emotionally relevant

visual stimuli in a functional magnetic resonance imaging (fMRI) paradigm (see below for

imaging details). We examined blood oxygenation-level dependent (BOLD) responses to 4 sti-

muli types: sexually explicit images, smiling and crying infant images, and emotionally neutral

images. The neutral images were derived from a set of International Affective Picture Set

(IAPS) images validated to evoke low emotional arousal and fall in the middle of the valence

range [47, 62]. Infant images were taken from publicly available websites and were validated to

evoke moderate but significant emotional arousal; given a Likert scale of 1 (least intense) to 9

(most intense), the average rating for infant images was 4.70 [46]. Sexual images included

images of nude heterosexual couples engaging in sexual acts (e.g., oral sex, vaginal intercourse)

that were derived from a set of images previously shown to evoke sexual interest in women

[46, 63]; these images similarly were rated as moderately but significantly emotionally arous-

ing, with an average intensity rating of 4.35 [46]. During stimuli presentation, participants

completed a backwards-matching task to ensure adequate attention. The study was approved

by the Institutional Review Board at Indiana University Bloomington, and all participants pro-

vided written informed consent.

Imaging procedures and data processing

The imaging session consisted of a 3 plane-localizing scan to determine slice volumes (10 sec),

seven whole brain blood oxygenation-level dependent (BOLD) scans (5 min each), and a

whole brain high-resolution anatomical scan (5 min), for a total of approximately 1 hour.

Functional (BOLD) scans were started with a 12-sec at-rest baseline, followed by 64 random-

ized stimuli presented for 2 seconds each (with variable inter-stimuli intervals of 2–6 seconds).

Imaging was conducted in a Seimens Magnetom Trio 3T whole body MRI. All images were

collected on a 32-channel phased-array head coil. The field of view of 220 × 220 mm. An in-

plane resolution of 128 × 128 pixels, and 35 axial slices of 3.4 mm thickness per volume, pro-

duced voxels that were 1.7 × 1.7 × 3.4 mm. A gradient echo BOLD echo-planar imaging (EPI)

sequence was used for capturing functional images, including the following parameters:

TE = 24 ms, TR = 2,000 ms, flip angle = 70˚. We used parallel imaging with an iPAT factor of

SSRIs & oxytocin in postpartum depression
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2. For anatomical volumes, we used high-resolution T1-weighted images, acquired with a

Turbo-flash 3-D sequence, including the following parameters: TI = 900 ms, TE = 2.67 ms,

TR = 1800 ms, flip angle = 9˚, with 192 sagittal slices of 1 mm thickness, a field of view of

224 × 256 mm, and an isometric voxel size of 1 mm3.

We used BrainVoyager QX 2.2 to prepare imaging data for statistical analysis. Each partici-

pants’ anatomical volumes were stereotaxically transformed using the Talaraich atlas with an

eight-parameter affine transformation. Using an intensity-based motion correction algorithm,

functional volumes were realigned to the volume closest in time to the anatomic volume. We

also corrected functional volumes using slice scan-time correction, 3-D spatial Gaussian filter-

ing (FWHM 6 mm), and linear trend removal. These corrected functional volumes were co-

registered to the relevant anatomical volume using an intensity-based matching algorithm,

and normalized to the common stereotactic space with an eight-parameter affine transforma-

tion. Functional data were re-sampled to 3 mm3 isometric voxels. Beta weights of a random-

effects general linear model (based on timing protocol of the blocked stimulus presentation,

convolved with a two-gamma hemodynamic response function) were extracted from group

ROIs using the VOI/ROI ANCOVA data table tool in BrainVoyager’s volume of interest

module.

Results

We conducted repeated measures ANCOVAs with stimulus type (neutral, sexual, infant cry-

ing, or infant smiling) as the repeated measures variable, medication use and nasal spray

group (and their interaction) as fixed effects, and the following covariates: scores on the Center

for Epidemiological Studies-Depression (CES-D) scale on the day of the imaging session [56],

age, pre-trial urinary oxytocin level, and activation to nonsense images in which the pixels

from the other stimuli were scrambled. Controlling for activation to nonsense stimuli

accounted for individual differences in general activation to visual stimuli not related to emo-

tion or reward processing. None of the covariates differed significantly between groups, but

had considerable variance across the entire sample and were thus used to control for individual

differences at baseline. We conducted separate models predicting activation in the left amyg-

dala (Talairach coordinates: -19, -6, -10), right amygdala (Talairach coordinates: 15, -5, -9), left

NAc (Talairach coordinates: 11, 12, -8); right NAc (Talairach coordinates: -13, 10, 8), and

VTA (Talairach coordinates: 2, -23, -5).

