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Abstract

Visual Calibration, Identification and Control of 6-RSS Parallel Robots

Pengcheng Li, Ph.D.

Concordia University, 2020

Parallel robots present some outstanding advantages in high force-to-weight ratio, better stiff-

ness and theoretical higher accuracy compared with serial manipulators. Hence parallel robots have

been utilized increasingly in various applications. However, due to the manufacturing tolerances

and defections in the robot structure, the positioning accuracy of parallel robots is basically equiva-

lent with that of serial manipulators according to previous researches on the accuracy analysis of the

Stewart Platform [1], which is difficult to meet the precision requirement of many potential applica-

tions. In addition, the existence of closed-chain mechanism yields difficulties in designing control

system for practical applications, due to its highly coupled dynamics.

Visual sensor is a good choice for providing non-contact measurement of the end-effector pose

(position and orientation) with simplicity in operation and low cost compared to other measurement

methods such as the coordinate measurement machine (CMM) [2] and the laser tracker [3]. In this

research, a series of solutions including kinematic calibration, dynamic identification and visual

servoing are proposed to improve the positioning and tracking performance of the parallel robot

based on the visual sensor.

The main contributions of this research include three parts. In the first part, a relative pose-

based algorithm (RPBA) is proposed to solve the kinematic calibration problem of a six-revolute-

spherical-spherical (6-RSS) parallel robot by using the optical CMM sensor. Based on the relative

poses between the candidate and the initial configurations, a calibration algorithm is proposed to

determine the optimal error parameters of the robot kinematic model and external parameters intro-

duced by the optical sensor. The experimental results demonstrate that the proposal RPBA using

optical CMM is an implementable and effective method for the parallel robot calibration.
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The second part focuses on the dynamic model identification of the 6-RSS parallel robots. A vi-

sual closed-loop output-error identification method based on an optical CMM sensor is proposed for

the purpose of the advanced model-based visual servoing control design of parallel robots. By us-

ing an outer loop visual servoing controller to stabilize both the parallel robot and the simulated

model, the visual closed-loop output-error identification method is developed and the model param-

eters are identified by using a nonlinear optimization technique. The effectiveness of the proposed

identification algorithm is validated by experimental tests.

In the last part, a dynamic sliding mode control (DSMC) scheme combined with the visual

servoing method is proposed to improve the tracking performance of the 6-RSS parallel robot based

on the optical CMM sensor. By employing a position-to-torque converter, the torque command

generated by DSMC can be applied to the position controlled industrial robot. The stability of the

proposed DSMC has been proved by using Lyapunov theorem. The real-time experiment tests on a

6-RSS parallel robot demonstrate that the developed DSMC scheme is robust to the modeling errors

and uncertainties. Compared with the classical kinematic level controllers, the proposed DSMC

exhibits the superiority in terms of tracking performance and robustness.
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Chapter 1

Introduction

1.1 Background

Today, industrial robots have been widely used in aerospace, automotive manufacturing, spe-

cial processing, electronic package, and modern logistics industries. The industrial robots play

important roles in processing, welding, cutting, spraying, handling, sorting and assembly, etc. And

they have become indispensable for ensuring product quality, improving production efficiency, and

reducing production costs. Generally speaking, industrial robots are mainly classified into two cat-

egories according to their topological configuration: serial robots with serial topology and parallel

robots with parallel topology. In addition, in recent years, there has also been a type of mixed

configuration robot that integrates both serial and parallel structures.

The world’s first industrial robot with the serial topology, as shown in Figure 1.1a, was invented

by George C.Devol in 1961, and has been successfully used on general motors assembly lines

[4]. Since then, various types of serial robots have been developed and have greatly promoted the

process of industrialized production. After the 1980s, with the development of technologies such as

controllers, drives, sensors, and high-level programming languages, industrial robots based on the

serial topology has entered in the golden age of development. Robot manufacturers such as ABB,

KUKA, FANUC, KAWASAKI, Stäbli, etc., have successively developed various types of serial

robots, as shown in Figure 1.1b, which are widely used in different fields of industrial production.

To this date, the serial robot technology is relatively mature.

1



(a) (b)

Figure 1.1: (a) The serial robot - Unimate [4], (b) Industrial serial robot [5]

After entering the 1980s, with the continuous expansion of application fields and the diversifi-

cation of production environments, higher requirements are posed on the performance of industrial

robots, such as speed, accuracy, stiffness, and dynamic characteristics. Due to its own structural

characteristics and error accumulation effects, the applications of the serial robot in some produc-

tion and processing are limited. In this case, a class of parallel topology mechanism (parallel kine-

matic machines) as a new type of industrial robot, a parallel robot, has attracted increasing interest

in academic and industry society. Compared with serial robots, parallel robots have high stiffness,

stable structure, strong load-bearing capacity, small error accumulation effect, small motion inertia

and easy inverse kinematic solution etc. [11]. These characteristic allow the parallel robots to have

a complementary relationship with serial robots in applications, and broad application prospects.

The theoretical structure of a parallel robot, dating back to 1943, was proposed for automatic

painting by Willard L. V. Pollard. However, subject to the technical conditions at the time, the phys-

ical mechanism was not built. As shown in Figure 1.2a, a six-degree-of-freedom (6-DOF) parallel

mechanism for a flight simulator, named as Stewart platform, was designed by British engineer in

1965 [6]. Since then, the parallel robot technology has been greatly promoted. Its application range

covers the fields of motion simulators, machining process, medical tools, aerospace docking devices

and micro-motion mechanisms, etc [12]. One typical parallel robot in Figure 1.2b is the well-known

Delta parallel robot, which claims to be the fastest pick-and-place robot in the world. Delta parallel

robots are often used in high-speed sorting and packaging applications [7].
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(a) (b)

Figure 1.2: (a) The Stewart robot [6], (b) The Delta parallel robot [7]

1.2 Motivation

Recently, the increasing need for high performance composite structures in various industries

has greatly driven the development of the composite manufacturing technologies [13]. The tra-

ditional manual production cannot meet the high efficiency, accuracy and quality requirement of

emerging industry. This aspect has encouraged the development of new production technologies

such as automated fiber placement (AFP) systems. The AFP technology automates the production

of composite material structures using prepregs, which are present in the form of strips composed

of impregnated fiber tapes (glass, carbon, etc.) of semi-polymerized resin. In the AFP system, a

deposition head with the ability of heating and compacting the resin prepregs is mounted on a fiber

placement machine or an industrial robot. The AFP system in Concordia University is shown in Fig-

ure 1.3. The Kawasaki robot carrying the deposition head lays up the prepregs traversing the surface

of the tooling mandrels. In the process of manufacturing, the tooling mandrel is used as a mold to

be wound around by the prepregs to form a certain structure of composite part. The mandrel will be

removed after the part is cured. The current AFP systems can significantly improve the efficiency

and quality of the production of composite materials. However, they are limited to the production

of the open surfaces presenting a flat or contoured surface, or simple revolution parts such as cylin-

ders or cones due to the insufficient degree-of-freedom (DOF) of the system and the difficulties in

3



Figure 1.3: The AFP machine in Concordia University

(a) (b)

Figure 1.4: (a) The Y-shape tube, (b) The bicycle frame

generating trajectories. Especially, the aerospace industry and the production industries of sports

equipment are now exploring to use this technique for the production of structures with more com-

plex geometries, like ”Y” tubes or the structures forming closed-loops such as bicycle frames, as

shown in Figure 1.4.

To be able to manufacture the structures with complex geometries, the flexibility of the AFP

system should be improved. The collaborative robotic system consisting of two robots is a promising

solution to increase the dexterity by employing one robot to hold the fiber placement head at the

end-effector and another robot to hold the mandrel. The two-serial-robot collaborative system may

not solve the fiber placement problem, since the serial robots tend to deform and lose the accuracy

due to its cantilever structure, considering the weight of the mandrel and the compaction force.
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Figure 1.5: The collaborative AFP machine in Concordia University

Compared with the serial robots, 6-DOF parallel robots enjoy better stiffness. Therefore, a parallel-

serial collaborative robot system, in additional to a rotational stage mounted on the platform of the

parallel robot, is built for handling the complex structures manufacturing in Concordia University

as shown in Figure 1.5.

The positioning and tracking accuracy is one of the most important performance indicators

of a parallel robot, which directly affects the final manufacturing results of the collaborative AFP

system. However, the accuracy of the 6-DOF parallel robot is relatively low compared with the serial

robot, which highly restricts the further development of the collaborative AFP system. With the

gradual expansion of application fields, the requirements for the positioning and tracking accuracy

of parallel robots are also increasing, especially in the fields of aviation, industrial finishing, medical

assistance and micro motion. In practice, the accuracy of the 6-DOF parallel robots is relative

low due to the existence of many factors affecting the motion error. Therefore, the research on
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improving the positioning and tracking accuracy of parallel robots has important theoretical and

practical significance, and thus is the main motivation of this thesis research work.

1.3 Problems and Solutions

The parallel robot motion error is referred to as the 6 dimension (6D) pose errors between the

actual end-effector frame’s trajectory of the parallel robot and the ideal motion trajectory. There are

many factors affecting the parallel robot motion error, and the source of the errors can be attributed

to the mechanism errors and environment errors. The mechanism errors include geometric errors,

flexible deformation, thermal deformation, force deformation and friction, etc. The environment

errors mainly are introduced by the temperature, humidity, and operation process of the surrounding

environment. According to the dynamic characteristics of errors, they can be classified into static

errors and dynamic errors. Static errors remain constant during movement of the parallel robot,

including structural errors, environmental factors, control systems, and transmission system error,

etc. Dynamic errors change over time during the movement of a parallel robot, including flexible

deformation of components caused by forces, inertial forces, and weight, etc [1]. The main errors

of the 6-DOF parallel robot in this research are analyzed as following:

• Mechanism error. The errors of the basic components of the parallel robot during manufactur-

ing and assembly are unavoidable, which result in errors between the actual parameters and

ideal parameters of the components. Because the motion control of the parallel robot is based

on the ideal structural parameters, it is not completely consistent with the actual structural

parameters, which causes a mechanical error in the parallel robot and in turn leads to errors

in the trajectory of the parallel robot. There are hundreds of error sources for structural errors

of parallel robots, which are slightly different depending on the configuration. Generally, to

simplify the calculation, only the length error of the links and the position error of the joints

are considered [6]. The mechanism errors account for more than 60% of the total parallel

robot motion error [1].

• Control system error. Joint position closed-loop controller is commonly used in the parallel

robot control systems instead of workspace pose closed-loop controller, due to the lack of
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the proper pose measurement device [12]. This control strategy is easy to be implemented,

due to the fact that inverse kinematics of parallel robots can be analytically solved, and the

measured joint angles can be used as feedback signal in the joint space control loop. However,

the convergence of the joint positions cannot guarantee that of the 6D pose, according to the

mechanism errors. Another issue of the current controllers of the parallel robots is that the

dynamics of the parallel robots are ignored. The dynamic model of the parallel robot plays an

important role in the model-based controller designs, especially in applications where high

positioning and tracking accuracy is needed.

Kinematic calibration is a promising solution for removing the negative influence of mecha-

nism errors and improving the positioning accuracy of end-effector output in a robot control sys-

tem. Kinematic calibration is the process of determining the actual values of kinematic parameters

of the robots which describe the relative position and orientation of links and joints in the robot.

Basic steps of kinematic calibration are kinematic modeling, measurement and implementation [6].

Although a lot of methods for modeling and calibrating serial robots have been proposed, these

methods are not always suitable for parallel robots. The existence of closed-chain mechanism and

more moving parts yields difficulties on dynamic analysis of parallel robots. For example, a 6-DOF

Steward platform has thirteen moving bodies (twelve legs and one end-effector), which are highly

nonlinear in dynamic modeling. Since the dynamics parameters are normally unknown or approx-

imately derived from CAD model for the industrial robots, the dynamic identification is necessary

to be carried out.

Vision is a good choice for providing non-contact measurement of the end-effector’s pose with

respect to the camera frame and has been utilized for kinematic calibration, dynamic identification

and control of the robots [14, 15]. Vision system can observe and estimate the complete end-effector

pose in real time with simplicity in operation and low cost compared to other measurement methods,

e.g. the laser tracker, and therefore, has a great potential for the calibration, identification and

control of parallel robots. Vision can also be incorporated into the feedback control loop of robotic

systems to increase the flexibility and adaptability. The pose of the end-effector can be acquired

on-line provided that the image processing is fast enough. Shirai and Inoue [16] proposed an open-

loop control method, so called `̀ look-then-move scheme´́ , in 1973. With the development of high
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speed computer, visual seroving, `̀ look-and-move´́ control scheme, enjoys a fast progress. The

most important advantage of visual servoing is to relieve control scheme from forward kinematics

calculation. There is no analytical expression for the forward kinematic model of 6-DOF parallel

robots [17]. Therefore visual servoing is an effective method for improving the tracking accuracy of

parallel robots. Compared with the research work on visual servoing of serial robots [18, 19], there

are limited research work that has been dedicated to 6-DOF parallel robots.

The optical Coordinate Measurement Mechine (CMM) sensor is a dual camera based vision

sensor. The coordinates of target reflectors in the field of view can be directly measured by the

sensor. By attaching four non-collinear reflectors on the platform, the pose of the end-effector can

be derived. The optical CMM sensor have been applied to the path tracking controller design [20] for

the serial robots. In this research, the optical CMM sensor is utilized to measure the end-effector’s

pose.

1.4 Scope and Objectives

The main goal of this research is to improve the positioning and trajectory tracking accuracy of

the 6-DOF parallel robot by developing efficient kinematic calibration, dynamic identification, and

control algorithm based on the optical CMM.

The research work in this research is carried out in four main phases. Firstly, the theoritical

models related to the accuracy of the parallel robot, including inverse kinematics, forward kinemat-

ics, velocity relations and the dynamic model of the 6-RSS parallel robots are needed to be built for

developing visual calibration, identification and controller purpose. In the second phase, a calibra-

tion algorithm by using the optical CMM and several target reflectors attached on the end-effector

is presented for the 6-RSS parallel robot. The detected feature points of the reflectors can be used to

estimate the poses of the end-effector. Correspondingly, the methods of constructing the objective

function, finding the updating algorithm, selecting candidate configuration set and determining the

proper working range are developed for the visual kinematic calibration purpose.

The third phase is the development of the dynamic parameter identification method for 6-RSS

parallel robot based on the optical CMM. Due to the fact that it is normally nontrival to measure the
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torque or current of the actuators of the industrial robots. The closed-loop output-error identification

method based on the optical CMM is developed for the 6-RSS parallel robots, which is to find the

dynamic model parameters by minimizing the output deviation between the actual and simulated

systems subjecting to the same input.

Finally, in order to improve the tracking performance of the 6-RSS parallel robot, the dynamic

model based visual servoing controller should be studied. Based on the calibrated kinematic and

identified dynamic parameters, the computed torque visual servoing controller can be developed to

derive good tracking performance. However the un-modeled dynamics and disturbance cannot be

avoided, hence a sliding mode-based visual servoing controller can be developed to compensate

the uncertainties and further improve the tracking performance. Due to the lack of the velocity

measurement, the state variables estimation should be studied based on the pose measurement. At

last, the stability analysis of the visual servoing controller needs to be given to guarantee the stability

of the designed controller.

1.5 Contributions

In this Ph.D. project, a series of solutions for improving the positioning and tracking accuracy

of the 6-RSS parallel robot are proposed based on a dual camera based optical CMM sensor. The

main contributions of this project are summarized as following:

• The inverse kinematics and numerical solution of the forward kinematics for the 6-RSS par-

allel robot are derived. The velocity analysis of the 6-RSS parallel robot is given. The explicit

dynamic model of the parallel robot is built based on the virtual work theory for the visual

identification and servoing purpose.

• A relative posture-based algorithm is proposed to solve the kinematic calibration problem of

a 6-RSS parallel robot by using the optical CMM sensor. This method applies both the po-

sition and orientation variations and does not need the accurate location information of the

detection sensor. The simulation results validate the effectiveness of the algorithm under dif-

ferent circumstances. And the experimental results demonstrate that the calibrated kinematic

parameters can be used to improve the positioning accuracy of the parallel robot.
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• A closed-loop output-error identification method based on the optical CMM sensor is pro-

posed for the 6-RSS parallel robot. The end-effector pose is measured by the optical CMM

and served as the output of the real plant. The forward kinematics of parallel robots, which

is usually solved by using time-consuming numerical algorithm, can be avoided. The exact

knowledge of the built-in controller and the joint torque are not needed. The dynamic model

parameters are identified by using nonlinear optimization technique. The experimental tests

validate the identification results.

• A dynamic sliding mode control (DSMC) scheme is proposed to improve the tracking ac-

curacy of the 6-RSS parallel robot. The proposed control scheme adopts the optical CMM

sensor to obtain the real time pose information of the end-effector of parallel robot and to

use it as the feedback signal. The DSMC scheme is robust to the modeling errors and un-

certainties. With the benefit of the position-to-torque converter, the proposed DSMC scheme

can be implemented in the industrial parallel robot. The stability of the proposed scheme has

been proved by using the Lyapunov function. The experimental tests of the proposed control

scheme have been carried out on the 6-RSS parallel robot. The comparison with the kinematic

level controllers demonstrates the superiority of the proposed dynamic level visual servoing.
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following journal and international conference papers.

Journal papers:

(1) Pengcheng Li, Xiaoming Zhang, Wen-Fang Xie, and Suong Van Hoa. Operation of the collab-

orative composite manufacturing (CCM) system. JoVE (Journal of Visualized Experiments),

(152):e59969, 2019.

(2) Pengcheng Li, Ahmad Ghasemi, Wen-Fang Xie, and Wei Tian. Visual closed-loop dynamic
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1.7 Thesis Organization

The rest of this thesis is organized as the followings. In Chapter 2, a literature review of the

main topics including the 6-RSS parallel robot, kinematic problems, dynamic modeling, kinematic

calibration, dynamic identification and visual seroving of the parallel robot are given. The inverse

and forward kinematic models of the 6-RSS parallel robot are built and the velocity analysis is

presented in Chapter 3. Then the explicit dynamic model of the parallel robot is derived based on

the virtual work theory. In Chapter 4, a relative pose based calibration method based on the optical

CMM sensor is proposed. The visual closed-loop output-error identification method for the 6-RSS

parallel robot is developed in Chapter 5. Then a dynamic model based visual servoing method for

the 6-RSS parallel robot is introduced in Chapter 6. At last, the conclusion and further works are

summarized in Chapter 7.
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Chapter 2

Literature Review

2.1 Introduction

The research content of this thesis involves the kinematic and dynamic modeling, kinematic

calibration, dynamic identification and visual servoing control of the 6-RSS parallel robot based on

the visual sensor. In terms of strategies and other aspects, the following is a review of the current

research status in related fields.

2.2 6-RSS Parallel Robot

In the field of 6-DOF parallel mechanisms, most researchers have focused on six-spherical-

prismatic-spherical (6-SPS) or six-universal-prismatic-spherical (6-UPS) parallel mechanisms, which

are so-called Stewart platforms. Both the moving platform and the fixed base platform of Stewart

parallel robot are hexagons connected by six SPS or UPS branch chains. Six moving prismatic

pairs are used as inputs, and the two ends of the moving pair are connected to the moving and base

platforms with spherical pairs respectively. The branch chains are symmetrical, and hence, Stewart

platform is also described as 6-SPS or 6-UPS parallel robot. The number 6 represents the number

of branches, and SPS represents the branch kinematic chain, which consists of a spherical pair (S),

a prismatic pair (P) and a spherical pair (S) connected in series. In fact, almost all existing 6-DOF

parallel robot, including those used for entertainment or motion (especially flight) simulators, are
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based on the 6-SPS or 6-UPS mechanism. However, few people have studied on the 6-RSS type

parallel robot which has almost the same characteristic as the Stewart platforms. In the 6-RSS par-

allel robot, the revolute joint (R) is used as the driving pair, and the spherical pair in each branch can

be interchanged with the universal joint (U), which does not change the nature of the mechanism.

