8 research outputs found

    Visual Calibration, Identification and Control of 6-RSS Parallel Robots

    Get PDF
    Parallel robots present some outstanding advantages in high force-to-weight ratio, better stiffness and theoretical higher accuracy compared with serial manipulators. Hence parallel robots have been utilized increasingly in various applications. However, due to the manufacturing tolerances and defections in the robot structure, the positioning accuracy of parallel robots is basically equivalent with that of serial manipulators according to previous researches on the accuracy analysis of the Stewart Platform [1], which is difficult to meet the precision requirement of many potential applications. In addition, the existence of closed-chain mechanism yields difficulties in designing control system for practical applications, due to its highly coupled dynamics. Visual sensor is a good choice for providing non-contact measurement of the end-effector pose (position and orientation) with simplicity in operation and low cost compared to other measurement methods such as the coordinate measurement machine (CMM) [2] and the laser tracker [3]. In this research, a series of solutions including kinematic calibration, dynamic identification and visual servoing are proposed to improve the positioning and tracking performance of the parallel robot based on the visual sensor. The main contributions of this research include three parts. In the first part, a relative pose-based algorithm (RPBA) is proposed to solve the kinematic calibration problem of a six-revolute-spherical-spherical (6-RSS) parallel robot by using the optical CMM sensor. Based on the relative poses between the candidate and the initial configurations, a calibration algorithm is proposed to determine the optimal error parameters of the robot kinematic model and external parameters introduced by the optical sensor. The experimental results demonstrate that the proposal RPBA using optical CMM is an implementable and effective method for the parallel robot calibration. The second part focuses on the dynamic model identification of the 6-RSS parallel robots. A visual closed-loop output-error identification method based on an optical CMM sensor is proposed for the purpose of the advanced model-based visual servoing control design of parallel robots. By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated model, the visual closed-loop output-error identification method is developed and the model parameters are identified by using a nonlinear optimization technique. The effectiveness of the proposed identification algorithm is validated by experimental tests. In the last part, a dynamic sliding mode control (DSMC) scheme combined with the visual servoing method is proposed to improve the tracking performance of the 6-RSS parallel robot based on the optical CMM sensor. By employing a position-to-torque converter, the torque command generated by DSMC can be applied to the position controlled industrial robot. The stability of the proposed DSMC has been proved by using Lyapunov theorem. The real-time experiment tests on a 6-RSS parallel robot demonstrate that the developed DSMC scheme is robust to the modeling errors and uncertainties. Compared with the classical kinematic level controllers, the proposed DSMC exhibits the superiority in terms of tracking performance and robustness

    Relative posture-based kinematic calibration of a 6-RSS parallel robot by optical coordinate measurement machine

    Get PDF
    In this article, a relative posture-based algorithm is proposed to solve the kinematic calibration problem of a 6-RSS parallel robot using the optical coordinate measurement machine system. In the research, the relative posture of robot is estimated using the detected pose with respect to the sensor frame through several reflectors which are fixed on the robot end-effector. Based on the relative posture, a calibration algorithm is proposed to determine the optimal error parameters of the robot kinematic model and external parameters introduced by the optical sensor. This method considers both the position and orientation variations and does not need the accurate location information of the detection sensor. The simulation results validate the superiority of the algorithm by comparing with the classic implicit calibration method. And the experimental results demonstrate that the proposal relative posture-based algorithm using optical coordinate measurement machine is an implementable and effective method for the parallel robot calibration

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Enhanced Image-Based Visual Servoing Dealing with Uncertainties