Amygdala

The main effect of antidepressant use was non-significant (Left: F(1, 14) = 3.26, p = .09, η2partial =

0.19; Right: F(1, 14) = 1.052, p = .32, η2partial = 0.07) as was nasal spray condition (Left: F(1, 14) =

0.15, p = .71, η2partial = 0.01; Right: F(1, 14) = 1.052, p = .32, η2partial = 0.07). In other words, nei-

ther antidepressant use nor oxytocin administration were associated with overall higher or lower

amygdala activation. However, there was a significant interaction between medication, nasal

spray condition, and stimuli type (Left: F(2, 13) = 6.85, p = .01, η2partial = 0.51; Right: F(2, 12) =

3.67, p = .04, η2partial = 0.48; see Fig 1); thus, we conducted follow-up contrasts to examine the

nature of the interaction (see below).

Post-hoc specific contrast tests of amygdala activation by stimuli type. See Table 2 for

all specific contrasts; general patterns are summarized below.

The contrast of infant vs. sexual stimuli was of particular interest as a possible marker of

neuroadaptation to motherhood. The contrast between smiling infant vs. sexual stimuli was

significant in all groups except unmedicated women receiving placebo. That is, for women tak-

ing antidepressants and/or receiving oxytocin nasal spray, there was significantly greater

SSRIs & oxytocin in postpartum depression
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amygdala activation to sexual stimuli than smiling infant stimuli; however, for unmedicated

women receiving placebo there was no significant difference between stimuli types. The con-

trast between crying infant and sexual stimuli was significant only among unmedicated

women receiving oxytocin nasal spray; in this group amygdala activation to sexual stimuli was

significantly greater than to crying infant stimuli.

Contrasts between neutral and smiling infant stimuli were significant in unmedicated

women; however, the direction of this contrast differed by nasal spray group. In unmedicated

women receiving placebo, amygdala activity to smiling infant stimuli was significantly higher

than to neutral stimuli; however, among unmedicated women receiving oxytocin nasal spray,

amygdala activation to smiling infant stimuli was significantly lower than to neutral stimuli.

Finally, contrasts between neutral and crying infant stimuli, and between crying and smil-

ing infant stimuli, were non-significant across all groups.

Nucleus accumbens

The interaction between stimuli type, nasal spray condition and medication use on activation

of the NAc was non-significant (Left: F(2, 14) = 1.91, p = .18, η2partial = 0.32; Right: F(2, 14) =

0.36, p = .78, η2partial = 0.08). However, there was a significant interaction between nasal

spray condition and antidepressant use in activation of the right NAc (F(1, 14) = 5.66, p = .03,

η2partial = 0.29), such that unmedicated women receiving placebo nasal spray had significantly

higher right NAc activation to all stimuli than women receiving antidepressants and/or oxyto-

cin nasal spray (Fig 2).

Ventral tegmental area

There were no significant effects by stimuli type, nasal spray condition, or medication use, nor

any significant interaction in the VTA.

Discussion

We explored if antidepressant use and exogenous oxytocin administration were associated

with neural activation in postpartum depressed women. There were significant interactions

between stimuli type, (non-randomized) antidepressant use, and (randomized) exogenous

oxytocin administration in amygdala activation. However, antidepressant use and oxytocin

administration were not associated with activation in reward processing areas, such the ventral

tegmental area and the nucleus accumbens.

Fig 1. a-b. Activation of amygdala (1a: Left; 1b: Right) to visual emotional stimuli, controlling for age, CES-D

score, pre-trial urinary oxytocin, and activation to scrambled images. Contrast bars represent significant differences

between response to different stimuli types within the group (i.e., significant repeated measures effects). �: p< 0.05; ��:

p< 0.01.

https://doi.org/10.1371/journal.pone.0217764.g001
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Table 2. Post-hoc simple contrasts between stimuli types by antidepressant use and nasal spray group. Significant within-group contrasts are highlighted in grey.