Therefore, the 6-RSS parallel robot has no difference from the 6-RSU and 6-RSU parallel robot in

terms of kinematic analysis. As shown in Figure 2.1a, a 6-RUS parallel machine tool has been de-

veloped by Prof. Yukio Takeda of Tokyo Institute of Technology [8]. The most widely used one of

this type of parallel robot is the Hexa robot proposed by Pierrot et al. Its variants, such as the Delta

robot, have been applied in high speed pick-and-place fields [21]. For commercial applications,

Servos & Simulation Inc. has designed an industrial 6-RSS parallel mechanisms which is used in

this project. The 6-DOF mobile seat in Figure 2.1b is an application of the robot. The low-cost

flight simulator based on the 6-RSS parallel robot is developed by Fidelity Flight Simulation Inc.,

as shown in Figure 2.1d [10].

Compared with the traditional Stewart platform, the 6-RSS parallel robot has the following main

advantages:

(1) Simple mechanism, short transmission chain and fast response;

(2) The heavy motors are installed on the base, so that the weight of the moving parts is reduced;

(3) Low cost electric drivers can be used.

The disadvantages associated with 6-RSS robot are listed as following:

(1) Since the legs of the serial chains are more complicated in the 6-RSS parallel robot, the

kinematic analysis is complex;

(2) There are more factors affecting the positioning error of the moving platform. And thus it

introduces more difficult error analysis.

The 6-RSS parallel robot in Concordia University, as shown in Figure 2.1d, is taken as the case

study in this research.
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(a) (b)

(c) (d)

Figure 2.1: (a) The 6-RUS robot [8], (b) The 6-DOF mobile seat [9], (c) The 6-DOF flight simulator
[10], (d) The 6-RSS parallel robot in Concordia University
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2.3 Kinematics of the Parallel Robot

The kinematic study of a 6-DOF parallel robot considers the relationship between the six active

joint inputs and the pose of the moving platform. The research content includes two parts: inverse

kinematic solution and forward kinematic analysis. The inverse kinematic analysis aims to deter-

mine the input of the motion by giving the pose of the platform. The forward kinematic analysis

aims to calculate the pose of the platform by taking the active joint inputs as known parameters. The

forward and inverse kinematic analysis is the core content of kinematic research of parallel robots,

and it is also the theoretical basis for developing algorithms for the accuracy improvement.

The axes of translation and rotation of passive joints in the kinematic chain of a parallel robot

are often designed to be intersective, so that the rotation angle or displacement of the passive joints

can be eliminated when solving the kinematics equations. At the same time, each kinematic chain

is structurally independent of each other, which makes the inverse kinematics problem very simple

to obtain analytical solutions. In contrast, due to the combination of the position and attitude of the

moving platform, the forward kinematics problem is to solve highly nonlinear equations to obtain

the pose parameters, which is quite complicated and has not yet been completely solved [6].

There are two types of methods for solving forward kinematics: analytical methods and numer-

ical methods. In terms of analytical methods, algebraic elimination method, continuous method,

interval analysis, etc. are used to transform the kinematics equations into a higher-order polynomial

equation, which are committed to finding all possible solutions to the equation [6]. However, so far

the forward kinematic solution cannot be expressed as explicit forms of the pose variables [6, 17].

Moreover, finding all possible solutions does not completely solve the problem of forward kinemat-

ics, and it is still necessary to further determine the only actual pose in these solutions, which is

necessary in practical applications. In some cases, a univariate higher-order algebraic equation or

a series of nonlinear equations can be solved by analytical methods, and additional sensors must

be used to obtain the unique solution [22, 23]. However, there are limitations in practical appli-

cations, due to the expensive measurement device and measurement noises. In terms of numerical

methods, the Newton-Raphson method is widely used. This method aims to linearize a series of

nonlinear algebraic equations to linear equations. Its convergence domain depends on the nature
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of the nonlinear equations and if the initial pose of the iteration is in the convergence domain, the

exact solution can be derived [6, 24]. Some scholars use neural network algorithms to obtain the

initial values required by Newton-Raphson algorithm to ensure the stability of the algorithm [25].

The optimization algorithms such as genetic algorithms and neural network algorithms have been

developed to solve kinematic equations to obtain unique solutions [26, 27]. However, those meth-

ods can derive the exact solution with a satisfied accuracy only when the initial pose and the target

pose are inside a small workspace. And if the target pose is close to the singularity configurations,

the solution may converge to a local minimum. In this research, an effective and robust method for

solving the forward kinematic solution of the 6-RSS parallel robot needs to be developed for the

kinematic calibration purpose.

2.4 Dynamics of the Parallel Robot

The main purpose of dynamic modeling is to study the relationship between the driving force

of the robot’s motion platform and the motion states (displacement or angle, translation speed or

angular velocity, translation acceleration or angular acceleration) of the platform, and to obtain the

dynamic equation of the driving forces or torques and motion states, which describes the dynamic

characteristics of the robot. The dynamic model is the basis for the design of the robot control sys-

tem. Similar to the dynamics of a serial robot, the dynamic model of a parallel robot also includes

two most basic problems, namely the inverse and forward dynamic solution [6]. The forward dy-

namic solution is to determine the motion of the parallel robot by knowing the main force or torque

acting on the driving joint. On the other hand, if the motion of the reference frame of the end-

effector platform is given, the main force or torque of the driving joint is calculated in the inverse

dynamic problem. For both problems, the mathematical model of robot dynamics must be built.

The parallel mechanism is a complex spatial closed-chain mechanism. Compared with the serial

robot, the number of moving components is doubled, and there exists coupling among the compo-

nents, which makes the dynamic equation quite complicated. It is necessary for the researchers

to establish the dynamic model to carry out the dynamic performance evaluation, dynamic opti-

mization design and real-time control of the parallel robot [11]. The parallel robot theoretically
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has the advantages of high rigidity, small inertia, large bearing capacity, high speed, high precision,

etc. [28]. However, the existence of non-linear relations in parallel structures leads to complex

forward position solutions, rich singular configurations, small working space, difficult control im-

plementation, and hence, it is difficult to achieve precise control. This is a bottleneck in developing

algorithms to improve the accuracy of parallel robots. The high-precision control of parallel robots

requires the introduction of dynamics control, and the establishment of accurate dynamic model

is the primary issue for dynamics control. Since the parallel robot is a complex multi-degree of

freedom, multi-variable, highly coupling and nonlinear system, its mathematical dynamic model is

very complicated and the identification of the parameters of the model poses a great challenge to

the researchers.

There are many methods for modeling the dynamics of mechanical systems based on analytical

mechanics. Typical methods are Newton-Euler equation method, Lagrange equation method and

virtual work method [11]. One important indicator to measure the pros and cons of various dynamics

modelings is the amount of computational load to solve the dynamic modeling problem. In general,

the Lagrange method has the largest calculation amount, followed by the Newton-Euler method,

and the virtual work method has the smallest calculation load with the highest efficiency.

The Lagrange method mainly uses the basic principles of energy conservation law and mathe-

matical tools of Lagrange equations to solve the dynamic modeling problems in the mechanism from

the perspective of system energy. The Newton-Euler method mainly uses the Newton’s second law

and momentum theorem from the perspective of force, which lists the Newton-Euler equation to

solve the dynamic equations in the mechanism. Combining the principle of virtual displacement

with the principle of D’ Alembert, the virtual work method can solve the dynamic modeling prob-

lems of systems with ideal constraints. The equation established by this method does not contain

the constraint reaction force, and the constraint reaction force can be eliminated.

Each method has its advantages and disadvantages. The Lagrangian method needs to solve the

derivative of the generalized coordinate, which increases the difficulty and the amount of calcu-

lation. The Newton-Euler method avoids the problem of solving the derivative of the generalized

coordinate derivative, and can provide the internal forces for each individual body of the parallel
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robot, which can benefit the mechanical design process of the parallel robot. However, the computa-

tional load is high due to the large amount of equations. The virtual work method does not consider

the ideal constraint reaction forces, and only performs the dot product and cross product operation

of the vector without requiring derivative operations, which is beneficial to computer-aided oper-

ations. Moreover, in the commonly used Newton-Euler method and Lagrange method, it is more

difficult to deal with the dynamics of a robot with a closed-chain mechanism. This is because in

both methods, the closed-chain mechanism need to be cut into several open chains at certain joints,

and to obtain the binding force and torque there. In contrast, the virtual work methods are more

efficient and suitable for the control design purpose since the reaction forces between the bodies of

the parallel robot are not considered.

The dynamic models of 6-DOF Gough-Stewart parallel robot have been built by several ap-

proaches such as Newton-Euler [28], Lagrangian formulation [29] and the principle of virtual

work [30]. The published research work on 6-DOF RSS parallel robots is considerably scarcer

compared with that on Stewart parallel robot. The dynamic models of one type of 6-DOF RSS

parallel robot, in which the active rotation axes are coplanar, are built based on Newton-Euler equa-

tions [31] or Lagrangian formulation [32] for dynamic analysis and tracking control purpose respec-

tively. In this project, the dynamic model of a 6-DOF RSS parallel robot, where the active rotation

axes are parallel to each other, is built based on the virtual work principle, and the explicit form of

the dynamic model is derived for the identification and dynamic model-based visual servoing design

purposes.

2.5 Visual Kinematic Calibration of the Parallel Robot

Normally, the positioning accuracy of un-calibrated parallel robots is significantly affected by

the manufacturing and robot installation errors. Kinematic calibration can be implemented to re-

move the negative influence of these errors and to improve the accuracy of end-effector output in a

robot control system.

In most applications, the kinematic calibration is known as an optimization problem with redun-

dant non-linear constraint equations. The methods such as classical non-linear algorithms [33, 34],
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bundle adjustment approach [35] and interval approach [36] are applied to solve it. The basic cal-

ibration principle is to construct constraint equations, which reflect the relationship between mea-

sured values (could be passive joint values or pose of the end-effector) and the input joint values

at various poses, i.e. calibration candidate configurations, until the number of constraints is large

enough to determine the errors of geometry parameters contained in constraint equations [6].

For a n DOF robot, at every calibration candidate configuration a set of k constraint equations

must be formed as functions of s errors of geometry parameters, of w immeasurable pose parame-

ters and of the measurements at the current configuration. The minimum calibration configuration

number m should satisfy: m×k ≥ s+m×w, in order that the constraint equation’s number is larger

than the number of the unknown parameters. Since there are some noises in the data obtained from

sensors and deviations in the robot modeling, the geometry parameters which exactly match the con-

straint equations cannot be determined. Therefore the numerical analysis method which minimizes

the sum of the squares of constraint equations can be employed to determine an optimal solution of

the errors of geometry parameters. The principles for the configuration selection of parallel robot

calibration have been given in some literature [37, 38], in which the error-parameter Jacobian matrix

is utilized to minimize the influence of measurement noise in all candidate configurations.

Although some researchers perform the calibration without using a robot’s kinematic model

[39], most kinematic calibration methods construct the constraint equations based on the kinematic

model [40, 41]. To derive the error parameters in the robot kinematic model, the model-based

calibration is conducted in three steps: modeling, measurement and optimization [42].

Based on the geometric analysis, a kinematic error model can be constructed by considering

the residual errors in kinematic parameters. Model-based kinematic calibration tries to rebuild a

more accurate mapping between robot actuator outputs and the end-effector pose by determining

those kinematic parameters. Precise parallel robot error model is built by using D-H method [33].

However, most researchers [43, 44] choose a reduced model in the calibration considering that the

contribution of joint manufacturing tolerances has a minor effect on the platform’s pose error. In

other words, the manufacturing tolerances of the joints are neglectable. Nevertheless, the positional

errors of the joint centers and the deviation of the active joint angles are the main reasons for the

kinematic calibration.
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The measurement sensors play an important role in the parallel robot calibration. It tries to

collect enough information for the calibration. The sensors usually fall into two categories: contact

measurement and contactless measurement. For the contact measurement type sensors such as

translation detector [45], CMM [2], inclinometer [46] and double ball bar device [47], they collect

various pose information of the robot end-effector directly for the kinematic calibration. However,

they have to meet the strict installation requirements. And the installation errors affect the contact

measurement results in different directions and with different magnitudes when the measurand is

moving. While for the contactless sensors like camera [43], laser tracker [3] and optical CMM [48],

it is more flexible to obtain the pose information of the end-effector. The contactless measurement

can eliminate the sensor errors with the help of pre-calibration. Alternatively the sensor location

uncertainties can also be viewed as external parameters in terms of the kinematic error model [43],

which may increase the complexity of the error model and computation cost. Ideally, the detection of

relative pose (the variation of robot position and orientation) is independent of the sensors’ location.

The classic implicit calibration method proposed in [49] utilizes the closure relation of the kine-

matic chains to form implicit constraint equations instead of pursuing the analytical solutions of the

closure equations such as the inverse kinematic model. The implicit calibration method emphasizes

that the errors are involved in the kinematic loop equations implicitly, rather than being explicit

outputs of a conventional input-output formulation. By removing the requirement to express errors

explicitly, the formulation allows the analyst to concentrate on all sources of error [49]. And the im-

plicit calibration method has been effectively applied to H4 mechanism [43] and 6-UPS robot.[49]

In those implicit calibration methods, the absolute pose of the end-effector w.r.t. the base frame are

obtained with the employment of the contactless sensor.

Most researchers assume the sensor location is exactly known in the kinematic calibration exper-

iment [2, 36]. Hence both the absolute and relative poses for the calibration algorithm can be easily

determined. However, to derive the pose of the base frame of robots w.r.t. sensor frame is usually

a tedious and time consuming work due to the following reasons: (1) the manufacturers usually do

not provide enough nominal dimension information of the robots; (2) the self-occlusion of the close

structure of parallel robots results in measurement difficulties. If the sensor location is not known

exactly, the existing absolute pose-based algorithms cannot be used for the kinematic calibration

21



directly. Ideally the relative pose information, i.e. pose variation, can be utilized in the calibra-

tion to avoid the tedious measurement of the relationship between the base frame and the sensor

frame. A relative position-based calibration algorithm [45] is carried out for parallel robots, where

a simple measurement system with three distance gauges and a ball mounted on the end-effector is

employed to measure the relative position movement. However the orientation accuracy cannot be

evaluated. Since the gauges should be re-intalled with strict rules in every candidate configuration,

the installation errors cannot be removed during the calibration.

In this research, to realize a flexible installation and to avoid the tedious measurement procedure

of the sensor location, an optical CMM sensor ––C-track 780 from Creaform Inc. is adopted to detect

the relative pose of the 6-RSS parallel robot.

2.6 Dynamic Identification of the Parallel Robot

The dynamic parameters are normally unknown or approximately derived from manufacturer

specifications, which are not accurate enough for the dynamic model-based controller design. Sys-

tem identification is an effective method to perceive the uncertain parameters in the dynamic model

of the system, and has been applied to many engineering practices [50]. As a highly coupled

multi-input/multi-output (MIMO) nonlinear system, industrial robots aroused great interest in the

identification method. The literatures on the state-of-the-art identification methods can be found

in [51, 52, 53]. For the industrial robots, the dynamic identification is normally performed in

closed-loop, since the robotic system is open loop unstable. In [54], a MIMO closed-loop iden-

tification based on weighted least square estimation has been applied to an industrial serial robot

used in a planar configuration. In addition, other closed-loop identification methods with maximum

likelihood, instrumental variable and related implementation issues on industrial serial robots are

addressed in [55, 56]. A new closed-loop output-error identification scheme has been adopted for

the serial robots [57]. The output-error identification method aims at finding the dynamic model pa-

rameters by minimizing the output deviation between the actual and simulated systems subjecting

to the same input [58]. In [57], the identification procedure is implemented in a closed-loop control

structure and the joint torque is the measured output, which avoids the estimation of the velocity
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and acceleration from the measured joint position.

One potential issue of the above-mentioned identification methods is that joint torque measure-

ment or a related control signal is needed for identification, which is not always available for the

industrial robots, since the built-in controllers of many industrial robots are inaccessible and do not

provide the torque actuation mode [59]. The input of built-in controllers is the position or velocity

command, and the output is the joint torque which is inaccessible to the users. Hence the torque

and current of the motors cannot be derived directly and it is not easy to install additional torque

sensors to get the direct measurement. The unknown controller can be identified along with the

dynamic parameters as introduced in [60]. However, joint torque measurement is still needed for

identification purposes.

In [21, 51, 61, 62], identification issues on the dynamic model of parallel robots have been dis-

cussed. Most research works on dynamic identification of parallel robots are based on a simplified

dynamic model, such as in [63, 64, 65]. Nevertheless, the systematic derivation of the full inverse

dynamic model is proposed based on Jourdain’s principle in [62]. In addition, the identification

procedure is carried out in two steps: 1. identifying inertial parameters and 2. estimating the vis-

cous coefficients. In [61], the full parameters of robots’ dynamic model and the joint drive gains are

identified based on the total least square method, and the method is tested on a 3-DOF Orthoglide

parallel robot. Many identification methods for 6-DOF parallel robots in [21, 61, 62] come directly

from those of serial robots. By rewriting the inverse dynamic model and friction model into a linear

form with respect to the dynamic and friction parameters, the identification of the unknown param-

eters can be done through least squares technique. However for 6-DOF parallel robots, to avoid

solving forward kinematics, the regression matrix of the dynamic model is constituted of the pose

state variables in the Cartesian space. In [21], only joint space state variables are measured and

estimated. Therefore, the state variables in Cartesian space should be calculated through numerical

computation of the forward kinematics, which is quite time-consuming.

One way to avoid computing the forward kinematics in the identification process is to directly

measure the pose of the end-effector in the Cartesian space based on vision sensors. In [65],

a camera-based dynamic identification procedure is given for a 4-DOF parallel robot with a heavily

simplified dynamic model by considering only the inertia of the end-effector. Also, a vision sensor
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based dynamic identification has been carried out on serial robots [66] and cable-driven robots [67],

but seldom on parallel robots. The optical CMM sensor is a dual camera based vision sensor, which

can provide the real-time pose information of the targets. The optical CMM sensor has been ap-

plied to the kinematics calibration [68] and the path tracking controller design [20] for the robots.

To increase the flexibility and tracking accuracy, vision can also be incorporated into the feedback

control loop of the parallel robot systems to form the so-called visual servoing control. The visual

servoing controller for parallel robot is superior to the joint space controller due to the fact that the

kinematic errors introduced from transforming the desired trajectory in the Cartesian space into the

one in the joint space in the joint controller can be avoided. The measured pose together with the

visual servoing controller allows using the closed-loop output-error identification method [58] to

identify the dynamic model of the parallel robot, and hence will be conducted in this research.