    Get PDF
    Nowadays, the applications of robots in industrial automation have been considerably increased. There is increasing demand for the dexterous and intelligent robots that can work in unstructured environment. Visual servoing has been developed to meet this need by integration of vision sensors into robotic systems. Although there has been significant development in visual servoing, there still exist some challenges in making it fully functional in the industry environment. The nonlinear nature of visual servoing and also system uncertainties are part of the problems affecting the control performance of visual servoing. The projection of 3D image to 2D image which occurs in the camera creates a source of uncertainty in the system. Another source of uncertainty lies in the camera and robot manipulator's parameters. Moreover, limited field of view (FOV) of the camera is another issues influencing the control performance. There are two main types of visual servoing: position-based and image-based. This project aims to develop a series of new methods of image-based visual servoing (IBVS) which can address the nonlinearity and uncertainty issues and improve the visual servoing performance of industrial robots. The first method is an adaptive switch IBVS controller for industrial robots in which the adaptive law deals with the uncertainties of the monocular camera in eye-in-hand configuration. The proposed switch control algorithm decouples the rotational and translational camera motions and decomposes the IBVS control into three separate stages with different gains. This method can increase the system response speed and improve the tracking performance of IBVS while dealing with camera uncertainties. The second method is an image feature reconstruction algorithm based on the Kalman filter which is proposed to handle the situation where the image features go outside the camera's FOV. The combination of the switch controller and the feature reconstruction algorithm can not only improve the system response speed and tracking performance of IBVS, but also can ensure the success of servoing in the case of the feature loss. Next, in order to deal with the external disturbance and uncertainties due to the depth of the features, the third new control method is designed to combine proportional derivative (PD) control with sliding mode control (SMC) on a 6-DOF manipulator. The properly tuned PD controller can ensure the fast tracking performance and SMC can deal with the external disturbance and depth uncertainties. In the last stage of the thesis, the fourth new semi off-line trajectory planning method is developed to perform IBVS tasks for a 6-DOF robotic manipulator system. In this method, the camera's velocity screw is parametrized using time-based profiles. The parameters of the velocity profile are then determined such that the velocity profile takes the robot to its desired position. This is done by minimizing the error between the initial and desired features. The algorithm for planning the orientation of the robot is decoupled from the position planning of the robot. This allows a convex optimization problem which lead to a faster and more efficient algorithm. The merit of the proposed method is that it respects all of the system constraints. This method also considers the limitation caused by camera's FOV. All the developed algorithms in the thesis are validated via tests on a 6-DOF Denso robot in an eye-in-hand configuration

    Accuracy Enhancement of Industrial Robots by Dynamic Pose Correction

    Get PDF
    The industrial robots are widely employed in various industries. Normally, the industrial robots are highly repeatable. However, their accuracy is relatively poor. If the robot’s end-effector is required to move to a pre-calculated pose (as in off-line programming), its position error may reach a couple of millimeters. To meet the growing demand for high absolute accuracy in robotic applications such as deburring, polishing, drilling, and fastening, a lot of research work has been carried out. Robot calibration is normally used to enhance the accuracy by using external pose measurement sensors such as laser tracker. However, the calibration procedure is long and the cost is high. Also, the accuracy enhancement is limited and the best reported accuracy is around ±0.1mm. In addition, the changing operating environment and the wear and tear of the robot affect the accuracy. This research aims at developing a novel and cost-effective dynamic pose correction (DPC) strategy to address the above-mentioned issues on the accuracy enhancement. This strategy uses the vision system, i.e. C-Track from Creaform Inc. to measure the pose and integrates with the robotic controller, also known as visual servoing. To realize this strategy, three main research activities have been conducted. First, the pose of the robot is obtained from the binocular sensor. The triangulation method for estimating the pose of an object is elaborated and the C-Track as a binocular sensor is introduced. In order to remove the noise from the C-Track’s measurements, the analysis on the measured data is carried out. A root mean square (RMS) method is used to achieve reliable pose estimation. Next, the DPC strategy is designed and simulated for an industrial robot, Fanuc M20-iA. This strategy can correct the position and orientation of the robot end-effector by using position-based visual servoing. A proportional-integral-derivative (PID) controller is proposed to achieve the dynamic pose correction. The algorithm does not need the kinematic and dynamic model of the robot. The controller is fully tested in Matlab/Simulink with robotic toolbox where Fanuc M20-iA is simulated. The simulation results validated the effectiveness of the proposed DPC. The final research work is dedicated to the experimental testing of the proposed DPC on Fanuc M20-iA. The pose estimated from the C-Track serves as the feedback and the output of the DPC is given to the robot controller through Fanuc dynamic path modification (DPM) function. As a result, the robot is guided to the desired pose in real time. The experimental results demonstrate that the robot can achieve the position accuracy ±0.05mm and orientation accuracy ±0.05 degree