Contrasts Antidepressant x

placebo nasal spray

Antidepressant x

oxytocin nasal spray

Unmedicated x

placebo nasal spray

Unmedicated x

oxytocin nasal spray

Mdiff SE p d Mdiff SE p d Mdiff SE p d Mdiff SE p d
Right amygdala

Neutral vs.

crying infant

-0.22 0.37 0.56 0.22 -0.01 0.24 0.98 0.02 -0.03 0.34 0.92 0.03 0.16 0.38 0.68 0.16

Neutral vs.

smiling

-0.07 0.20 0.73 0.13 0.05 0.13 0.69 0.15 -0.67 0.18 <0.01 1.41 0.73 0.20 <0.01 1.38

Neutral vs.

sexual

-0.99 0.37 0.02 1.01 -0.53 0.24 0.05 0.83 -0.66 0.34 0.07 0.73 -0.98 0.38 0.02 0.97

Crying infant vs.

smiling infant

0.15 0.43 0.73 0.13 0.06 0.28 0.84 0.08 -0.64 0.40 0.13 0.60 0.57 0.44 0.21 0.49

Crying infant vs.

sexual

-0.77 0.45 0.11 0.65 -0.53 0.30 0.10 0.67 -0.63 0.42 0.16 0.57 -1.13 0.47 0.03 0.91

Smiling infant vs.

sexual

-0.92 0.40 0.04 0.87 -0.58 0.26 0.04 0.84 0.01 0.37 0.98 0.01 -1.71 0.41 <0.01 1.58

Mdiff SE p d Mdiff SE p d Mdiff SE p d Mdiff SE p d
Left amygdala

Neutral vs.

crying infant

-0.37 0.27 0.19 0.52 0.11 0.25 0.66 0.17 -0.08 0.29 0.79 0.10 0.54 0.32 0.12 0.64

Neutral vs.

smiling

-0.32 0.23 0.20 0.53 0.06 0.22 0.80 0.10 -0.72 0.26 0.01 1.05 0.97 0.28 <0.01 1.31

Neutral vs.

sexual

-1.16 0.26 <0.01 1.69 -0.41 0.24 0.11 0.65 -0.6 0.29 0.06 0.78 -0.74 0.32 0.03 0.87

Crying infant vs.

smiling infant

0.05 0.33 0.88 0.06 -0.06 0.31 0.86 0.07 -0.64 0.36 0.10 0.67 0.44 0.40 0.29 0.42

Crying infant vs.

sexual

-0.79 0.43 0.09 0.69 -0.53 0.39 0.20 0.51 -0.52 0.47 0.29 0.42 -1.28 0.51 0.03 0.95

Smiling infant vs.

sexual

-0.85 0.31 0.02 1.04 -0.47 0.29 0.13 0.61 0.12 0.34 0.74 0.13 -1.71 0.38 <0.01 1.70

https://doi.org/10.1371/journal.pone.0217764.t002

Fig 2. Activation of right nucleus accumbens to visual emotional stimuli, controlling for age, CES-D score, pre-

trial urinary oxytocin, and activation to scrambled images. There were no significant contrasts between different

stimuli types. �: p< 0.05.

https://doi.org/10.1371/journal.pone.0217764.g002
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Only three studies have directly compared neural activity in depressed women who were vs.

were not taking antidepressants. Briceño et al. [64] found no significant differences in overall

neural response to facial emotional stimuli in depressed women who were and were not taking

antidepressants. However, as that study did not predesignate ROIs, it was not designed to

detect anything but very large whole-brain group differences. Yang et al. [65] examined

changes in neural activation to sexual stimuli before and after antidepressant treatment in 7

depressed non-postpartum women. Following antidepressant treatment, participants signifi-

cantly increased activation in the subcortical reward areas, notably the hypothalamus, septal

nuclei and parahippocampal gyrus, but not the amygdala. However, there may be important

differences in postpartum vs. non-postpartum women’s brain activity, particularly when con-

sidering reproductively relevant stimuli (such as the sexual stimuli used here). In non-postpar-

tum women, antidepressants suppress sexual response [44], but as seen in Fig 1, in our sample

of depressed postpartum women, women taking antidepressants did not have systematically

lower amygdala response to sexual stimuli compared to unmedicated women.