2.7 Visual Servoing Control for the Parallel Robot

How to design effective controllers to improve the positioning and tracking accuracy of the par-

allel robots poses a challenge to the control community. The existence of closed-chain mechanism

yields difficulties on the controller design, related to the fact that the dynamic models of parallel

robots are normally more complicated than those of their serial counterparts, since the moving parts

are highly coupled and more moving parts are needed to be considered. Moreover there is almost no

analytical expression for the forward kinematic model of 6-DOF parallel robots [6, 17]. The joint

space controller similar to that of the serial robots is designed for parallel robots by translating the

desired pose trajectory of the end-effector frame in Cartesian space into the one in the joint space

through the inverse kinematics [21]. This control strategy is easy to be implemented, due to the

fact that inverse kinematics of parallel robots can be analytically solved, and the measured joint

angles can be used as feedback signal in the joint space control loop. However, it is more desirable

to directly control the pose of platform of parallel robot in Cartesian space (i.e. Cartesian space

controller) for the following reasons: 1. The pose of the end-effector can be directly controlled to

follow the desired trajectory in the Cartesian space control strategy which leads to a better tracking

accuracy than controlling the joint space states in the joint space controller, since the desired joint
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trajectories are transformed from the Cartesian space to the joint space. Such trajectory transforma-

tion will introduce deviation caused by inverse kinematic model errors and hence affect the tracking

accuracy. 2. The pose control scheme in Cartesian space can also avoid computing the forward

kinematics which normally has no analytic solution, provided that the pose can be properly mea-

sured or estimated. Then the main challenge lies in how to measure the the pose of the end-effector

as the feedback of states and incorporate the measured pose in the feedback control loop.

Visual servoing provides an effective way to control parallel robots’ pose with visual sen-

sors. Two main visual servoing control structures, namely image-based visual servoing (IBVS)

and position-based visual servoing (PBVS), have been developed for parallel robots [69]. In IBVS,

the control signals are directly derived from the coordinates of a set of visual features and computed

in the image space [14, 70]. Since the 3D information reconstruction and image interpolation are

not employed in this method, the camera calibration is not required and the errors caused by sensor

and object modeling are eliminated [71, 72]. However, the singularities, local minima and lost of

the image features are the main problems of IBVS due to the lack of the control strategy in Carte-

sian space. The problems arise especially when the difference between the initial and target views

is large [20]. On the other hand, the PBVS control loop directly controls the pose in Cartesian space

and allows the direct path planning in the Cartesian space [73]. This feature meets the requirement

of industry where the accurate Cartesian path tracking is essential, such as welding, machining, and

fiber placement. However, the main obstacle of PBVS lies in estimating the pose information by

using the vision information, which usually needs the object model and well-calibrated cameras.

Thanks to the optical CMM, the pose information of the target can be measured accurately in real-

time with simple calibration steps [20, 68, 74]. Hence, PBVS scheme is a promising method to

achieve high accuracy tracking performance of parallel robots for industrial applications.

Most recent visual servoing research work on parallel robots is dedicated to the kinematic level

visual servoing design [12, 70, 73, 75, 76, 77]. The dynamics of parallel robots are usually ignored

or treated as uncertainties. In [76], a visual servoing controller is designed for the end-point posi-

tioning of 3-DOF parallel robot via linear camera-space manipulation. A hidden robot concept is

proposed in designing a visual servoing controller for parallel robots based on the leg observations

[77]. Although the kinematic level visual servoing of parallel robot can achieve the position tracking
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to some extent, the tracking performance will be sacrificed greatly without considering the dynamic

model of the parallel robot. To include the dynamic model in the visual servoing, the modeling

and identification of the dynamics pose a challenge to the control designers. The other issue is the

implementation of designed controller in the commercial industrial parallel robots. In most cases,

the industrial parallel robots are joint space closed-loop architecture control systems and the built-in

controllers of the robots do not provide torque control mode or joint-torque sensors [59, 78]. The

built-in controller is inherently position or velocity controlled system. Therefore, the torque com-

mand generated by the dynamic level visual servoing controller cannot be directly fed to the built-in

controller. To solve this problem, the torque-to-position converter is to be designed. In [79], a P-

type torque-to-position converter combined with the backstepping sliding mode control method is

designed to apply dynamic model-based controller to the robot manipulators. The proposed torque

to position converter in [80] is developed based on the identification of the linear actuator model

and is applied to the humanoid robot without using the vision information. And in [59], a similar

converter combined with robot dynamics and friction feedforward compensation is utilized to con-

trol the humanoid robot. The above-mentioned research work illustrates that the torque-to-position

converter has great potential to implement the dynamic level visual servoing control scheme on the

position command industrial parallel robots.

For the parallel robots with the open-loop architecture control systems, a lot of dynamic model-

based controllers have been developed such as iterative learning controller [21], adaptive controller

[81] and robust controller [82]. In [21], the dynamic model identification and the dynamic model-

based iterative learning controller are investigated to enhance the tracking performance of a 6-DOF

parallel robot. In [81], an adaptive control scheme based on the robust integral of the sign of the

error control theory is proposed and tested on a 3-DOF parallel robot. The robust controller for

Stewart platform compensates the dynamic model represented in the joint space by transforming

the Cartesian space states into the joint space and computing the bounding function in [82]. The

robust control such as the sliding mode control (SMC) is known to deal with the uncertainties such

as the modeling errors, frictions of the passive joints, sensor noise and time delay. SMC has been

widely applied to the joint space position control of the parallel robots [83, 84]. However, the liter-

atures on the SMC based visual servoing of parallel robots are relative scare. In [85], the trajectory
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tracking scheme of a 4-DOF parallel robot is proposed by utilizing a fuzzy logical SMC scheme

and assuming the pose of the end-effector is available in their simulation test. The dynamic model-

based controllers are easy to be implemented on the open-loop architecture robotic systems, but it

is nontrivial to be implemented on the closed-loop architecture robotic systems. This research aims

at developing a dynamic model-based visual servoing controller for the closed-loop architecture

industrial parallel robot based on the optical CMM sensor.

2.8 Summary

In this chapter, a brief introduction of the 6-RSS parallel robot regarding its applications, advan-

tages and weakness compared with standard Steward platform is given at first. Then the kinematic

problems of the parallel robot including the inverse and the forward solutions are presented. The

dynamic modeling methods of the parallel robot are summarized in Section 2.4. The virtual work

principle method is chosen to build the dynamic model of the 6-RSS parallel robot for the visual

identification and control purpose. Then, the relevant studies on the kinematic calibration method

to improve the positioning accuracy of the parallel robot are introduced. With the help of the op-

tical CMM sensor, the relative pose-based calibration method can be developed to derive accurate

kinematic parameters, since the method can avoid the tedious measurement of the relationship be-

tween the base frame and the sensor frame. In Section 2.6, the literature survey on the dynamic

identification methods of the parallel robots are introduced. One of potential issues of the current

methods is that the torque measurement of the robot is needed and it is not always available for the

industrial robot. At last the visual servoing methods for the parallel robot are discussed. It is found

out that most current methods are kinematic level controllers and more advanced dynamic model

based visual servoing methods are needed to be further studied to improve the tracking accuracy of

the parallel robot.
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Chapter 3

Kinematic Analysis and Dynamic

Modeling of the 6-RSS Parallel Robot

3.1 Introduction

The kinematic analysis and dynamic modeling are the foundation of the kinematic calibration,

dynamic identification and control of the parallel robot. The inverse kinematic problem of the 6-

RSS parallel robot will be solved analytically. A quasi-Stewart method is developed to solve the

forward kinematic problem of the 6-RSS parallel robot numerically. By performing the velocity

analysis, the Jacobian matrices are derived, which will be used for building the dynamic model and

determining the singularity-free and bifurcation-free actuator motion range. The explicit form of

the dynamic model will be built based on the virtual work principle for the visual identification and

servoing of the 6-RSS parallel robot.

The rest of this chapter is organized as followings. In Section 3.2, a description of the 6-RSS

parallel robot is given. Then the inverse and forward kinematic solutions are presented in Section

3.3 and 3.4 respectively. The velocity analysis of the 6-RSS parallel robot is performed in Section

3.5. And the dynamic model of the parallel robot is developed in in Section 3.6. Lastly, a brief

summary is given in 3.7.
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3.2 Description of the 6-RSS Parallel Robot

(a)

(b)

Figure 3.1: (a) The sketch of 6-RSS parallel robot, (b) Single serial branch.

The literature survey shows that not much research has been carried out on the actuator-coplanar

6-RSS parallel robot kinematic modeling. In this research, the kinematic model of the parallel robot

is built based on the geometrical analysis. As shown in Figure 3.1a, the 6-RSS parallel robot consists

of six identical serial branch chains. Each serial branch, illustrated in Figure 3.1b, consists of a
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wrench, a link, an active revolute joint (R) and two passive spherical joints (S). One spherical joint

is used to connect the wrench and the link. The revolute joint is driven by actuators and connects

the wrench and the base platform, while the spherical joint is employed between the link and the

end-effector. The base frame ΣO is assigned at the symmetric center of the base platform and

the end-effector frame ΣE is also attached at the symmetric center, while E ∈ R
3 denotes the

coordinate vector of the frame origin w.r.t. the base frame. The coordinate vectors of revolute joint

centers w.r.t. the base frame are marked by Bi ∈ R
3 (i = 1, 2, . . . , 6), while those of the rotation

centers of spherical joints are represented as Ti ∈ R
3 and Ai ∈ R

3 respectively. In the subsequent

kinematic and dynamic analysis, the coordinates of the parts of parallel robot are defined w.r.t. the

base frame by default.

The vector θ = [θ1, θ2, . . . , θ6]
T ∈ R

6 represents the rotation angles of the actuators. The

coordinate vector from E pointing to Ai w.r.t. the end-effector frame is denoted as ai ∈ R
3.

And the coordinate vectors wi ∈ R
3 and li ∈ R

3 represent the directions and length of the wrench

and link:

ai = E −Ai, wi = Ti −Bi, li = Ai − Ti. (3.1)

The pose vector of the end-effector frame is expressed as χE =
[
ET ,φT

]T ∈ R
6, where φ =

[α, β, γ]T ∈ R
3 represents the Euler-angle rotation of the frame. The rotation matrix, R ∈ SO(3),

is given by

R = Rx(α)Ry(β)Rz(γ)

=

⎡
⎢⎢⎢⎢⎣
1 0 0

0 cα −sα

0 sα cα

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cβ 0 sβ

0 1 0

−sβ 0 cβ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
cγ −sγ 0

sγ cγ 0

0 0 1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

cβcγ −cβsγ sβ

cαsγ + cγsβsα −sβsαsγ + cαcγ −cβsα

sαsγ − cαcγsβ cαsβsγ + cγsα cβcα

⎤
⎥⎥⎥⎥⎦ ,

(3.2)

where, s and c stand for sin and cos respectively.
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3.3 Inverse Kinematic Modeling of the 6-RSS Robot

The inverse kinematic model reveals the mapping relation from the pose of ΣE to joint angles

which can be directly controlled by the actuators. The mapping relation Hinv can be written as

θ = Hinv(χE). (3.3)

Therefore, the purpose of inverse kinematic model is to calculate the joint space angles θ which

is the function of the workspace variables χE as known. The inverse kinematic model can be solved

analytically as follows.

The coordinate vectors of sphere joint centers with respect to ΣE are written as EAi ∈ R
3,

which are constant and known a priori. Then the coordinate vectors of sphere joint centers with

respect to ΣO, Ai, can be calculated by

Ai = R ·EAi +E = [xAi , yAi , zAi ]
T (3.4)

According to the geometry feature of parallel robot, the lengths of the wrenches and links are con-

stant. Therefore, the following equations can be derived.

(xTi − xAi)
2 + (yTi − yAi)

2 + (zTi − zAi)
2 =‖ li ‖2 (3.5)

(xTi − xBi)
2 + (yTi − yBi)

2 + (zTi − zBi)
2 =‖ wi ‖2 (3.6)

where, Bi = [xBi , yBi , zBi ]
T , Ti = [xTi , yTi , zTi ]

T , and the operator ‖ · ‖ represents the Euclidean

norm. Since the centers of the revolute joints (Bi) and sphere joints (Ti) locates in the plane O−xy,

the following constraint exists:

zTi = zBi = 0. (3.7)
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By combining Eq.3.5, Eq.3.6 and Eq.3.7, the following relation can be derived as:

2xTi(xBi − xAi) + 2yTi(yBi − yAi) + z2Ai
+ x2Ai

+y2Ai
− x2Bi

− y2Bi
=‖ li ‖2 − ‖ wi ‖2 .

(3.8)

Then the coordinate, xTi , can be solved by

xTi =
N1

2(xAi − xBi)
− yAi − yBi

xAi − xBi

yTi , (3.9)

where,

N1 = − ‖ li ‖2 + ‖ wi ‖2 +(x2Ai
+ y2Ai

)− (x2Bi
+ y2Bi

) + z2Ai
. (3.10)

With the substitution of xTi by using Eq.3.9, Eq.3.6 can be written as follows:

N2y
2
Ti

+ 2N3yTi +N4 = 0 (3.11)

Then yTi is obtained:

yTi =
−N3 ±

√
N2

3 − 4N2N4

2N2
, (3.12)

where, N2, N3 and N4 are given by:

N2 =
(yAi − yBi)

2

(xAi − xBi)
2
+ 1 (3.13)

N3 =− 2
(yAi − yBi)

(xAi − xBi)
[

N1

2(xAi − xBi)
− xBi ]− 2yBi (3.14)

N4 =(
N1

2(xAi − xBi)
− xBi)

2. (3.15)

Then the joint space value θ can be obtained as Eq.3.16

θi = arctan(
yTi

xTi

)− θ0,i, (3.16)

where θ0,i denotes the initial position of the i− th revolute joint angle. When
√

N2
3 − 4N2N4 ≥ 0,
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the workspace pose is reachable. Furthermore, when the range of θi is between (−π/2, π/2] the

solution for yTi is unique.

3.4 Forward Kinematic Solution of the 6-RSS Paralllel Robot

As discussed in Section 2.3, the forward kinematic solution of the parallel robot is an indis-

pensable part in the kinematic error analysis. In contrast to the serial robot, the forward kinematic

solution of the parallel robot is very complicated and has multiple solutions. In most applications,

the convergence speed of the forward kinematic algorithm is one of the most important indicators

to determine the quality of the algorithm. The forward kinematic problem can be solved through

numerical methods like Newton-Raphson method [86], Jacobi method [87] and Powell method [88].

Those methods can derive a relative high accurate forward kinematic solution in a small workspace,

assuming that the initial pose of the end-effector is close enough to its target pose. However, when

the target pose is close to the singularity configuration of the parallel robot, the updating iteration

will converge to a local minimal solution. Even the methods without using Jacobian matrix (Powell

method) may be affected by the bifurcation or singularities.

The forward kinematic mapping relation Hfwd can be written as

χE = Hfwd(θ). (3.17)

Therefore, the purpose of the forward kinematic solution is to calculate the workspace variables

χE as the function of the known input variable θ. A quasi-Stewart method is proposed to solve the

forward kinematic solution numerically in this project. By giving the joint space variables θ, the

coordinates of Ti can be derived by

xTi = lTiBicos(θi + θ0,i),

yTi = lTiBisin(θi + θ0,i),

zTi = 0,

(3.18)

where lTiBi denotes the length of the ith wrench. By assuming the position of Ti as known and
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fixed, the forward kinematic solution of the 6-RSS parallel robot can be converted to that of a new

Stewart platform. In the new Stewart platform, the base terminal is Ti and the end-effector terminal

is Ai. The target pose to be determined should satisfy that the ith leg length of the new Stewart

platform are equal to lAiTi which represents the ith link length of the 6-RSS parallel robot.

The current forward kinematic methods use the increment of the θ to search the correct solution

of the pose. Therefore, all the temporary θ and Ti should be calculated in each iteration, which

will increase the computational time. Instead, in the quasi-Stewart method, the increment of the

leg length of the new Stewart platform is utilized to search the right solution and the number of the

iteration will be reduced. The quasi-Stewart forward kinematic method is implemented according

to the following steps:

(1) Set the stop criteria coefficient εc for the leg length convergence accuracy and coefficient εp

for the pose updating condition.

(2) Calculate the coordinates of Ti using the known θ by Eq. 3.18. Choose the initial pose of the

6-RSS parallel robot.

(3) Determine the pose increment Δχt
E of the tth iteration as the followings: Since the Ti and

χt
E is known, the coordinate of At

i can be derived by Eq. 3.4. Then the ith leg direction

vector lti = At
i − Ti and the length vector of the new Stewart platform Lt = [‖ lt1 ‖, ‖ lt2 ‖

, ..., ‖ lt6 ‖]T are obtained.

The Jacobian matrix of the new Stewart platform is given as Eq. 3.19 (t is omitted).

J ′ =

⎡
⎢⎢⎢⎢⎣

1
L1

lT1

[
a1 × ( 1

L1
l1)
]T

...
...

1
L6

lT6

[
a6 × ( 1

L6
l6)
]T

⎤
⎥⎥⎥⎥⎦ . (3.19)

Then Δχt
E can be derived by

Δχt
E = J ′ −1

Δlt (3.20)

where Δlt = lAT −Lt, and lAT = [lA1T1 , lA2T2 , ..., lA6T6 ]
T .
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(4) If |Δlt| � εc and |Δχt
E | � εp, χt+1

E = χt
E +Δχt

E , and then return to step (3) for the next

iteration calculation. Otherwise, χt
E is the solution.

The normal forward kinematic method and the quasi-Stewart method are compared in the sim-

ulation and the results are given in Figure 3.2 and Figure 3.3. The blue bold solid lines show the

initial configuration of the 6-RSS parallel robot, the black dotted lines are the final configurations

Figure 3.2: The process of normal forward kinematic method

Figure 3.3: The process of quasi-Stewart method
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and other lines give the temporary iteration configurations. Although all the temporary iteration

configurations can be achieved by the 6-RSS parallel robot, the number of the iteration steps is

much more than that in the quasi-Stewart method.

3.5 Velocity Analysis of the 6-RSS Parallel Robot

The inverse and forward kinematic models reveal the static positioning relationship between the

end-effector pose and the revolute joint angles. In addition, velocity (differential kinematic) analysis

of the parallel robot plays a critical role in the singularity analysis, dynamic model identification and

controller design for the parallel robot. The motivation of velocity analysis is to derive the mapping

relationships of the end-effector pose velocity with respect to the velocity of the revolute joints,

wrenches and links.

The moving wrench and link frames ΣWi and ΣLi are attached to the wrenches and links

respectively as depicted in Figure 3.1b. The coordinate vectors of the centers of mass of the

wrenches and links are denoted as cwi and cli respectively. The vector χ̇E =
[
ĖT , φ̇T

]T
and

χ̈E =
[
ËT , φ̈T

]T
are the first and second order time derivatives of χE . The vector vE =[

ĖT ,ωT
]T ∈ R6×1 denotes the linear and angular velocities of the end-effector frame. Then

v̇E is the acceleration vector. The relationship between the Euler angle rate φ̇ and angular velocity

ω is expressed as follows

ω = Je φ̇, (3.21)

where

Je =

⎡
⎢⎢⎢⎢⎣
1 0 sβ

0 cα −cβ sα

0 sα cβ cα

⎤
⎥⎥⎥⎥⎦ (3.22)

is the analytical Jacobian matrix. Moreover, the transformation relation from χ̇E to vE can be

derived by

vE =

⎡
⎢⎣ E3×3 03×3

03×3 Je

⎤
⎥⎦ χ̇E = Js χ̇E , (3.23)
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The following assumptions are considered for velocity and dynamic analysis of the 6-RSS par-

allel robot.

Assumption 1. The end-effector platform, wrenches and links are symmetric with respect to their

axes.