    Robust Position-based Visual Servoing of Industrial Robots

    Get PDF
    Recently, the researchers have tried to use dynamic pose correction methods to improve the accuracy of industrial robots. The application of dynamic path tracking aims at adjusting the end-effector’s pose by using a photogrammetry sensor and eye-to-hand PBVS scheme. In this study, the research aims to enhance the accuracy of industrial robot by designing a chattering-free digital sliding mode controller integrated with a novel adaptive robust Kalman filter (ARKF) validated on Puma 560 model on simulation. This study includes Gaussian noise generation, pose estimation, design of adaptive robust Kalman filter, and design of chattering-free sliding mode controller. The designed control strategy has been validated and compared with other control strategies in Matlab 2018a Simulink on a 64bits PC computer. The main contributions of the research work are summarized as follows. First, the noise removal in the pose estimation is carried out by the novel ARKF. The proposed ARKF deals with experimental noise generated from photogrammetry observation sensor C-track 780. It exploits the advantages of adaptive estimation method for states noise covariance (Q), least square identification for measurement noise covariance (R) and a robust mechanism for state variables error covariance (P). The Gaussian noise generation is based on the collected data from the C-track when the robot is in a stationary status. A novel method for estimating covariance matrix R considering both effects of the velocity and pose is suggested. Next, a robust PBVS approach for industrial robots based on fast discrete sliding mode controller (FDSMC) and ARKF is proposed. The FDSMC takes advantage of a nonlinear reaching law which results in faster and more accurate trajectory tracking compared to standard DSMC. Substituting the switching function with a continuous nonlinear reaching law leads to a continuous output and thus eliminating the chattering. Additionally, the sliding surface dynamics is considered to be a nonlinear one, which results in increasing the convergence speed and accuracy. Finally, the analysis techniques related to various types of sliding mode controller have been used for comparison. Also, the kinematic and dynamic models with revolutionary joints for Puma 560 are built for simulation validation. Based on the computed indicators results, it is proven that after tuning the parameters of designed controller, the chattering-free FDSMC integrated with ARKF can essentially reduce the effect of uncertainties on robot dynamic model and improve the tracking accuracy of the 6 degree-of-freedom (DOF) robot

    Visual Closed-Loop Dynamic Model Identification of Parallel Robots Based on Optical CMM Sensor

    No full text
    Parallel robots present outstanding advantages compared with their serial counterparts; they have both a higher force-to-weight ratio and better stiffness. However, the existence of closed-chain mechanism yields difficulties in designing control system for practical applications, due to its highly coupled dynamics. This paper focuses on the dynamic model identification of the 6-DOF parallel robots for advanced model-based visual servoing control design purposes. A visual closed-loop output-error identification method based on an optical coordinate-measuring-machine (CMM) sensor for parallel robots is proposed. The main advantage, compared with the conventional identification method, is that the joint torque measurement and the exact knowledge of the built-in robot controllers are not needed. The time-consuming forward kinematics calculation, which is employed in the conventional identification method of the parallel robot, can be avoided due to the adoption of optical CMM sensor for real time pose estimation. A case study on a 6-DOF RSS parallel robot is carried out in this paper. The dynamic model of the parallel robot is derived based on the virtual work principle, and the built dynamic model is verified through Matlab/SimMechanics. By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated model, a visual closed-loop output-error identification method is proposed and the model parameters are identified by using a nonlinear optimization technique. The effectiveness of the proposed identification algorithm is validated by experimental tests
    corecore