Wonch et al. [66] examined amygdala response to infant stimuli in depressed and non-

depressed postpartum mothers. Within their PPD group, there were no significant differences

in amygdala response among 13 medicated vs. 18 unmedicated women. However, these

authors did not include sexual stimuli, which may elicit stronger amygdala response [46].

Also, unlike in Wonch et al [66]’s paradigm, all the participants in our study nursed their

infants prior to imaging; it is possible that recent exposure to endogenous oxytocin may moder-

ate important differences between medication groups. Finally, the participants in our sample

also reported significantly higher EDPS scores (M = 13.32, SEM = 0.79) than those studied by

Wonch et al (M = 8.29, SEM = 0.84); possibly, the observed effects only emerge during more

severe depressive episodes.

Importantly, there were significant interactions between oxytocin administration and anti-

depressant use in amygdala responsivity to emotional stimuli. Unmedicated women and

women taking antidepressants responded differently to exogenous oxytocin administration,

suggesting the need for caution as oxytocin is evaluated as an adjunctive to antidepressant

treatment in PPD. There is evidence that depression is associated with lower responsivity to

positively valenced emotional stimuli [67]. In healthy non-depressed women, administration

of escitalopram is associated with lower amygdala activation to negative stimuli and higher

activation to positive stimuli [68]. These patterns are thought to indicate that antidepressants

attenuate hyper-reactivity to negative or stressful stimuli, while increasing reward salience

associated with positive stimuli [69]. Oxytocin, however, appears to inhibit serotonin signaling

in the dorsal raphe nucleus via suppression of activity in the amygdala [70]. As such, it is possi-

ble that instead of amplifying the effects of antidepressants on amygdala response to positive

emotional stimuli (as would be beneficial in an adjunctive treatment), oxytocin may attenuate
antidepressant response. As seen in Fig 1, we found that among PPD women taking antide-

pressants, oxytocin vs. placebo administration was associated with what appears to be lower
amygdala activation to sexual stimuli, and no difference in smiling infant stimuli–at a mini-

mum, we did not find evidence for increased amygdala responsiveness to positive emotional

stimuli. However, when considering the possible treatment efficacy of adjunctive oxytocin

there may be different effects of short-term and long-term exposure to exogenous oxytocin;

the data from the present study can only speak to the short-term effects of a single administra-

tion. It is possible that longer-term joint oxytocin/antidepressant administration would have

down-stream effects that could amplify therapeutic response, such as increasing production of

neurotrophic factors [21] or epigenetic changes in the expression of genes for key receptors

[71].
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Unexpectedly, there were few significant associations of antidepressant use or oxytocin

administration with reward area processing. We observed only one such association (namely,

that unmedicated women receiving placebo had higher right NAc activity overall than any

other group); as this association was not replicated bilaterally, it should be interpreted cau-

tiously. There is evidence that the left NAc has greater involvement in reward-related activa-

tion than the right [72], which may lead to different thresholds for detecting depression-

related attenuation of reward processing. For example, one study of unmedicated depressed

individuals (50% female) found reduced activation in the left but not right NAc [73]. It is pos-

sible that the higher sensitivity of the left NAc may have influenced our findings in the left but

not right NAc. It is also possible that due to our sample size, we missed some small but poten-

tially relevant effects in the right NAc and VTA. Alternatively, it is possible that antidepressant

and oxytocin doses, or the length of exposure, were insufficient to see significant associations

in reward areas. Notably, all of the women in this study were depressed at the time of imaging,

suggesting incomplete treatment response among the women taking antidepressants: we may

have seen greater results if participants were on a higher dose that better managed their

depressive symptoms.