Assumption 2. The links (
−−→
TiAi) do not rotate about its symmetric axes, and the frictions of the

spherical joints (Ti and Ai) are ignored.

As shown in Figure 3.1a and 3.1b, the closure loop position relationship between the end-

effector frame and the base frame can be expressed as the following:

E + ai −Ai = 0 and (3.24)

Bi +wi + li −Ai = 0, i = 1, 2, . . . , 6. (3.25)

Then the linear velocity can be derived by combining Eq. 3.24 and 3.25 and taking the time deriva-

tive:

Ė + ω × ai = ω1 ×wi + ω2 × li, i = 1, 2, . . . , 6, (3.26)

where ω1 and ω2 are the angular velocity of frame ΣWi and ΣLi regarding ΣO respectively.

Then, dot multiplying li on both sides of Eq. 3.26 yields:

liĖ + (ai × li)ω = (wi × li) · ω1, i = 1, 2, . . . , 6. (3.27)

Since the wrench rotates around a fixed axis which is denoted as ŝ = [0, 0, 1]T , the Jacobian matrix

mapping from the end-effector Cartesian velocity to joint velocity can be derived by the following:

Ja1θ̇ = Ja2vE , (3.28)
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where

Ja1 =diag((w1 × l1) · ŝ, (w2 × l2) · ŝ, . . . , (w6 × l6) · ŝ),

Ja2 =

⎡
⎢⎢⎢⎢⎣

lT1 (a1 × l1)
T

...
...

lT6 (a6 × l6)
T

⎤
⎥⎥⎥⎥⎦ .

(3.29)

When the robot works in the singularity-free operational space, the Jacobian matrix Jad can be

derived as follows:

θ̇ = J−1
a1 Ja2vE = JadvE . (3.30)

Then the translational velocity of the center of mass of the wrench ˙cwi can be obtained from Equa-

tion 3.31.

˙cwi = θ̇iŝ× cwi = JauvE , (3.31)

where

Jau = (ŝ× cwi)Jadi ∈ R
3×6, (3.32)

and Jadi is the ith row of Jad.

Then the link Jacobian Ja mapping vE to the velocity of the center of mass of the ith wrench

v1 = [ ˙cwi
T ,ωT

1i]
T can be derived as

v1 =

⎡
⎢⎣ ˙cwi

ω1i

⎤
⎥⎦ =

⎡
⎢⎣ Jau

ŝJadi

⎤
⎥⎦vE = JavE . (3.33)

Eq. 3.34 can be deduced by right cross multiplying li on the both sides of Eq. 3.26 and using

Lagrange’s rule.

(ω2 · li) · li − (li · li) · ω2 = Ė × li + (ω × ai)× li − (ω1 ×wi)× li. (3.34)

Since the link does not rotate about its longitudinal axis, it is inferred that

ω2 · li = 0 holds. (3.35)
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Rearranging Eq. 3.34, the following equation can be derived:

‖ li ‖2 ω2 = [li]XĖ − [li]X [ai]X ω + [li]X [wi]X ω1, (3.36)

where the operator [·]X and ‖ · ‖ represents the cross product operation and Euclidean norm respec-

tively.

By combining Eq. 3.30 and 3.36, the following Jacobian matrix Jbd mapping from the end-

effector Cartesian velocity to the angular velocity of the link frame can be deduced:

ω2 = JbdvE ,

Jbd =
1

‖ li ‖2 {
[
[li]X − [li]X [ai]X

]
+ [li]X [wi]X ŝJadi}.

(3.37)

The translational velocity of the center of mass of the link ˙cli can be obtained as follows:

˙cli = −[wi]Xω1 − [cli ]Xω2 (3.38)

By substituting Eq. 3.33 and 3.37 into Eq. 3.38, the following velocity relationship can be derived:

˙cli = (−[wi]X ŝJadi − [cli ]XJbd)vE = JbuvE (3.39)

Hence the link Jacobian Jb mapping vE to the velocity of the center of mass of the ith link v2 can

be derived.

v2 =

⎡
⎢⎣ ˙cli

ω2i

⎤
⎥⎦ =

⎡
⎢⎣ Jbu

Jbd

⎤
⎥⎦vE = JbvE (3.40)

3.6 Dynamic Modeling of the 6-RSS Parallel Robot

In contrast to serial robots, the dynamic modeling of parallel robots is more complicated due to

its closure geometrical structure and difficulties in deriving the forward kinematics. The principle of

virtual work is employed to derive the explicit form of the dynamic model in terms of the workspace

coordinates and their time derivatives as shown in Eq. 3.41 for 6-DOF RSS robot, which is useful
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for dynamic model-based controller design.

τg = M(χE)v̇E + C(χE ,vE)vE +G(χE) + τf , (3.41)

where τg denotes the general force acting on the end-effector frame, τf is the friction, M(χE) is

the mass matrix, C(χE ,vE) is Coriolis and centrifugal matrix, and G(χE) denotes the gravity.

In order to avoid solving the forward kinematics of the parallel robot which may not have analytical

solutions, the pose in the coordinates of the end-effector and its time derivatives are employed in

Eq. 3.41.

The balance equation of virtual work principle for one moving rigid body of the end-effector

platform, wrenches and links, ∗, can be expressed as follows:

F̄∗ · δχ∗ = (Fext∗ + F̃∗) · δχ∗ = 0, (3.42)

in which F̄∗ contains the static balance force and torque, Fext∗ = [fT
ext∗ , τ

T
ext∗ ]

T is the external

force (fext∗) and torque (τext∗) exerted on the center of mass of the body respectively, δχ∗ denotes

the virtual displacement, and the fictitious force and torque are:

F̃∗ =

⎡
⎢⎣ m∗g −m∗ḧ∗

−(I∗ω̇∗ + ω∗ × I∗ω∗)

⎤
⎥⎦ , (3.43)

where m∗ is the mass of the body, g is the gravity vector, ḧ∗ is the linear acceleration of center of

mass of the body, I∗ is the moment of inertia, ω∗ and ω̇∗ denote the angular velocity and acceleration

of the moving body frame. Further, F̄∗ can be represented in the form similar to Eq. 3.41:

F̄∗ = Fext∗ +M∗v̇∗ + C∗v∗ +G∗, where

M∗ =

⎡
⎢⎣ −m∗E3×3 03×3

03×3 −I∗

⎤
⎥⎦ , C∗ =

⎡
⎢⎣ 03×3 03×3

03×3 −ω∗ × I∗

⎤
⎥⎦ ,

G∗ =

⎡
⎢⎣ m∗g

03×1

⎤
⎥⎦ , v̇∗ =

⎡
⎢⎣ ḧ∗

ω̇∗

⎤
⎥⎦ ,v∗ =

⎡
⎢⎣ ḣ∗

ω∗

⎤
⎥⎦

(3.44)
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in which E3×3 ∈ R3×3 denotes the identity matrix. For a 6-DOF RSS parallel robot, there are 13

moving bodies including the end-effector, 6 wrenches and 6 links. Therefore the balance equation

of the 6-DOF parallel robot can be rewritten as Eq. 3.45:

F̄p · δχe +
6∑

i=1

F̄li · δχli +
6∑

i=1

F̄wi · δχwi = 0, (3.45)

where F̄p, F̄li and F̄wi contain the static balance force and torque exerted on the centers of mass of

the platform, links and wrenches respectively and can be represented in the same form as Eq. 3.44,

δχe, δχli , and δχwi are the virtual displacements accordingly.

In addition, the following relations hold for the velocity analysis:

δθ = Jadδχe, δχwi = Jaδχe, δχli = Jbδχe. (3.46)

Substituting Eq. 3.46 into Eq. 3.45, the terms in Eq. 3.41 can be derived as the following:

M(χE) =Mp +
6∑

i=1

(JT
aiMwiJai + JT

bi
MliJbi),

C(χE ,vE) =Cp +
6∑

i=1

(JT
aiCwiJai + JT

aiMwi
˙Jai + JT

bi
CliJbi + JT

bi
Mli

˙Jbi),

G(χE) =Gp +

6∑
i=1

(JT
aiGwi + JT

bi
Gli),

τg =JT
adτa,

(3.47)

where τa = [τa1 , τa2 ...τa6 ]
T is the actuator torque vector applying on the revolute joints, and the

details of Eq. 3.47 are given in Appendix 7.2. The joint friction is described by Coulomb model [89]

that has been used in the modelings of both parallel robots [62] and serial robots. Based on this
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friction model, the friction τf in Eq. 3.41 can be represented as:

τf = JT
ad

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fc1sign(Jad1vE) + fv1Jad1vE

fc2sign(Jad2vE) + fv2Jad2vE

...

fc6sign(Jad6vE) + fv6Jad6vE

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.48)

where fci and fvi are the Coulomb and viscous friction parameters of the ith revolute joint.

3.7 Summary

In this chapter, the inverse kinematic problem of the 6-RSS parallel robot is solved analyti-

cally. A quasi-Stewart forward kinematic method is developed for the 6-RSS parallel robot. The

superiority of the method compared with the normal forward kinematic method is presented by the

simulation. The kinematic solutions will be used to determine the proper workspace and to develop

the kinematic calibration method. The Jacobian matrices reveling the velocity mappings from the

joint space, wrench and link frame velocity to the workspace velocity of the 6-RSS parallel robot

are developed for building the dynamic model. The explicit form of the dynamic model of the 6-

RSS parallel robot is obtained based on the virtual work principle. The built dynamic model will be

utilized to design the identification method and advanced dynamic model based controller for the

6-RSS parallel robot.
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Chapter 4

Visual Kinematic Calibration Method

for the 6-RSS Parallel Robot

4.1 Introduction

Kinematic calibration is necessary to be carried out to remove the kinematic parameter errors

which are caused by the manufacturing and installation process of the robot, and to improve the

positioning accuracy of end-effector output in a robot control system. Based on the geometric anal-

ysis, a kinematic error model can be constructed by considering joint residual errors in kinematic

parameters. Instead of using a full robot error model built by D-H method in [33], a reduced error

model will be considered in this chapter, since the contribution of joint manufacturing tolerances

has a minor effect on the platform pose error. The reduced error model will emphasize the positional

errors of the joint centers and the deviation of the active joint angles. The external sensors will be

utilized to collect enough redundant information for the calibration which is posed as a nonlinear

optimization problem. In this thesis research, the optical CMM sensor, C-track, will be used to

measure the end-effector pose of the parallel robot. By attaching several target reflectors on the

end-effector platform, the 6D pose of the end-effector frame can be derived by the optical CMM

sensor which is more flexible compared with traditional contact measurement sensors such as the

translation detector, CMM and inclinometer. The calibration algorithms based on end-effector ab-

solute pose are generally used to determine the optimal robot kinematic model [42]. This kind of
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algorithm needs accurate absolute location of the robot base frame in the sensor frame through a

tedious pre-calibration procedure due to the lack of a well-defined and mechanically accessible base

coordinate frame for the robot [90]. The location of the robot base frame w.r.t. the sensor frame

is not needed in the relative pose (or pose variation) based calibration. And based on the relative

pose measurement, the constraint equations for deriving the entire considered kinematic parame-

ters of the robot can be constructed for the calibration. Therefore in this research, we focus on the

kinematic model calibration based on robot relative pose.

In this chapter, a relative pose-based calibration algorithm (RPBA) based on the optical CMM

sensor is developed for a 6-RSS parallel robot. The detected feature points of the reflectors can

be used to estimate the relative poses. The obtained relative poses are then used to construct an

objective function, and the updating algorithm is determined by minimizing this objective function

following the least square norm principle. The actuation stroke range and optimal set of candidate

configurations are determined for the kinematic calibration of the 6-RSS parallel robot. Simulation

has been carried out to prove the superiority of relative pose based calibration method comparing

with the implicit calibration method based on absolute pose measurement. The experimental tests

show that the following advantages of the proposed algorithm comparing with the other relative

position-based algorithm [45]: both the position and orientation variations can be utilized and no

accurate location information for the detection sensor is needed. Both simulation and experimental

results demonstrate that the proposal RPBA using optical CMM is an implementable and effective

method for the parallel robot calibration.

This chapter is organized as follows. The kinematic error model and the visual detection system

are introduced in section 4.2. Section 4.3 presents the classic implicit calibration method and the

RPBA based on the optical CMM. In section 4.4, simulation results on optimal actuator stroke and

calibration are presented. Finally, experimental case studies for the 6-RSS parallel robot kinematic

calibration are given in section 4.5, and a brief summary is drawn in section 4.6.
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4.2 Kinematic Error Model and Pose Estimation

In this section, the kinematic error model is built based on the 6-RSS kinematic analysis. And

the optical CMM system for the robot pose detection is introduced.

4.2.1 Kinematic Error Analysis

Fig.4.1 shows the 6-RSS parallel robot with six coplanar rotary actuators. There is only one

actuator in each parallel robot chain, and the kinematic model can be described by 6 equations

given as follows:

lAiTi =
∥∥Ti(θi, lTiBi ,Bi)−Ai(χE ,A

′
i)
∥∥ (i = 1, ..., 6), (4.1)

where lAiTi , lTiBi are constant lengths of wrenches and links in the ith chain respectively, and

A′
i ∈ R

3 denotes the coordinate of the sphere joint center (Ai) with respect to ΣE. Ti(θi, lTiBi ,Bi)

represents the calculation process of Ti through θi, lTiBi , and Bi, similarly, Ai(χE ,A
′
i) is the

calculation process of Ai through χE and A′
i.

For a complete error modeling of 6-UPS robots, 132 geometric errors parameters are identified

by Masory [33]. The geometric parameters can be reduced to 42 assuming a good manufacturing

quality is applied to the joints. The reduced error model is introduced in Wang’s result [1], which

shows that the position accuracy of Stewart platform is insensitive to the joint errors. The reduced

kinematic error model is considered in this chapter. Notice that the revolute joint values θi are

measured by built-in potentiometers of the 6-RSS parallel robot. The linear relationship, Eq. 4.2 ,

Figure 4.1: Error parameters considered in the model
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can be used to compute θi [91].

θi = ηiκi +Δθi (i = 1, ..., 6), (4.2)

where, Δθi are the angle offsets, κi are the sensor outputs, and ηi are the angle conversion co-

efficients. Based on the kinematic analysis, the considered parameters include: initial terminal

coordinate errors ΔA′
i = [Δx′ai, Δy′ai, Δz′ai]

T , ΔBi = [Δxbi, Δybi, Δzbi]
T , length error ΔlAiTi ,

ΔlTiBi , angle conversion coefficients ηi, and angle offset Δθi, where i = 1, 2, ..., 6. Fig.4.1 shows

the kinematic structure of the ith chain for the parallel robot with errors marked. Hence, 60 un-

known parameters are considered in the kinematic model. And those parameters are denoted as the

column vector

bk =[Δx′a1;Δy′a1;Δz′a1; . . . ;Δx′a6;Δy′a6;Δz′a6;Δxb1;Δyb1;Δzb1; . . . ;Δxb6;Δyb6;Δzb6;

ΔlA1T1 ; . . . ;ΔlA6T6 ;ΔlT1B1 ; . . . ;ΔlT6B6 ; η1; . . . ; η6;Δθ1; . . . ;Δθ6] = [b1, b2, ...b60]
T .

The kinematic error model is then given as follows:

lAiTi+ΔlAiTi =‖Ti(ηiκi+Δθi, lTiBi+ΔlTiBi ,Bi+ΔBi)

−Ai

(
χE ,A

′
i +ΔA′

i

) ‖ (i = 1, ..., 6).

(4.3)

4.2.2 Pose Estimation Using the Optical CMM

The kinematic calibration of the parallel robot can be formulated as an optimization problem

with redundant non-linear constraint equations. As shown in Fig. 4.2, a dual-camera optical CMM

(C-track 780) is employed to estimate the pose of end-effector as redundant data for the optimization

problem in this research. The pose estimation principle of binocular vision is presented in this

section. n reflectors (n > 3) placed on the robot are chosen as target feature points to form the target

frame Σt. Given a group of non-collinear feature points pi (i = 1, 2, ...n), whose homogeneous

coordinates values in the sensor frame is denoted by CPi = [xpi, ypi, zpi, 1]
T , the relative pose Cχt

between the target frame and the sensor frame ΣC can be estimated.

The projection coordinates of CPi on the image frame of each camera can be written as IPij =

(uij , vij , 1), i = 1 · · ·n and j = 1, 2, where j is the number of dual cameras. IW j , is the projection
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matrix of each camera. The perspective projection can be given as below [92]:

IPij =
IW j

CPi,
IW j = Bj

IMCj , (4.4)

where Bj is the camera matrix, including the intrinsic parameters of the jth camera; IMCj is

the homogeneous transformation matrix from the sensor frame ΣC to the jth image frame, Bj and

IMCj can be derived through calibration of the optical sensor. Due to the lens distortion, calibration

errors and other uncertainties, the CPi derived from each camera is different. The triangulation is

the main way to balance the difference in the results [93]. In order to ensure a matching pair of

points, IPi1 and IPi2, meet in space, the following constraint should be satisfied:

IPT
i1 G

IPi2 = 0, (4.5)

where G is the fundamental matrix that can be computed when dual camera projection matrices,

IM1 and IM2, are given. Due to the uncertainty of image processing, Eq. 4.5 may not be satisfied

accurately. According to optimal correction principle of Kanatani [94], the objective function is

min
ˆCPi1

T
G ˆCPi2=0

(d(CPi1,
ˆCPi1) + d(CPi2,

ˆCPi2)), (4.6)

Figure 4.2: The calibration system of 6-RSS parallel robot
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where min(·) represents the minimization function subject to the constraint ˆCPi1

T
G ˆCPi2 = 0,

d(∗, ∗) denotes Euclidean distance, ˆCPi1 and ˆCPi2 are the estimated points of CPi1 and CPi2

respectively. As a result, ˆCPi1 and ˆCPi2 can be derived. Then, by Eq. 4.4, the coordinate of ith

feature point in sensor frame, CPi can be obtained.

After the position information of all the feature points on the end-effector is prepared, the pose

estimation of the end-effector can be developed. Suppose n feature points on the rigid end-effector

are fixed and known from the definition of the tool frame Σt, whose homogeneous coordinates are

denoted as tPi = (txpi,
typi,

tzpi, 1). It is assumed the current pose of Σt in the sensor frame ΣC

is denoted as tχC . Correspondingly, the transformation equation of ith feature point can be written

as:

CPi =
CM t

tPi, (4.7)

where CM t is the homogeneous transformation matrix from Σt to ΣC. In order to derive CM t, at

least three non-collinear feature points are required [95]. However, as indicated in [96], at least four

coplanar feature points are needed for finding an unique solution while additional non-coplanar fea-

ture points can be used to improve the estimation accuracy with measurement noise. By employing

Eq. 4.8, the homogeneous transformation matrix CME from ΣE to ΣC can be derived.

CME =C Mt
tME , (4.8)

where tME is the homogeneous transformation matrix from ΣE to Σt and is known for the def-

inition of the end-effector frame ΣE and Σt. Similarly, the homogeneous transformation matrix

mapping from ΣO to ΣC, CMO, can be obtained. Then, the homogeneous transformation matrix

OME can be calculated by Eq.4.9.

OME = CM−1
O

CME . (4.9)

Accordingly, the pose vector χE can be analytical solved from OME .

By using the proprietary software VXelements provided by Creaform Inc., the target frame can

be defined based on the selected reflectors on the surface of the end-effector. The positional and
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rotational information of the target frame w.r.t. sensor frame can be acquired, recorded or displayed

simultaneously. Therefore, the computation to obtain the pose of the target frame is carried out by

VXelements.

4.3 Calibration Algorithm Based on the Optical CMM

In this section, we start with the classical implicit calibration method based on optical CMM

for parallel robots. Since optical CMM device is involved, external parameters which describe the

relationships between base frame and sensor frame, end-effector frame and target frame should be

considered during this method implement. The kinematic parameter bk can be seen as the internal

parameters. Then we propose a RPBA for parallel robot calibration based on optical devices. It

can be seen that less external parameters are needed in RPBA. Then the constraints for candidate

configurations selection are determined. Finally the identifiability and observability analysis of the

calibration are given for both calibration methods.

4.3.1 Implicit Calibration Method Based on the Optical CMM

The implicit kinematic model which depicts the closed structure of parallel robots is commonly

employed in parallel robots kinematic calibration since it can avoid solving inverse kinematics and

forward kinematics [49]. The choice of implicit kinematic model can be various. Normally it should

be composed of equations that reflect the relationships between joint values, kinematic parameters

and the pose of end-effector. For the 6-RSS parallel robot, the constraint equations ΦI of implicit

kinematic model for calibration can be derived from Eq. 4.3.

ΦIi(bk)=‖Ti(ηiκ
l
i+Δθi, lTiBi+ΔlTiBi ,Bi+ΔBi)−Ai

(
OM l

E ,A
′
i +ΔA′

i

)
‖

− (lAiTi +ΔlAiTi) = 0 (i = 1, ..., 6),

(4.10)

where ΦIi is the ith element of ΦI . Then the kinematic calibration can be derived by solving an

optimization problem with the measurement of joint values κli and transformation matrix OM l
E at

the lth candidate configuration, and the total number m of candidate configurations should satisfy
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6m > 60. The cost functions for calibration can be written as following:

min
m∑
l=1

6∑
i=1

‖ ΦIi(bk) ‖ 2 (4.11)

However, due to the employment of an external optical device, OM l
E cannot be achieved directly,

since one shall take the pose of the sensor frame OχC w.r.t. the base frame of the parallel robot and

the pose of the target frame Eχt w.r.t. the end-effector frame into account. The homogeneous

transformation matrices corresponding to OχC and Eχt is OMC and EMt. Then the OM l
E at the

lth candidate configuration can be derived from the following equation [43]:

OM l
E =OMC

CM l
t
tME , (4.12)

where CM l
t represents the measurement of target frame pose with respect to the sensor frame at the

lth calibration configuration, and tME =EM−1
t .

The 12 parameters representing OχC =
[
oxc,

o yc,
o zc,

o αc,
o βc,

b γc
]T and tχE = [txE ,

t yE ,
t zE ,

tαE ,
t βE ,

t γE ]
T can be viewed as the external parameters for the implicit calibration of parallel

robots based on the optical CMM sensor, and can be written as a column vector

bIe =
[
oxc,

o yc,
o zc,

o βc,
o γc,

o αc,
t xe,

t ye,
t ze,

t βe,
t γe,

t αe

]T
.

Then substituting Eq. 4.12 into Eq. 4.10, the cost function becomes:

min

m∑
l=1

6∑
i=1

‖ ΦIi(bk, bIe) ‖ 2 (4.13)

Then the updating formula for bI = [bk;bIe]
T is given as follows:

bt+1
I = (JT

I JI)
−1JT

I Φ
t
I + bt

I , (4.14)

where bt
I , Φt

I is the value of bI , ΦI in the tth iteration respectively and JI is the Jacobian matrix of
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ΦI about bI as below:

JI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Φ1
I

bI1

∂Φ1
I

bI2
· · · ∂Φ1

I
bI72

∂Φ2
I

∂bI1

∂Φ2
I

∂bI2
· · · ∂Φ2

I
∂bI72

· · · · · · · · · · · ·
∂Φm

I
∂bI1

∂Φm
I

∂bI2
· · · ∂Φm

I
∂bI72

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.15)

In some researches,[97, 98] the vector bIe is derived from hand-eye calibration and calibrated

independently assuming the calibration of kinematic parameters is well carried out. But in our

case, the bIe appears in every constraint equation, the values of bk and bIe should be calculated

simultaneously.

To achieve the better results in solving the nonlinear optimization problem, accurate initial

guesses of bk and bIe are needed. For bk, the nominal values provided by manufacturer of parallel

robots can be used as the initial guess. However the initial guess of be should be measured manu-

ally. Taking the advantages of optical CMM sensor, the tχE can be observed and computed easily.

However due to the lack of a well-defined and mechanically accessible base frame for the parallel

robots, the process of deriving the transformation matrix from the optical sensor frame to the base

frame can be expensive and time consuming. If the CχO can only be roughly measured, this may

lead to unhealthy results of bk from the nonlinear optimization.

4.3.2 RPBA Based on the Optical CMM

Here we propose RPBA in which the pose variation of parallel robot end-effector can be used

to eliminate the influence of external parameters. The transformation matrix M l expressing the

relative pose between the lth end-effector configuration Cχl
t and an arbitrarily initial pose Cχ0

t

obtained from optical sensor can be derived as follows:

M l =CM0 −1
t

CM l
t . (4.16)

The inverse kinematics of the 6-RSS parallel robot can be represented by f : SE(3) → W,θ =

f(OME), W is the actuator parameter space. Then the transformation matrix of initial pose OM0
E
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and the lth configuration OM l
E is determined as OM0

E = f−1 (θ0) and OM l
E = f−1 (θl) respec-

tively, if the forward kinematics f−1 exists in the pose Oχ0
E and Oχl

E . The transformation matrix

M l of the relative pose can also be obtained by

M l =(CMO
OM0

E
EMt)

−1 CMO
OM l

E
EMt

=EM−1
t

OM0 −1
E

OM l
E

EMt.

(4.17)

The bijective mapping from homogeneous transformation matrix to the pose can be defined as:

χ = L(M), combining the Eq. 4.16 and 4.17, the constraint function ΦR for calibration can be

derived as the following equations:

ΦR(bk,bRe) = L(CM0 −1
t

CM l
t)− L(EM−1

t
OM0 −1

E
OM l

E
EMt)

= L(CM0 −1
t

CM l
t)−L(EM−1

t f−1(κ0,bk)
−1 f−1(κl,bk)

EMt)=0.

(4.18)

where, ΦR(bk,bRe) is a 6 × 1 vector; κ0 = [κ01, κ
0
2, . . . , κ

0
6]
T and κl = [κl1, κ

l
2, . . . , κ

l
6]
T can

be obtained by the potentiometers; CM0
t and CM l

t are measured by the optical CMM sensor. The

external parameters for the relative calibration method bRe =
[
txE ,

t yE ,
t zE ,

t αE ,
t βE ,

t γE
]T is

just 6 parameters related to tχE . Based on classical nonlinear least square method and the forward

kinematics, an objective function for the kinematic calibration is defined as follows:

min

m∑
l=1

‖ ΦR(bR) ‖ 2, (4.19)

where bR = [bk;bRe]
T . Then the updating formula for bR is given as follows:

bt+1
R = (JT

RJR)
−1JT

R Φt
R + bt

R, (4.20)

where bt
R is the value of bR in the tth iteration and JR is the Jacobian matrix of ΦR about bR given
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by:

JR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Φ1
R

∂bR1

∂Φ1
R

∂bR2
· · · ∂Φ1

R
∂bR66

∂Φ2
R

∂bR1

∂Φ2
R

∂bR2
· · · ∂Φ2

R
∂bR66

· · · · · · · · · · · ·
∂Φm

R
∂bR1

∂Φm
R

∂bR2
· · · ∂Φm

R
∂bR66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.21)

As we can see from Eq. 4.19, the parameters representing CMO which lie in bIe are omitted in

the relative calibration method and hence we only need to calculate the parameters involved in EMt

which can be easily calibrated using optical sensor in this method.

4.3.3 Constraints Determination for Robot Configuration Selection

The robot configurations used in the kinematic calibration, or named as candidate configura-

tions, will affect the performance of calibration results [38]. In this section, the constraints for the

robot configurations selection based on kinematic analysis results on workspace and singularity in

[99] are firstly introduced. Two constraints for the candidate configuration selection are listed as

follows:

(1) The kinematic mapping should be totally singularity-free;

(2) The candidate configurations should be selected in a workspace where any robot configuration

corresponds to unique actuator outputs.

To guarantee the safety of the 6-RSS parallel robot and to avoid the local minimal during the

numerical calculation process of the forward kinematics, the first constraint should be satisfied.

The second constraint, known as homomorphism constraint [100], ensures that the forward and

the inverse kinematic calculation will converge to the right value during the calibration. In addition,

the mapping between Euler angles and the rotation matrix is a homomorphism by limiting the Euler

angles in the range of (−π, π], which ensures the forward and inverse kinematic mapping have the

same kind of geometric characteristic.

The singularity analysis is normally based on the Jacobian matrix of the kinematic mapping

which is given in Section 3.5. As given in [101], type-I singularity occurs and the 6-RSS parallel
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robot meets its boundary of available workspace, if det(Ja1) = 0, where det(∗) represents the

determinant of the matrix. If all the diagonal elements of Ja1 hold their signs in a workspace, the

parallel robot stays in a type-I singularity-free range. The robot type-II singularity of 6-RSS parallel

robot occurs when det(Ja2) = 0. To avoid the perturbation from the degenerated singularity surface,

the Cauchy Index ∇ of Ja2 can be used to identify the type-II singularity [100]. For any two nearby

poses χ1,χ2 in the workspace:

(1) If
∣∣∇Ja2

χ1
−∇Ja2

χ2

∣∣ = 0, line χ1χ2 stays in a type-II singularity-free domain;

(2) If
∣∣∇Ja2

χ1
−∇Ja2

χ2

∣∣ = 2, line χ1χ2 crosses a non-degenerate type-II singularity surface;

(3) If
∣∣∇Ja2

χ1
−∇Ja2

χ2

∣∣ > 2, and min
χ1χ2

det(Ja2) = 0, line χ1χ2 crosses a degenerated type-II sin-

gularity surface.

Singularity-free is not a sufficient condition for the uniqueness of forward kinematic solution in

parallel robots [102]. The second constraint requires for a workspace in which Hfwd is a bijective

mapping. The conclusion in the previous study [100] is directly used: kinematic mapping Hfwd is

a homeomorphism if the following equation holds:

2
n

√√√√ n∑
i=1

σ2
i ≤ C ·

∣∣∣∣∣
n∏

i=1

λi

∣∣∣∣∣ , (4.22)

where σi and λi is the ith singular value and the eigenvalue of Jad2 = J−1
a2 Ja1 respectively, C ≥ 1

is a bounded real number.

4.3.4 Identifiability and Observability Index

Since external parameters are involved in both implicit calibration and relative calibration, firstly

the identifiability of external parameters and kinematic parameters should be checked to see if there

is linear dependency between those parameters. According to Eq. 4.15 and 4.21, if any parameter

did not lie in the kernal of the regressor JI and JR, the parameter to be calibrated cannot be updated

in each iteration, which means the parameter is non-identifiable. Therefore the full rank of JI and

JR should be guaranteed.
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In addition to checking the identifiability of kinematic and external parameters, the observability

should also be considered to minimize the estimation errors by selecting an optimal set of calibra-

tion candidate configurations. In this research, the observability index proposed in [103], which

emphasizes the volume of a hyper-ellipsoid whose directions are represented by the singular values

of the Jacobian matrix, denoted by σ1 ≥ σ2 ≥ · · · ≥ σς , is chosen as the criteria in this research.

The index Oin can be expressed as (take JI case for instance):

Oin =
ς√σ1σ2 · · ·σς√

m
=

ς

√
det(
√

JT
I JI)

√
m

(4.23)

where m is the number of calibration candidate configurations, ς is the number of error parameters.

4.4 Simulation Case Study

In this section, simulations are based on the geometry of 6-RSS parallel robot depicted in Fig-

ure 3.1 and the setup is shown in Figure 4.2. The proper actuator strokes for the calibration are

determined. And the optimal set of candidate configurations is derived for both implicit and rela-

tive calibration methods. Then the calibration simulation comparison of two calibration methods is

implemented to show the superiority of RPBA.

4.4.1 Actuator Stroke for Calibration Configuration Determination

Compared with the end-effector poses, it is more convenient to describe the robot configuration

by the actuator joints’ angles. Hence the results in this subsection are all determined in the actu-

ator parameter space. Besides, the kinematic calculation is based on ideal kinematic model. Two

kinds of parallel robot configurations should be determined for the kinematic calibration: the initial

configuration and the candidate configurations.

The optimal initial actuator angles for the 6-RSS parallel robot are listed in the vector [−60◦,

− 60◦, 180◦, 180◦, 60◦, 60◦] as shown in the previous work [99]. For the selection of candidate

poses, we try to determine the maximum singularity-free actuator stroke in which the kinematic

equation Hfwd is a homomorphism mapping. Considering the symmetric structure of the 6-RSS
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parallel robot, the optimization problem can be simplified into a single-objective planning: finding

the maximum of actuator strokes under constraint conditions introduced in last section. The cost

function is given by Eq. 4.24.

max
(−π/2,π/2)

6∑
i=1

μi |θmax,i − θmin,i| , (4.24)

where θmax,i and θmin,i are the maximum and minimum actuator angles of the ith branch respec-

tively, and μi is the positive punishment coefficient. The used constraint conditions and parameters

are listed as follows:

(1) Initial angles [−60◦,−60◦, 180◦, 180◦, 60◦, 60◦];

(2) Singularity I-free condition

sgn(Ja1) = [+,−,+,−,+,−];

(3) Singularity II-free condition ∇Ja2 = 0 and det(Ja2) 
= 0;

(4) Homomorphism condition Eq. 4.22.

The optimization procedure is shown in Figure 4.3. Assuming the initial angle is at the zero degree

axis of the polar coordinate, we try to determine the upper and lower bounds of the actuator stroke.

Figure 4.3: The determination of proper actuator stroke
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Figure 4.4: Bijective validation through the boundaries

After the 40th step the two bounds start to converge. Finally, the robot configurations should be

selected in the actuator stroke (−57.1◦, 57.1◦).

We validate the homomorphism constraint in the boundaries of the determined actuator stroke

to ensure the uniqueness of inverse and forward kinematic solution. The searching trajectory starts

from initial angles and is determined by link terminal points of the actuator strokes. Because the

trajectory is selected from the boundary of the maximum singularity-free domain, as shown in

Fig.4.4, the value of det(Jad2) is almost zero in every point of the trajectory. From Eq. 4.22, as the

value of C is bounded, and the kinematic mapping Hfwd is a bijective (homomorphism) mapping

in the determined actuator stroke.

4.4.2 Optimal Set of Calibration Configurations Selection Simulation

In this subsection, the identifiability and the observability of the kinematic parameters for both

implicit calibration and relative calibration are checked. According to Section 4.3.4, the identifi-

ability of bI and bR in both calibration methods is dependent on the Jacobian matrix JI and JR
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which are calculated numerically (take the relative method case for instant) as

JR=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1
R(bR1+ε)−Φ1

R
ε

Φ1
R(bR2+ε)−Φ1

R
ε · · · Φ1

R(bR66+ε)−Φ1
R

ε

Φ2
R(bR1+ε)−Φ2

R
ε

Φ2
R(bR2+ε)−Φ2

R
ε · · · Φ2

R(bR66+ε)−Φ2
R

ε

· · · · · · · · · · · ·
Φm
R (bR1+ε)−Φm

R
ε

Φm
R (bR2+ε)−Φm

R
ε · · · Φm

R (bR66+ε)−Φm
R

ε ,

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.25)

where ε = 10−6 is the small variation added to each kinematic parameter. For both methods the

JI and JR are of full rank which means all the internal and external kinematic parameters are

identifiable.

The searching method of the optimal set of calibration configurations proposed by Nubiola et

al. is used in this chapter to maximize the index Oin given in Eq. 4.23 [104]. For both calibration

methods, the numerical algorithm starts with a candidate set of 13 random configurations selected

from the determined proper actuator stroke in the previous subsection. At each iteration, one con-

figuration chosen from 5000 random configurations in the proper actuator stroke is added to the

candidate group. If the index increases, this configuration is kept in the candidate group and any

other configuration which decreases the index of the set of remaining configurations is removed.

Otherwise this configuration is discarded and the process goes to next iteration.

For implicit calibration method, the algorithm stops after 618 iterations with the index reaching

0.0031 which cannot be further improved. And for relative calibration method, the maximum index

goes to 0.0322 with 572 iterations. The optimal sets for implicit and relative method contain 34 and

22 configurations respectively.

4.4.3 Calibration Simulation

In this subsection, the calibration simulation is carried out on the case study of the 6-RSS parallel

robot based on the pose measurement from the optical CMM system. The detection noise in the

simulation is determined based on experimental analysis.

As introduced in Section 4.2.2, the reflectors attached on the end-effector can be used as the fea-

ture points for the pose estimation. And the noise of the poses and joint angle measurements should
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Table 4.1: The standard deviations of the noise distribution

Standard deviation

Joint angle measurement κ 0.2233 bit
Pose measurement (x, y, z) 0.0096 mm
Pose measurement (β, γ, α) 0.0261 deg

Table 4.2: The standard deviations of the parameter errors distribution

Standard deviation

[bI1, bI2, · · · , bI48] 1 mm
[bI49, bI50, · · · , bI54] 0.00005 rad/bit
[bI55, bI56, · · · , bI60] 0.05 rad
[bI61, bI62, bI63], [bI67, bI68, bI69] 0.5 mm
[bI64, bI65, bI66], [bI70, bI71, bI72] 0.017 rad

be considered in the simulations. With a 10000 times detection for the robot initial configuration,

the error distribution of the feature points is obtained. Based on the results of noises analysis, the

measurement noise satisfies a two-dimensional normal distribution with standard deviations shown

in the Table 4.1.

In the calibration simulation, a group of parameter errors bn
I is generated randomly complying

with normal distribution. Note that bn
R is a subset of bn

I . The standard deviations ρ given in Table

4.2 are roughly chosen such that ±3ρ error would lie in ±20% of the nominal parameters.

In the simulation, the procedure of implementing the implicit calibration method is given as

follows:

(1) Load the initial parameters b0
I ;

(2) Generate a group of parameter errors with normal distributions of certain standard deviations

as mentioned. By adding the errors to the initial parameters, the real kinematic parameters

bn
I can be obtained;

(3) Load the optimal set of 34 configurations derived from previous subsection for the implicit

calibration method. Through Eq. 4.2, the optimal set expressing in the actuator domain is

converted into joints’ readings. Then the joint measurement κl(l = 1, ..., 34) is derived by

adding the detection noise to the joints’ readings;
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Table 4.3: The error norms between nominal and calibrated values-normal for implicit calibration
method

Before calibration After calibration

‖bc
I − bn

I ‖2 3.273 0.8197∑34
l=1 ‖Φc

I − Φn
I ‖2 0.00109929 2.94235e-05

(4) The measurements of the poses Cχl
t are derived from the forward kinematics and Eq. 4.12,

employing the real kinematic parameters bn
I . Also the measurement noise should be added to

the pose values;

(5) The updating formula Eq. 4.14 is used to determine the optimal error parameters bI by

minimizing Eq. 4.13.

After 11 iterations, the calibrated error parameters bc
I are found. The results with the norm of

72 error-parameters and ΦI are shown in Table 4.3.