The fact that we did see significant associations in the amygdala might suggest that the

amygdala was relatively more responsive to the effects of antidepressants and/or oxytocin than

the NAc or VTA. However, studies in animal models suggest the opposite: antidepressant

administration is associated with significant changes in the organization and activation of the

NAc but not the basolateral amygdala [42]. It is possible that the stimuli we used may have elic-

ited an emotional, but not necessarily rewarding, response. Of the few studies that have found

a significant effect of oxytocin administration on reward area processing in postpartum

women, most have used stimuli of the participant’s own infants [74–76]–a much more salient

and arguably more rewarding stimulus than stimuli of other people’s infants. It is also possible

that when participants nursed shortly prior to imaging, the natural rise in prolactin levels asso-

ciated with lactation may have temporary suppressed dopamine production which in turn

may have limited activation of these dopaminergic pathways [77] (but see also [78]). Finally, it

is possible these findings reflect a true null, in which neither oxytocin nor antidepressants are

associated with significant effects in reward processing areas among PPD women. If so, this

would require antidepressants to exert their therapeutic effect on depression via some other

process–for example, by improving corticolimbic connectivity [79] or decreasing the effect of

stress on functional reorganization during the postpartum period [42].

Our sample size was small; however, it is in keeping with similar studies [66], and we

observed a number of significant associations with medium to large effect sizes. These effect

sizes may serve as a reference point for future researchers in planning studies on neural activa-

tion in PPD women. They also signal the need for caution in interpreting null effects. In a few

instances (e.g., the main effect of antidepressants on amygdala activation across stimuli), the

observed associations were not statistically significant but the effect sizes were large enough to

suggest a larger sample would achieve significance. Overall, we view the effect sizes observed

in this analysis as large enough to suggest that further replication would be fruitful in revealing

important group-wise differences. In particular, it will be important to collect samples large

enough (and with enough precision) to examine the sub-regions of amygdala that contribute

to the observed differences associated with antidepressant use. Such analyses can reveal impor-

tant clues as to the mechanisms by which antidepressants exert their effects. For example, is a

growing literature that suggests that, regardless of treatment modality, antidepressant effects

are driven by neuroplastic changes specific to the basolateral amygdala [80–82]; however thus

far this literature has not extended to PPD.
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This was an observational study, and antidepressant use was not randomized; thus our con-

clusions must be tempered regarding the effects attributable solely to antidepressants. We can-

not conclude antidepressants are causally related to changes in neural activity. Lacking

randomization with a control group (or other means of controlling for the effect of treatment),

it is difficult to conclude what might be driving the differences described here. However, it

should be noted that randomizing PPD women to placebo (or no treatment) would raise ethi-

cal issues, and would only be warranted if there were sufficient evidence of the need for such a

trial–again, highlighting the importance of preliminary findings such as those presented here.

It is also possible that there were important differences between the participants who were and

were not taking antidepressants. Both groups reported similar CES-D scores, suggesting that

the women taking antidepressants may have had a more severe underlying depression that

only partially remitted in response to medication. To address these limitations, future research

would benefit from a design comparing a larger sample of PPD participants before and after

successful antidepressant treatment.

Further research is also needed to examine if antidepressant use during the postpartum

transition influences neuroadaptation: it has been proposed that increasing activation to

infant-related stimuli and decreasing activation to sexual stimuli may reflect the shift of emo-

tional processing resources from sexual interest to the demands of caring for an infant [47].

Our data suggested differences between women who were medicated vs. unmedicated in con-

trasts between reproductively relevant stimuli (i.e., sexual vs. infant-related stimuli), which

supported the view that PPD represents a maladaptation to the unique challenges of mother-

hood. These findings, alongside a growing literature in evolutionary medicine [46, 47, 54, 83],

underscore the need to consider the reproductive context in which PPD occurs when evaluat-

ing potential treatments.

Conclusions

We compared neural activation in women with PPD who were and were not taking antide-

pressants. Among PPD women receiving oxytocin nasal spray and/or those taking antidepres-

sants, there was significantly higher amygdala activation to sexual stimuli than to either

neutral or smiling infant stimuli. However, among unmedicated PPD women receiving a pla-

cebo nasal spray, amygdala activation to sexual stimuli was not significantly different from

activation to either neutral or infant-related stimuli. There was no consistent effect of antide-

pressant use or exogenous oxytocin administration in activation of reward areas (NAc, VTA).

These data will help inform and encourage further attention to the growing body of research

on the effects of psychoactive medication on neural function during the postpartum reproduc-

tive transition.
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