For the RPBA simulation, the procedure is similar to that of the implicit calibration as follows:

(1) Load the initial parameters b0
R;

(2) Extract the subset bn
R from bn

I ;

(3) Load the optimal set of 22 configurations derived and obtain the joint measurement κl(l =

1, ..., 22) with the measurement noise;

(4) The measurements of the relative poses M l are derived from the forward kinematics and Eq.

4.17, employing the real kinematic parameters bn
R. Also the detection noise should be added

to the pose values;

(5) The updating formula Eq. 4.19 is used to determine the optimal error parameters bR by

minimizing Eq. 4.20.

After 4 iterations, the calibrated error parameters bc
R are found. The results with the norm of 66

error-parameters and ΦR are shown in Table 4.4.

The effectiveness of the two calibration methods are compared regarding to the positioning ac-

curacy improvements with respect to the initial pose. The simulation procedure is given as follows:
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Table 4.4: The error norms between nominal and calibrated values-normal for RPBA

Before calibration After calibration

‖bc
R − bn

R‖2 3.1630 0.6616∑22
l=1 ‖Φc

R − Φn
R‖2 0.00542206 2.38881e-05

(1) Without loss of generality, 100 random test relative configurations M l
n(l = 1, 2 · · · 100) w.r.t.

the initial configuration are generated;

(2) Load the initial parameters bu
I , the calibrated parameters bc

I and bc
R derived from the two

calibration methods;

(3) The test configurations expressed in actuator domain θl
u, θl

I and θl
R are derived through the

inverse kinematics and Eq. 4.17, employing bu
I , bc

I and bc
R respectively.

(4) Input the deriving θl
u, θl

I and θl
R into the real kinematic model of the robot separately, which

employs the real parameters bn
I . Then the relative configurations M l

u, M l
I and M l

R can be

obtained respectively.

Converting M l
n, M l

u, M l
I and M l

R into SE(3) space, we obtain χl
n (the nominal relative poses),

χl
u (the relative poses deriving from uncalibrated parameters), χl

I (the relative poses deriving from

implicit calibration result) and χl
R (the relative poses deriving from RPBA result) respectively. Then

the pose errors χl
u,e, χl

I,e and χl
R,e can be derived from χl

u−χl
n, χl

I−χl
n and χl

R−χl
n respectively.

Table 4.5: The RMS of the relative pose errors in simulation.

χl
u,e χl

I,e χl
R,e

x 3.4 mm 3.1 mm 0.053 mm
y 3.8 mm 4.9 mm 0.039 mm
z 4.5 mm 4.2 mm 0.018 mm
γ 0.0033 rad 0.0012 rad 9.7 e-5rad
β 0.0060 rad 7.9 e-4 rad 1.6 e-4 rad
α 0.0037 rad 9.6 e-4 rad 6.7 e-5rad

The results are shown in Figure 4.5 and Table 4.5. The results show that both calibration meth-

ods can improve the positioning accuracy of the parallel robot. In addition, the RPBA can improve
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: The simulation results of relative pose errors derived from implicit calibration, relative
calibration and un-calibration: (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction;
(d) Around α Axis; (e) Around β Axis; (f) Around γ Axis
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the positioning accuracy of the parallel robot in both translational and angular portions compared

with the implicit calibration method. The implicit calibration results lead to a considerable accuracy

improvement on the angular portion, but only slightly improvement is gained in terms of the trans-

lational accuracy. The RPBA can improve the positioning accuracy significantly in all directions of

the relative pose at the given configurations. Therefore, a conclusion can be drawn that considering

the relative pose accuracy, the parallel robot can fulfill more accurate positioning tasks based on the

proposed RPBA than those based on the implicit method.

4.5 Experimental Validation

The experiment setup is shown in Figure 4.6b. The 6-RSS parallel robot with 6 built-in joint

controllers is provided by Servo & Simulation Inc. (Sanford, Fl, USA). as shown in Figure 4.6a.

The built-in controllers communicate with the robot control computer through two Quanser MultiQ-

PCI (Sensoray Model 626) data acquisition cards provided by Quanser Inc. (Markham, ON, Canada).

Quanser’s QUARCTM software is running on the robot control computer with Windows 7.0 32-bit

operating system and Intel Core Processor i7-3770 3.4 GHz. QUARCTM software is capable of

generating real-time application though Simulink based controllers and implementing the applica-

tion in real time on the Windows target. The C-track 780 provided by Creaform Inc. (Levis, QC,

Canada) is used to obtain the image data of the reflectors attached on the robot. The reflectors pro-

vided by Creaform Inc. are magnetic stickers which are easily fixed on the robots and are used as

the feature points. In another Windows 7.0 64-bit computer with Intel Xeon Processor E5-1650 v3

3.5 GHz and NVIDIA Quadro K2200 (Santa Clara, CA, USA) professional graphics board, Vxele-

ments software is used to process the image data and transmit the pose of the end-effector to the

robot control computer.

As shown in Figure 4.7, the reflectors are stuck on the surface of the moving platform. At least

three non-collinear points on each plane of Plane A, Plane B and Plane C are employed to build

up the equations of planes based on Cramer’s rule. Then the intersection lines and points of three

planes can be used to define the x direction of ΣE, and z direction is aligned with the norm of Plane

A. The origin point of ΣE is derived from the intersection point of l1 and l2. Then, the obtained

63



(a)

(b)

Figure 4.6: (a) The 6-RSS parallel robot, (b) Architecture of the Experiment System
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ΣE in the optical CMM sensor frame is directly used as the target frame. The base frame of the

parallel robot is defined by following the similar procedure.

y

x

z

pa1

pa2

pa3

Plane A

p1

p2

p3

Plane B

Plane C

p1 l1

l2

p12 p23

Figure 4.7: Measurement of ΣE.

For the relative calibration method, the optimal set of 22 configurations derived from previous

section are selected as candidate configurations. And the actuator values are set as [−60◦,−60◦, 180◦,

180◦, 60◦, 60◦] for the initial configuration. At each configuration the robot stops for 2 seconds and

the sampling frequency of the potentiometer and C-track is 500 Hz and 29 Hz respectively. The

mean values are used for each configuration. Then the deriving Cχl
t and κl(l = 0, 1 · · · 22) are

utilized in the objective function Eq. 4.19. Eq. 4.20 is employed as the updating formula. After

5 steps iterations, the calibrated kinematic parameters are obtained. The objective function starts

from 0.00155347 and converges to 7.07731×10−5.

To validate the calibration results, 100 random relative configurations χl
n(l = 1, 2, · · · , 100)

w.r.t. its initial configuration inside the workspace of the parallel robot is chosen. And two sets

of configurations are generated by the robot using un-calibrated and calibrated kinematic model

respectively. Also the mean values of the sensor reading are utilized in the experimental test. By

using Eq. 4.17, the relative pose χl
c based on the calibrated kinematic model and χl

u based on the

un-calibrated model can be derived. The pose errors after calibration χl
c,e should be χl

c−χl
n and the

pose errors before calibration χl
u,e can be derived from χl

u−χl
n. Those errors show how accurately

the parallel robot can position to a given configuration w.r.t. the initial configuration. The results

are given in Fig. 4.8 and Table 4.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: The experiment result of relative pose errors derived from calibrated model and uncali-
brated model: (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction; (d) Around α
Axis; (e) Around β Axis; (f) Around γ Axis
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Table 4.6: The RMS of the relative pose errors in experiment.

Before calibration After calibration

x 0.876 mm 0.319 mm
y 0.796 mm 0.393 mm
z 0.820 mm 0.360 mm
γ 0.039 rad 0.0015 rad
β 0.031 rad 0.0013rad
α 0.017 rad 7.464 e-04 rad

As it can be seen from the test results, the relative calibration can effectively improve the posi-

tioning accuracy of the parallel robot on both translational and angular directions. And this method

is free from the tedious measurement of the relationship between the base frame and the sensor

frame. Thus, it is concluded that the RPBA is an implementable and effective method for the paral-

lel robot calibration.

4.6 Summary

In this Chapter, a relative pose-based kinematic calibration method is proposed for a 6-RSS par-

allel robot by using the optical CMM system. The developed calibration algorithm can improve the

positioning accuracy through more accurate kinematic parameters. In this algorithm, the base frame

pose w.r.t. the sensor frame is not needed, which leads to an effective relative calibration method

for the parallel robot. Since the forward kinematic model is used in the relative pose based cali-

bration, the optimal actuator strokes of the parallel robot are derived to ensure the homeomorphism

mapping of the forward kinematic model. The simulation results show the relative pose based cali-

bration algorithm successfully improves the relative accuracy of the parallel robot. The comparison

with the implicit calibration demonstrates that the RPBA can deliver a more satisfactory accuracy.

The experimental tests on an arbitrary trajectory with 100 configurations further show the proposed

RPBA has improved the positional accuracy in the workspace effectively. The developed calibration

algorithm can be applied to other types of parallel and serial robots. And the calibrated kinematic

parameters would be used in a 6-RSS parallel robot visual servoing design in the subsequent chap-

ters.

67



Chapter 5

Visual Close-loop Output-error

Identification Method for the 6-RSS

Parallel Robot

5.1 Introduction

Parallel robots are often considered as high-precision robots since there is no accumulation of

joint errors. However, this is not always guaranteed due to the kinematic parameter errors and

difficulties in the dynamic analysis. The kinematic parameter errors have been determined by the

kinematic calibration method introduced in Chapter 4. The dynamic model of the parallel robot is

normally more complex than that of serial robots, due to the fact that more moving components

are needed to be considered, and also there exits highly coupling relations between those moving

components. However, the dynamic model is the essential foundation of the dynamic model-based

controller design to improve the tracking accuracy.

To obtain an accurate dynamic model, the dynamic identification needs to be carried out. The

identification methods of 6-DOF parallel robot in [21, 62] are borrowed from those of serial robots.

The identification is formulated as the linear optimization problem in which the dynamic model
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is built as linear form of the parameters to be identified including dynamics and friction parame-

ters. The measurement of joint angle position and actuator torque data are needed for identification

purpose. In [21], the time-consuming numerical method is utilized to estimate the pose of the

end-effector frame from the joint measurement, since forward kinematics of 6-DOF parallel robots

cannot be solved analytically [6]. Thanks to the visual sensor, the pose of the end-effector frame

can be directly measured via the optical CMM sensor.

Another drawback of the current method is that the actuator torque or current measurement is a

prerequisite for the dynamic identification. However, the torque related data is normally inaccessible

to the users of industrial robots. The output-error identification method can be utilized to solve this

problem. The dynamic parameters can be obtained bysolving the optimization problem whose

objective is to minimize the output error of the real plant and the mathematical model subject to the

same desired path. And it has been applied in the identification of serial robots [57].

A closed-loop output-error identification method based on a CMM sensor is proposed for paral-

lel robots in this chapter. The end-effector pose is measured by the optical CMM and served as the

output of the real plant. The same outer loop visual servoing controller and reference trajectory are

employed in both actual robot and simulation model for model identification. The forward kinemat-

ics of parallel robots, which is usually solved by using time-consuming numerical algorithm, can be

avoided. The exact knowledge of the built-in controller and the joint torque are not needed. The dy-

namic model parameters are identified by using nonlinear optimization technique. The experimental

tests validate the identification results.

This chapter is organized as follows. Section 5.2 describes the linear form of the dynamic

model of the 6-RSS parallel robot. The closed-loop output-error identification method is proposed

in 5.3. The selection of the exciting trajectory and the procedure of the identification are presented

in Section 5.4 and 5.5 respectively. The dynamic model validations based on simulation and the

experiment results of the identification are given in Section 5.6. Finally, a summary is drawn in

Section 5.7.
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5.2 Linear Form of the Dynamic Model

Since the kinematic parameters of parallel robots can be obtained through the kinematic cal-

ibration method as introduced in Chapter 4, only inertia and friction parameters are considered

for the model identification of parallel robots. Considering the heavy computation load of solv-

ing inverse dynamic model for the dynamic identification and visual servoing purpose, a reduction

of the dynamic parameters with the trade-off between the computation load and accuracy should

be implemented. The geometry feature of the parallel robot can be considered for simplification.

For the 6-RSS parallel robot, it is assumed that the wrenches, links and end-effector are symmet-

ric. Furthermore, the center of mass is assumed to be located in the geometric center. There-

fore, the dynamic parameters for each body of the wrenches, links and end-effector can be re-

duced to ξ∗ = [m∗, Ix∗ , Iy∗ , Iz∗ ]T , where ∗ represents arbitrary moving body of the parallel robot.

Then Eq. 3.41 can be rewritten as the linear form w.r.t. the dynamic parameters and the friction

coefficients:

τg = Γ (χE ,vE , v̇E)Ξ, (5.1)

where Ξ = [ξTp , ξ
T
w1, ξ

T
w2, . . . , ξ

T
w6, ξ

T
l1, ξ

T
l2, . . . , ξ

T
l6, fc1 , fc2 , . . . , fc6 , fv1 , fv2 , . . . , fv6 ]

T is a R64×1

vector of dynamic parameters and the friction coefficients, and Γ (χE ,vE , v̇E) is the regressor ma-

trix, which consists of the kinematic parameters, state variables and their derivatives. Γ (χE ,vE , v̇E)

can be derived using the Symbolic Math Toolbox of Matlab. Given an exciting trajectory as a ref-

erence input to the robot, which will be introduced in Section 5.4, Eq. 5.2 can be obtained by

reorganizing Eq. 5.1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

τg1

τg2
...

τgn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Γ (χE1 ,vE1 , v̇E1)

Γ (χE2 ,vE2 , v̇E2)

...

Γ (χEn ,vEn , v̇En)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Ξ = HΞ, (5.2)

where n is the number of the sampled poses from the given trajectory. By feeding various testing

trajectories to the robot, the regression matrix H is of full rank, which means all elements of Ξ can

be identified.
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5.3 Closed-loop Output-error Identification Method

The basic idea of output error identification is to use nonlinear optimization technique to min-

imize the squared error between the outputs of the real plant and the simulated model. Since the

motor torque is inaccessible, the pose of the end-effector, χE , measured by optical CMM is used

as the output of the system. Hence, the closed-loop output-error identification method is adopted.

In conventional closed-loop output-error identification method, the controllers should be exactly

known and applied to both the real plant and the simulated model. However for an industrial robot,

the built-in controllers are usually unknown and need to be identified.

The closed-loop output-error identification approach for vision-based robotic system, as de-

picted in Figure 5.1, is proposed in this chapter. For the built-in controller of the 6-RSS parallel

robot, a PID controller is used to control the joint angle of each revolute joint. However, the three

gains of PID controller are unknown and needed to be identified. During the process of identifi-

cation, the gains and dynamic parameters are updated in each iteration of nonlinear optimization.

An outer loop visual servoing controller is added to stabilize both real robot and simulated model.

The visual servoing controller and the built-in controller form a cascade PID controller. As stated

in [105, 106], the cascade controller yields better dynamic performance in terms of stability and

working frequency compared with single loop controller. With a well-tuned outer loop visual ser-

voing controller, both the real and simulation systems can have a better performance and stability.
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Figure 5.1: The block diagram of closed-loop control system for model identification of 6-RSS
parallel robot.

In Figure 5.1, for both the real plant and simulated model, the same exciting trajectory of the

end-effector pose w.r.t. the base frame is given as the input χd(t). Then, the outer loop visual

servoing controller is designed as Eq. 5.4. The inverse kinematic Jacobian Jθ is used to transform

the velocity in the workspace to that in the joint space. By combining Eq. 3.23 and 3.30, Jacobian

matrix Jθ is derived as shown in Eq. 5.3 and the joint position control signal Uθ(t) is generated as

shown in Eq. 5.4.

θ̇ = Jad

⎡
⎢⎣ E3×3 03×3

03×3 Je

⎤
⎥⎦ χ̇E = Jθχ̇E . (5.3)

Uθ(t) =Jθ[kp(χd(t)− χm(t)) + kd(χ̇d(t)− χ̇m(t)) + ki

∫ t

0
(χd(t)− χm(t))dt], (5.4)

where kp, ki, kd are constants, and χm(t) is the visual measurement of the end-effector pose w.r.t.

the base frame obtained from VXelements software, while in the simulation χm(t) is replaced by

χs(t) which is the pose calculated by using the forward dynamic model.

In addition, the PID controller, given in Eq. 5.5, is used to describe the built-in joint controller
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in each joint and is employed in the simulated model:

τa(t) = lp(Uθ(t)− θs(t)) + ld(U̇θ(t)− θ̇s(t)) + li

∫ t

0
(Uθ(t)− θs(t))dt, (5.5)

where li, lp, ld are the PID parameters to be identified, and θs(t) is the joint angles, which can be

obtained by analytically solving the inverse kinematics.

The real plant output Ym = [χm(1),χm(2), · · · ,χm(k), ]T and the simulation output Ys =

[χs(1),χs(2), · · · ,χs(k)]
T are the variables in the optimization problem. The parameters to be

identified, Λ, can be denoted as Λ = [ΞT , lp, li, ld]
T . Accordingly the identification of Λ can be

converted to solving the following nonlinear optimization problem:

min Φ(Λ) = ‖ Ym − Ys ‖ 2. (5.6)

Then the updating formula for Λ is given as follows:

Λr+1 = (JT
Φ JΦ)

−1JT
ΦΦ(Λ

r) +Λr, (5.7)

where Λr is the value of Λ in the rth iteration and JΦ is the Jacobian matrix of Φ(Λ) w.r.t. Λ given

as:

JΦ =

[
∂Φ(Λ)
∂Λ1

∂Φ(Λ)
∂Λ2

· · · ∂Φ(Λ)
∂Λ67

]
, (5.8)

where Λi denotes the ith column of Λ. The terminate criteria is given as:

‖ Φ(Λr+1)− Φ(Λr) ‖
‖ Φ(Λr) ‖ ≤ tol1,

max

∣∣∣∣Λr+1
i −Λr

i

Λr
i

∣∣∣∣ ≤ tol2, i = 1, · · · , n,
(5.9)

where |·| denotes the absolute-value norm operation, tol1 and tol2 are the thresholds to be chosen for

tuning the accuracy. A compromise should be made between the convergence speed and accuracy

when choosing thresholds. To achieve good results in solving the nonlinear optimization problem,

a proper initial guess of Λ is needed. For the dynamic parameters of the parallel robots, the initial

guess can be calculated from manufacturer specifications. Then a priori PID parameters are obtained
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based on the simulation model.

5.4 Modified Exciting Trajectory

The exciting trajectories for the dynamic model identification of the serial robots are usually

determined based on Finite Fourier series [107]. The Finite Fourier series-based exciting trajectory

has been tested in a large amount of research works for identification purpose [108]. For serial

robots, it can be represented by the following:

θi(t) =

n∑
l=1

[
sin(2πf0lt)

2πf0l
sli −

cos(2πf0lt)

2πf0l
cli] + θ0i ,

θ̇i(t) =

n∑
l=1

[cos(2πf0lt)s
l
i + sin(2πf0lt)c

l
i],

θ̈i(t) =
n∑

l=1

[−2πf0lsin(2πf0lt)s
l
i + 2πf0ltcos(2πf0lt)c

l
i],

(5.10)

where θi(t) is the ith joint angle trajectory of serial robots, n is the harmonics number, f0 is the

fundamental frequency, and sli, c
l
i, θ0i are the trajectory parameters to be optimized. Instead of

choosing the joint space states (θ, θ̇, θ̈) for serial robots, the pose in the workspace is used for the

dynamic identification of parallel robots. A modified Finite Fourier series-based exciting trajectory

for parallel robots is proposed as:

χi(t) =
n∑

l=1

[
sin(2πω0lt)

2πω0l
sli −

cos(2πω0lt)

2πω0l
cli] + χ0i , (5.11)

where χi(t) is the ith column of the pose trajectory.

Therefore, 2n+1 parameters δi = [s1i , c
1
i , · · · , sni , cni , χ0i ]

T can be estimated by solving a non-

linear optimization problem. The maximum wrench rotation range inside the singularity-free do-

main of the 6-RSS parallel robot is (−57.1◦, 57.1◦). The inverse kinematic model is used to map

the poses into the joint space and to check if the joint angles stay inside the singularity-free domain.

To obtain the workspace states in the regression matrix H , the time derivatives of the Euler-angle
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should be converted to the angular velocity and acceleration, as shown in Eq. 3.21 and 5.12.

ω̇ =

⎡
⎢⎢⎢⎢⎣

α̈+ γ̈sβ + β̇γ̇cβ

cα(β̈ − α̇γ̇cβ) + sα(β̇γ̇sβ − β̇α̇− γ̈cβ)

sα(β̈ − α̇γ̇cβ) + cα(β̇α̇+ γ̈cβ − β̇γ̇sβ)

⎤
⎥⎥⎥⎥⎦ . (5.12)

As shown in Eq. 5.2, the observability index of H should be maximized to achieve a good identi-

fication result for given the exciting trajectories. The observability index Oin used in Section 4.3

is chosen as the criteria. Therefore, the optimal exciting trajectory can be obtained by solving the

following nonlinear optimization problem:

max Oin(δ) =
ς√σ1σ2 · · ·σς√

m
=

ς
√

det(
√
HTH)√

m
, (5.13)

where the singular values of H are denoted by σ1 ≥ σ2 ≥ · · · ≥ σς , m is the number of sampled

poses of the trajectory, ς is the number of dynamic parameters to be identified.

5.5 The Procedure of Identification

The whole procedure of the proposed closed-loop output-error identification method is given in

Figure 5.2. Firstly, the dynamic model of the parallel robot is derived as Eq. 3.41 and 5.1. Then the

optimized exciting trajectory, χd(t), can be generated by using the method mentioned in previous

section. By using χd(t) as reference input signal to the outer loop visual servoing control systems

of both the real plant and the simulated model, the measured output pose χm(t) of the parallel robot

by the optical CMM sensor is compared with that of the simulated model. The identification of the

parameters Λ is carried out by solving the nonlinear optimization problem. Lastly, the identified

model can be validated by feeding several testing trajectories to the systems.
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Figure 5.2: Sketch of the identification procedure.

5.6 Simulation and Experiment Results

In this section, the dynamic model is validated by the simulation using Matlab/SimMechanics.

In addition, the closed-loop output-error identification is carried out on a 6-RSS parallel robot.

An outer loop visual servoing controller is implemented on the real plant and the simulated model

individually. The C-track 780 from Creaform Inc. is adopted to measure the pose of the end-effector

of parallel robot.

5.6.1 Model Validation

The analytical dynamic model is rather complex and it is a non-trival task to ensure that the

code of dynamic model is mistake free. A simulation validation method is used to validate the built

mathematical dynamic model. A mechanical model of the 6-RSS parallel robot is built by using the

Multibody SimMechanics Toolbox of Matlab/Simulink. The SimMechanics model is constructed

by choosing the parts from SimMechanics library as shown in Figure 5.3. The coordinates frames

and physical parameters of rigid body blocks can be specified in the setting option. The revolute and

spherical joints are used to connect the rigid bodies. The body sensor part can provide the position

and orientation of the coordinate frames. The entire model is directly actuated by the torque of the

76



motors, and 3D animation shown in Figure 5.4 can be provided by SimMechanics. It should be

noted that SimMechanics model can only simulate the forward dynamics and cannot be used for

controller design. However, it is relatively easy and intuitive to build SimMechanics model with

high fidelity [109]. To validate the mathematical dynamic model Eq. 3.41, the explicit form of

the forward dynamic model obtained by Eq. 5.14 is employed to compare with the SimMechanics

model.

v̇E = M(χE)
−1(τg − C(χE ,vE)vE −G(χE)− τf ), (5.14)

The mathematical dynamic model is built by using S-function of Simulink. The initial dynamic

model parameters of both SimMechanics and mathematical models are derived from manufacturer

specifications and are given in Table 5.1.

Figure 5.3: Mechanical model of 6-RSS parallel robot built by SimMechanics.
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Figure 5.4: 3D animation of 6-RSS parallel robot. https://youtu.be/HXtCvgkn2jw.

Table 5.1: Initial dynamic model parameters of 6-RSS parallel robot.

Dynamic Model Parameters Initial Value

mp (kg) 24.0

Ixp 10
−2 (kg · m2) 17.8

Iyp 10
−2 (kg · m2) 17.8

Izp 10
−2 (kg · m2) 35.0

mwi 10
−2 (kg) 68.5

Ixwi
10−5 (kg · m2) 22.9

Iywi
10−5 (kg · m2) 22.9

Izwi
10−5 (kg · m2) 60.5

mli (kg) 1.31

Ixli
10−5 (kg · m2) 52.3

Iyli 10
−5 (kg · m2) 52.3

Izli 10
−4 (kg · m2) 21.3

As shown in Figure 5.5, a simple PID controller is used to stabilize both mathematical and

SimMechanic models with the same PID gains. The exciting trajectory χd(t) derived from Equa-

tion (5.10) is used as the reference input signal. The outputs of the SimMechanics and mathematical
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Figure 5.5: Dynamic model validation block diagram of 6-RSS parallel robot.

dynamic model (Eq. 5.14) are χ s(t) and χ m(t) respectively. The difference between χ s(t) and

χ m(t) is shown in Figure 5.6. The maximum position and angle errors are around 1.25 mm and

3.25× 10−3 rad, which occur at the beginning of the simulation, and are often caused by the kine-

matic error. The largest steady-state errors are about 0.1 mm in the position and 0.25× 10−3 rad in

the angle, which can prove the correctness of the mathematical model. The validated mathematical

model can be used in the simulation part for the subsequent identification.

5.6.2 Identification Experiment

The experiment setup described in Section 4.5 is used for the identification experiment. To

eliminate the high frequency noise of the pose measurement from the optical CMM, measurement

data is filtered by the zero-phase forward and reverse 8th order Butterworth filter with the cut-off

frequency 60 Hz. The filtering process is carried out by the Zero-phase digital filtering function of

Maltab, filtfilt.

The optimization of the exciting trajectory is carried out by using the GA function of the Opti-

mization Toolbox of Matlab. The GA algorithm uses binary code to represent the harmonic param-

eters. The fundamental frequency f0 is selected as 0.1 Hz and the harmonics number n is chosen

as 5. By taking the observation index as the fitness function, the binary code is updated to maxi-

mize the fitness value in each step. The starting value of the observation index Oin is 0.38 and the

stop criteria is set as 10−10. The algorithm stops after 324 iterations with the maximum Oin 1.345.

The derived optimal exciting trajectory is given in Figure 5.7.
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Figure 5.6: Simulation results of SimMechanics model. (a) Position error; (b) Angle error.
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Figure 5.7: Optimal exciting trajectory. (a) Positional trajectory; (b) Angular trajectory.
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Table 5.2: Identified parameters of 6-RSS parallel robot.

Parameters Initial Value Identified Value Parameters Initial Value Identified Value

mp (kg) 24.0 23.5 ml4 (kg) 1.31 1.24

Ixp 10
−2 (kg · m2) 17.8 16.1 Ixl4

10−5 (kg · m2) 52.3 12.9

Iyp 10
−2 (kg · m2) 17.8 14.4 Iyl4 10−5 (kg · m2) 52.3 39.2

Izp 10
−2 (kg · m2) 35.0 33.7 ml5 (kg) 1.31 1.33

mw1 10
−2 (kg) 68.5 67.1 Ixl5

10−5 (kg · m2) 52.3 30.7

Izw1
10−5 (kg · m2) 60.5 69.4 Iyl5 10−5 (kg · m2) 52.3 49.7

mw2 10
−2 (kg) 68.5 68.7 ml6 (kg) 1.31 1.34

Izw2
10−5 (kg · m2) 60.5 10.0 Ixl6

10−5 (kg · m2) 52.3 47.0

mw3 (kg) 10−2 (kg) 68.5 68.0 Iyl6 10−5 (kg · m2) 52.3 50.9

Izw3
10−5 (kg · m2) 60.5 22.6 fc1 0 0.104

mw4 10
−2 (kg) 68.5 67.7 fv1 0 0.148

Izw4
10−5 (kg · m2) 60.5 76.0 fc2 0 0.111

mw5 (kg) 10−2 (kg) 68.5 68.3 fv2 0 0.187

Izw5
10−5 (kg · m2) 60.5 44.1 fc3 0 0.0336

mw6 (kg) 10−2 (kg) 68.5 68.4 fv3 0 0.0993

Izw6
10−5 (kg · m2) 60.5 69.6 fc4 0 0.147

ml1 (kg) 1.31 1.33 fv4 0 0.854

Ixl1
10−5 (kg · m2) 52.3 63.0 fc5 0 0.104

Iyl1 10−5 (kg · m2) 52.3 68.4 fv5 0 0.0803

ml2 (kg) 1.31 1.32 fc6 0 0.0828

Ixl2
10−5 (kg · m2) 52.3 60.7 fv6 0 0.0349

Iyl2 10−5 (kg · m2) 52.3 71.8 lp 10 10.5

ml3 (kg) 1.31 1.25 li 12 11.4

Ixl3
10−5 (kg · m2) 52.3 22.4 ld 0.1 0.164

Iyl3 10−5 (kg · m2) 52.3 35.5

The identification procedure is implemented off-line through simulation illustrated in Section 5.3.

The optimization procedure is carried out by using optimization functions in Matlab R2016a. The min-

imal performance requirements of the computation platform are given as: 4 cores Intel or AMD

Processor; 6 GB disk space; 4 GB RAM. The same outer loop visual servoing controller, Eq.
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5.4), is employed in the simulation. The gains of the visual servoing controller are obtained

through trial and error in the extensive experimental tests. The well-tuned gains are given as

kp = 0.3, kd = 0.001, ki = 2.4. And the built-in joint PID controllers, Eq. 5.5, are also im-

plemented in the simulation. The dynamic parameters derived from manufacturer specifications are

used as initial values, and the initial values of the PID gains in Eq. 5.5 are obtained through trial

and error based on the simulation model. During the tuning, in the simulation system, the inertial

and friction parameters are set as the values based on the manufacturer specifications, and the vi-

sual servoing controller gains are set as the same values of the controller of the real system. The

identified parameters, given in Table 5.2, are derived by using lsqnonlin function of the Optimiza-

tion Toolbox of Matlab after 8 iterations. A total 50 out of 67 parameters are identified, and are

used in the simulation model (Eq. 5.14) to capture the dynamic characteristic of the parallel robot.

The other parameters neither contribute to nor have slight impact on the dynamics of the parallel

robot. Those parameters can be eliminated by using QR decomposition on the regression matrix H

[61, 110]. If any diagonal elements of R are smaller than the pre-defined small number, i.e., Rii < ε,

where ε is chosen as 10−3 in the research, the corresponding columns of the regression matrix H

are deleted. By doing so, matrix H is better conditioned and the identification procedure is sped up.

Then, the pose trajectories are generated by using the identified parameters in the simulation,

and are compared with the pose measurement, as shown in Figure 5.8. Table 5.3 shows the root-

mean-square (RMS) levels of the pose trajectory errors.
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Figure 5.8: The pose trajectories of the parallel robot: the measurement of the real plant (black

dot), the output of the simulation with initial parameters (green line), the output of the simulation
with identified parameters (blue line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z
Direction; (d) Around α Axis; (e) Around β Axis; (f) Around γ Axis.
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Table 5.3: The RMS levels of the pose trajectory errors.

Before Identification After Identification

x direction (mm) 1.26 0.408

y direction (mm) 1.16 0.235

z direction (mm) 1.55 0.494

α direction 10−3 (rad) 2.52 0.956

β direction 10−3 (rad) 3.58 0.797

γ direction 10−3 (rad) 2.80 0.725

5.6.3 Identified Results Validation

To validate the identified parameters, ten more trajectories are generated according to Eq. 5.11

with random harmonic parameters under the singularity constraint. The generated trajectories are

used as desired trajectories, and are fed to the parallel robot and the identified model in the sim-

ulation respectively. The RMS levels of the pose trajectory errors are given in Table 5.4, and the

measurement and the simulated pose trajectories are given in Figure 5.9 according to the 1st desired

trajectory. The RMS of the position and orientation errors for all ten trajectories are below 0.8 mm

and 1.4 × 10−3 rad respectively, which validate the identified results of previous subsection. In

addition, the proposed identification procedure is implemented based on the ten trajectories to ana-

lyze the statistic property of the identification results. After deriving ten more groups of identified

parameters, the variation measure of the identification results are given in Table 5.5. The highest rel-

ative variation of the parameter is below 25%, which is acceptable. It has been stated that less than

30 percent in the variation measure of the parameters gives a good match to the real system [111].
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Table 5.4: The RMS levels of the ten validation trajectory errors.

x (mm) y (mm) z (mm) α 10−3 (rad) β 10−3 (rad) γ 10−3 (rad)

1st 0.517 0.384 0.709 1.091 0.963 0.966

2nd 0.273 0.410 0.522 1.157 1.071 0.932

3rd 0.381 0.403 0.600 1.242 0.830 1.143

4th 0.341 0.511 0.617 1.136 0.814 1.161

5th 0.322 0.394 0.464 1.219 0.877 0.835

6th 0.310 0.301 0.441 1.195 1.111 1.040

7th 0.360 0.402 0.455 1.263 1.176 1.024

8th 0.418 0.483 0.460 1.251 1.211 1.015

9th 0.342 0.510 0.557 1.411 1.156 0.711

10th 0.318 0.379 0.473 1.219 1.023 0.905
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Figure 5.9: The pose trajectories of the parallel robot: the measurement of the real plant (black

dot), the output of the simulation with identified parameters (blue line), (a) Along X Direction; (b)
Along Y Direction; (c) Along Z Direction;(d) Around α Axis; (e) Around β Axis; (f) Around γ
Axis.
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Table 5.5: Variation measure of the identification result.

Parameters Variation Measure Parameters Variation Measure

mp (kg) 0.48% ml4 (kg) 19.1%

Ixp (kg · m2) 5.0% Ixl4
(kg · m2) 0.16%

Iyp (kg · m2) 24.9% Iyl4 (kg · m2) 0.06%

Izp (kg · m2) 8.6% ml5 (kg) 10.1%

mw1 (kg) 0.56% Ixl5
(kg · m2) 0.15%

Izw1
(kg · m2) 6.6% Iyl5 (kg · m2) 0.01%

mw2 (kg) 1.5% ml6 (kg) 12.9%

Izw2
(kg · m2) 1.4% Ixl6

(kg · m2) 0.17%

mw3 (kg) 3.4% Iyl6 (kg · m2) 0.02%

Izw3
(kg · m2) 5.0% fc1 15.9%

mw4 (kg) 3.7% fv1 11.7%

Izw4
(kg · m2) 3.8% fc2 21.4%

mw5 (kg) 6.6% fv2 13.9%

Izw5
(kg · m2) 6.6% fc3 9.0%

mw6 (kg) 0.79% fv3 16.4%

Izw6
(kg · m2) 1.7% fc4 17.8%

ml1 (kg) 4.1% fv4 15.2%

Ixl1
(kg · m2) 0.04% fc5 15.1%

Iyl1 (kg · m2) 0.11% fv5 21.8%

ml2 (kg) 5.2% fc6 23.4%

Ixl2
(kg · m2) 0.05% fv6 13.0%

Iyl2 (kg · m2) 0.12% lp 2.82%

ml3 (kg) 20.9% li 0.44%

Ixl3
(kg · m2) 0.09% ld 3.7%

Iyl3 (kg · m2) 0.17%
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Therefore by using the proposed visual closed-loop output-error identification method, the iden-

tified dynamic model can approximate the real plant with acceptable accuracy.

5.7 Summary

In this chapter, a visual closed-loop output-error identification method based on an optical CMM

sensor for parallel robots is proposed. An outer loop visual servoing controller is employed in both

the real plant and the simulation model to stabilize the two systems. The benefits of the proposed

method are summarized as follows: elimination of the need for the joint and torque measurements,

the exact knowledge of the built-in joint controller of the industrial robots, and the time-consuming

forward kinematics calculation. The correctness and accuracy of the built dynamic model are vali-

dated by the Matlab/SimMechanics simulation. The experimental test results show that the identi-

fied dynamic model can capture the dynamics of the real parallel robot with satisfactory accuracy.

The proposed method can be easily applied to other types of industrial parallel robots with unknown

PID built-in controller or its variants, such as 6 DOF Stewart platforms, 6 UPS and 6 RUS parallel

robots etc. The complexity of those dynamic models is similar to that of the 6-RSS parallel robot.

Since the analytical solution of the forward kinematics of those 6 DOF parallel robots does not exist,

the proposed visual identification method does not need the forward kinematic model. Taking the

advantages of the visual sensor, the dynamic model can be identified for the visual servoing pur-

pose. In the next chapter, the advanced model-based visual servoing control method will be further

studied to improve the tracking performance of parallel robots based on the identification results.

89



Chapter 6

Dynamic Model-based Visual Servoing

Control of the 6-RSS Parallel Robots

6.1 Introduction

Parallel robots are a series of closed-loop structure mechanisms whose end-effectors are sup-

ported by multiple serial kinematic chains. By actuating several active legs of the parallel robot, the

pose of the end-effector frame can be controlled to track the reference pose. The existence of closed-

chain mechanism yields difficulties on the controller design. How to design effective controllers to

improve the tracking accuracy of the parallel robots poses a challenge to the control community.

Since the numerical solution of the forward kinematic model is time-consuming and is not suitable

for the real-time controller of 6-DOF parallel robots, the researchers resort to the control design in

the joint space to avoid solving the forward kinematic equations [6, 21, 83]. The joint space con-

troller similar to that of the serial robots is designed for parallel robots by translating the desired

pose trajectory of the end-effector frame in Cartesian space into the one in the joint space through

the inverse kinematics [21]. This control strategy is easy to be implemented, due to the fact that

inverse kinematics of parallel robots can be analytically solved, and the measured joint angles can

be used as feedback signal in the joint space control loop. However, it is more desirable to directly

control the pose of platform of parallel robot in Cartesian space (Cartesian space controller) than to

control the joint angles or positions in the joint space.
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Visual servoing methods can be utilized to design the Cartesian space controller for the parallel

robots. Most recent visual servoing research work on parallel robots is dedicated to the kinematic

level visual servoing design. The dynamics of parallel robots are usually ignored or treated as un-

certainties. Although the kinematic level visual servoing of parallel robot can achieve the position

tracking to some extent, the tracking performance will be sacrificed greatly without considering

the dynamic model of the parallel robot. To include the dynamic model in the visual servoing, the

control designers need the accurate dynamic model and design advanced model-based control algo-

rithms. The other issue is the implementation of designed controller in the commercial industrial

parallel robots.

In this chapter, a dynamic SMC (DSMC) scheme in the PBVS is proposed to improve the

tracking performance of the 6-RSS parallel robot. The proposed control scheme adopts the optical

CMM sensor to obtain the real time pose information of the end-effector of parallel robot and to use

it as the feedback signal. The DSMC scheme is robust to the modeling errors and uncertainties. With

the benefit of the position-to-torque converter, the proposed DSMC scheme can be implemented in

the industrial parallel robot. The stability of the proposed scheme has been proved by using the

Lyapunov function. The experimental tests of the proposed control scheme have been carried out

on the 6-RSS parallel robot. The comparison with the kinematic level controllers demonstrates the

superiority of the proposed dynamic level visual servoing.

The outlines of this chapter is given as: The dynamic model is built and its properties are

presented in Section 6.2. The built-in controller of the parallel robot is introduced in Section 6.3.

The proposed DSMC scheme is designed in Section 6.4. The experiment implementation and results

are given in Section 6.5. And the summary is drawn in Section 6.6.

6.2 Dynamic Model Properties of the Parallel Robot

The dynamic model of the given 6-RSS parallel robot has been derived based on the principle of

virtual work in Section 3.6. The workspace states χE , vE and v̇E are employed in Eq. 3.41. Due

the existence of the nonlinear relationship between vE and χ̇E given in Eq. 3.23, the convergence

of vE cannot guarantee that of χ̇E . Therefore, it is necessary to rewrite Eq. 3.41 into the form in
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terms of the workspace states χE , χ̇E and χ̈E for the dynamic visual servoing purpose.

Substitute vE with Eq. 3.23 and left multiply Js on both sides of Eq. 3.41, the following

dynamic equation can be derived.

τ̃g = M̃(χE)χ̈E + C̃(χE , χ̇E)χ̇E + G̃(χE) + τ̃f , (6.1)

in which

M̃(χE) =
6∑

i=1

(JT
s J

T
aiMwiJaiJs + JT

s J
T
bi
MliJbiJs) + JT

s MpJs,

C̃(χE , χ̇E) =

6∑
i=1

(
JT
s J

T
ai(Mwi

˙JaiJs + CwiJaiJs) + JT
s J

T
bi
(Mli

˙JbiJs + CliJbiJs)
)

+ JT
s (MpJ̇s + CpJs),

G̃(χE) =JT
s Gp +

6∑
i=1

(JT
s J

T
aiGwi + JT

s J
T
bi
Gli),

(6.2)

where Jad, Jai , and Jbi ∈ �6×6 are the inverse Jacobian, wrench Jacobian and link Jacobian ma-

trices; Mp, Mwi and Mli ∈ �6×6 are the mass matrices of the end-effector platform, wrenches and

links; Cp, Cwi and Cli ∈ �6×6 are Coriolis and centrifugal matrices of the end-effector platform,

wrenches and links respectively; Gp, Gwi and Gli ∈ �6 are gravity vectors of the end-effector plat-

form, wrenches and links respectively. The details for the above items can be found in Section 3.6.

The general force item, τ̃g, can be derived by Eq. 6.3.

τ̃g = JT
s J

T
adτa, (6.3)

where τa = [τa1 , τa2 ...τa6 ]
T ∈ �6 is the actuator torque vector exerted on the revolute joints. The

Coulomb and viscous friction model has been employed in the dynamic identification of the parallel
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robot in Chapter 5. Then the friction item τ̃f in Eq.6.1 can be derived as:

τ̃f = JT
s J

T
ad

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fc1sign(Jad1Js χ̇E) + fv1Jad1Js χ̇E

fc2sign(Jad2Js χ̇E) + fv2Jad2Js χ̇E

...

fc6sign(Jad6Js χ̇E) + fv6Jad6Js χ̇E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6.4)

where fci and fvi are the Coulomb and viscous friction parameters of the ith (i = 1, 2, ..., 6) revolute

rotation joint.

Property 1. The inertial matrix M̃(χE) is symmetric.

Proof 1 (Proof of Property 1). According to Eq. 6.2, the transpose of M̃(χE) can be derived as:

M̃(χE)
T =

6∑
i=1

(JT
s J

T
aiM

T
wi
JaiJs + JT

s J
T
bi
MT

li
JbiJs) + JT

s M
T
p Js, (6.5)

The inertial matrix M∗ of any moving body of the parallel robot can be represented as:

M∗ =

⎡
⎢⎣ m∗E3×3 03×3

03×3 I∗

⎤
⎥⎦ , (6.6)

where E3×3 ∈ R
3×3 denotes the identity matrix, I∗ ∈ R

3×3 = diag[Ix∗ , Iy∗ , Iz∗ ] is a diagonal

matrix according to Assumptions 1 and 2. Therefore MT∗ = M∗ holds. Moreover, M̃(χE)
T =

M̃(χE) can be derived.

Q.E.D.

Property 2. The inertial matrix M̃(χE) and the Coriolis and centrifugal matrix C̃(χE , χ̇E) satisfy

the following relationship:

xT (
˙̃
M(χE)− 2C̃(χE , χ̇E))x = 0 ∀x ∈ R

6. (6.7)
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Proof 2 (Proof of Property 2). Substituting Eq. 6.2 into the items in Eq. 6.7 yields Eq. 6.8.

˙̃
M(χE)− 2C̃(χE , χ̇E) = 2JT

s MpJ̇s + JT
s ṀpJs − 2JT

s (MpJ̇s + CpJs)

+

6∑
i=1

(JT
s J

T
aiṀwiJaiJs + 2JT

s J
T
aiMwi

˙JaiJs + JT
s J

T
bi
ṀliJbiJs + 2JT

s J
T
bi
Mli

˙JbiJs)

− 2

6∑
i=1

(
JT
s J

T
ai(Mwi

˙JaiJs + CwiJaiJs) + JT
s J

T
bi
(Mli

˙JbiJs + CliJbiJs)
)

= JT
s (Ṁp − 2Cp)Js +

6∑
i=1

(JT
s J

T
ai(Ṁwi − 2Cwi)JaiJs + JT

s J
T
bi
(Ṁli − 2Cli)JbiJs).

(6.8)

The Coriolis and centrifugal matrix C∗ can be presented as:

C∗ =

⎡
⎢⎣ 03×3 03×3

03×3 ω∗ × I∗

⎤
⎥⎦ , (6.9)

The following relationship holds for any moving body in Eq. 6.8.

Ṁ∗ − 2C∗ =

⎡
⎢⎣ 03×3 03×3

03×3 İ∗ − 2ω∗ × I∗

⎤
⎥⎦ . (6.10)

The moment of inertial I∗ can be obtained by I∗ = R∗I ′∗RT∗ . I ′∗ ∈ R
3×3 is the moment of inertial

with respect to the moving body frame and R∗ ∈ SO(3) is the rotation matrix. Then Eq. 6.10 can

be rewritten as:

Ṁ∗ − 2C∗ =

⎡
⎢⎣ 03×3 03×3

03×3 Ṙ∗I ′∗RT∗ +R∗I ′∗ṘT∗ − 2Ṙ∗I ′∗RT∗

⎤
⎥⎦

=

⎡
⎢⎣ 03×3 03×3

03×3 03×3

⎤
⎥⎦ .

(6.11)

Substituting Eq. 6.8 and 6.11 into Eq. 6.7, Property 2 can be derived.

Q.E.D.
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Figure 6.1: The block diagram of the built-in controller for the individual joint

6.3 Built-in Controller of the 6-RSS Parallel Robot

The controllers of the industrial robots are normally integrated with the functions of motion tra-

jectory generation, human user interface, and the built-in real-time motion controller. The classical

independent-joint proportional integral derivative (PID) controller is commonly used as the built-in

control method due to its simplicity in design and implementation. The built-in controller can be

identified by the methods introduced in [59, 60, 79, 80]. By considering PID as the built-in con-

troller of the parallel robot, the controller gains and the dynamic parameters of the 6-RSS parallel

robot can be identified simultaneously through the closed-loop identification method according to

the result in Chapter 5.

The built-in controller of the 6-RSS parallel robot is illustrated as Fig. 6.1. The dynamic model

of the parallel robot, Eq. 3.41, can be rewritten as the decoupled double integrator model with

disturbance in individual joint space, such as

τai =

n∑
j=1

Mi,j θ̈j +

n∑
j=1

Ci,j θ̇j +Gi + τfi

= Mi,iθ̈i +

n∑
j �=i

Mi,j θ̈j +

n∑
j=1

Ci,j θ̇j +Gi + τfi

= Mi,iθ̈i + di,

(6.12)

where the coupling, friction and gravity items are considered as the disturbance, denoted as di;

Mi,j and Ci,j are the corresponding element of the mass, Coriolis and centrifugal matrices of the
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dynamic model in terms of the joint states. Mi,i is estimated as a constant inertial moment, M̄i,

given by Eq. 6.13.

M̄i = max (Mi,i(θ)) . (6.13)

Define θdi as the ith desired joint angle command and θi is the measurement of the ith joint from

the potentiometer. Let eθi = θdi − θi, then the built-in controller of the parallel robot is designed as

τai = lpeθi + ldėθi + li

∫ t

0
eθidt, (6.14)

where lp, ld, and li are the constant proportional, derivative and integrator gains.

Compared with the joint space positioning and tracking accuracy, Cartesian space pose accuracy

is more appealing to the industrial robot users. Given a nominal Cartesian space trajectory of the

end-effector, χd(t), the desired joint space trajectory θd(t) can be derived by analytically solving

the inverse kinematics of the parallel robot and is served as the reference signal to the built-in

controller. It is easy to be implemented and is adopted in the most industrial robots control practice.

However, the Cartesian space control performance is largely compromised due to the kinematic

errors introduced during the reference signal transforming. Therefore, the visual servoing controller

is proposed to improve the Cartesian space tracking performance of the parallel robot.

6.4 Visual Servoing Controller Design

Considering the identified built-in controller, the Cartesian space tracking problem of the par-

allel robot can be stated as following: given a nominal trajectory of the pose of the end-effector,

χd(t), a controller is designed to make the actual pose χE(t) measured by the optical CMM sen-

sor track the nominal trajectory.

In order to design a robust visual servoing control law, the SMC methodology is combined with

the Kalman filter and the position-to-torque converter to obtain a DSMC scheme, which is robust to

the bounded uncertainties including identification errors, unmodeled dynamics and the sensor noise.

The proposed DSMC scheme is shown in Fig. 6.2. The image of target reflectors attached on the

end-effector is captured by the optical CMM sensor. The 6D pose of the end-effector can be obtained
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Figure 6.2: The block diagram of the DSMC scheme for the parallel robot

in real time through the visual measurement procedure given by Section 4.2. Then, the Kalman filter

is employed to further eliminate the measurement noise and estimate the Cartesian space velocity of

the end-effector in real time. The DSMC is designed to generate the torque vectors for actuating the

parallel robot. Finally, the generated torque signal is fed to torque-to-position converter to derive

the desired position commands for the built-in controller of the parallel robot.

6.4.1 Kalman Filter Design

The existence of the measurement noise of optical CMM is unavoidable and the movement of

the end-effector can also introduce the vibration and blur to the image data. The Kalman filter

has been adopted to handle the image data noise in [20]. The system model commonly used in

Kalman filter for the pose estimation of robots is the all-integrator model [20, 112, 113]. In order

to estimate the velocity of the pose, a second or higher order model is introduced in [112]. In this

research, a third order integrator model is utilized in the framework of Kalman filter to smooth the

pose data of the end-effector and also estimate the velocity of the pose for model-based control

purpose. Assume the system modeling error W (t) and the image data noise en(t) are subject to the

white noise with Gaussian distribution. The end-effector pose measured by the optical CMM can

be written as χ̄E(t) = [x(t), y(t), z(t), α(t), β(t), γ(t)]T . Then for each dimension of the pose,

χEi(t), the state vector can be represented by:

Si(t) = [χEi(t), χ̇Ei(t), χ̈Ei(t)]
T i = 1, 2, ...6. (6.15)
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Accordingly, the third order integrator Kalman filter model for each dimension of χE(t) is given

as:

Ṡi(t) = ASi(t) +Wi(t)

χ̄Ei(t) = CSi(t) + eni(t)

(6.16)

where A =

⎡
⎢⎢⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎦ , C =

[
1 0 0

]
, Wi(t) and eni(t) are the white noise subjected to

Gaussian distribution of (0, Qci) and (0, Rci), χ̄Ei(t) is the ith dimension of the pose measurement

from the optical CMM. Then the continuous-time Kalman filter algorithm for the system described

in Eq. 6.16 can be summarized as following steps [114]:

1. Initialization:

Ŝi(0) = E[Si(0)]

Pi(0) = E
[
(Si(0)− Ŝi(0))(Si(0)− Ŝi(0))

T
] (6.17)

2. State estimation:

Ki(t) = Pi(t)C
TR−1

ci

˙̂
Si(t) = AŜi(t) +Ki(t)(χ̄Ei(t)− CŜi(t))

Ṗi(t) = −Pi(t)C
TR−1

ci CPi(t) +APi(t) + Pi(t)A
T +Qci

(6.18)

where E[∗] represent the expected value of ∗, Pi(t) is the covariance matrices of the estimation

error of the states, Ki(t) is the Kalman filter gain, and ·̂ denotes the estimation of the value. Further,

the estimation of the pose and its derivative, χm and χ̇m, can be obtained by rearranging Ŝ(t).

6.4.2 DSMC for Parallel Robot

Treating the unmodeled dynamics such as backlash, sensor noise and friction as uncertainties,

SMC can provide a good tacking performance robust to the uncertainties and modeling errors. The

filtered pose measurement through Kalman filter is denoted as χm(t).
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Define the Cartesian tracking error as

e = χd − χm. (6.19)

Correspondingly, ė is as

ė = χ̇d − χ̇m, (6.20)

where χm and χ̇m, can be derived by the Kalman filter as introduced in Section 6.4.1.

Then the sliding surface, F , is selected as

F = ė+ λe, (6.21)

where λ = diag[λ1, λ2, ..., λ6] is a positive diagonal matrix. Since the sliding surface is chosen as

Eq. 6.21, when F = 0,

ė = −λe, (6.22)

The solution to ODE Eq. 6.22 is

e(t) = e(0)exp(−λt), (6.23)

Therefore, all the error states will exponentially converge to zeros when the time goes to infinity

with positive definite λ. By tuning λ, the desired converging time of F can be achieved.

By defining χ̇r = F + χ̇m, the following relations hold:

χ̈r = Ḟ + χ̈m, χ̇r = χ̇d + λe, χ̈r = χ̈d + λė. (6.24)

The designed DSMC is given as:

τa = J−T
ad J−T

s (τm +KpF +Ki

∫ t

0
Fdt+ τ r), (6.25)

where

τm = M0(χm)χ̈r +C0(χm, χ̇m)χ̇r +G0(χm) + τf0, (6.26)
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τ r = Kr sat(F ), (6.27)

sat(F ) = [sat(F1), sat(F2), ..., sat(F6)]
T ,

sat(Fi) =

⎧⎪⎨
⎪⎩

Fi if |Fi| ≤ ε

sgn(Fi) otherwise
.

(6.28)

And the dynamic model items calculated by the identified dynamic parameters and measurements

are denoted as M0(χm), C0(χm, χ̇m), G0(χm) and τf0 respectively.

To add more freedom to the controller, the propotional and intergration items are adopted in the

controller Eq. 6.25. The gain matrix are Kp and Ki respectively. The sat function is employed

to reduce the chattering phenomenon. ε is a small positive constant, by selecting ε, a compromise

between accuracy and chattering can be made.

The Lyapunov direct method is employed to analyze the stability of the proposed controller.

Theorem 1. For the robotic system given in Eq. 6.1 with the CMM visual sensor in eye-to-hand

setup, the ultimate bounded Cartesian space tracking errors can be achieved with the dynamic SMC

controller Eq. 6.25.

Proof 3. By choosing Lyapunov function as

V =
1

2
FTM̃(χm)F +

1

2

(∫ t

0
F dt

)T

Ki

(∫ t

0
F dt

)
, (6.29)

the time derivative of Lyapunov function is given by

V̇ = FT

[
M̃(χm)Ḟ +

1

2

˙̃
M(χm)F +Ki

∫ t

0
F dt

]
. (6.30)

According to Eq. 6.7, Eq. 6.30 can be rewritten as

V̇ = FT

[
M̃(χm)Ḟ + C̃(χm, χ̇m)F +Ki

∫ t

0
F dt

]
(6.31)

100



Substituting Eq. 6.24 into Eq. 6.1, the following equation is derived.

τ̃g = M̃(χm)χ̈m + C̃(χm, χ̇m)χ̇m + G̃(χm) + τ̃f + τu

= M̃(χm)
(
χ̈r − Ḟ

)
+ C̃(χm, χ̇m) (χ̇r − F ) + G̃(χm)

+ τ̃f + τu

= M̃(χm)χ̈r + C̃(χm, χ̇m)χ̇r + G̃(χm) + τ̃f + τu

− M̃(χm)Ḟ − C̃(χm, χ̇m)F

= M0(χm)χ̈r + C0(χm, χ̇m)χ̇r +G0(χm) + τf0 +H

− M̃(χm)Ḟ − C̃(χm, χ̇m)F ,

(6.32)

where H = ΔM χ̈r + ΔCχ̇r + ΔG + Δτf + τu; τu represents the unmodeled dynamics, and

ΔM,ΔC,ΔG, Δτf are the modeling errors given by

ΔM = M̃(χm)−M0(χm),

ΔC = C̃(χm, χ̇m)− C0(χm, χ̇m),

ΔG = G̃(χm)−G0(χm),

Δτf = τ̃f − τf0.

(6.33)

Suppose the kinematic calibration and dynamical identification can guarantee that H satisfies:

||H| | ≤ Ĥ. (6.34)

Further substituting Eq. 6.25 and Eq. 6.32 into Eq. 6.31, the positive definite time derivative of

Lyapunov function can be derived as

V̇ = −FTKpF − FTKr sat(F ) + FTH

= −FTKpF −
n∑

i=1

Kri|F |i + FTH, if |Fi| > ε
(6.35)
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where Kr = diag[Kr1,Kr2, ...,Kr6] is a constant matrix. By selecting Kri > Ĥi, then one has

V̇ < −FTKpF < 0 (6.36)

Therefore, when |Fi| is in the case |Fi| > ε, F will keep decreasing until the boundary layer |Fi| ≤ ε

is reached in a finite time. Once F reaches the boundary layer, F will remain inside it, and thus the

uniformly ultimately bounded stability with an ultimate bound can be guaranteed [115].

Q.E.D.

6.4.3 Torque to Position Converter

The purpose of the torque to position converter is to generate a position profile command for

the built-in controller of the parallel robot based on the torque signal of the designed SMC con-

troller. The torque signal produced by the built-in controller can be equivalent to that produced by

the DSMC controller. The converter is similar to the method proposed in [79], in which P-type

controller is considered as the built-in controller of the robot. As the PID controller is employed in

the built-in controller of the parallel robot, the modifications are made based on the results given in

[79]. According to Eq. 6.14, the position command θdi can be derived as followings

τai = (lp + ldp+ lip
−1)eθi , (6.37)

θdi =
1

lp + ldp+ lip−1
τai + θi, (6.38)

where p is the differential operator. τai is derived by Eq. 6.25. The joint position feedback θi is

measured by the potentiometer.

In the proposed controller, the identified dynamic model can guarantee the boundedness of the

uncertainties. Since the dynamic model has been used for visuals servoing control design, a better

tracking performance in terms of robust, convergence speed and accuracy can be achieved compared

with kinematic level visual servoing controller.
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(a)

(b)

Figure 6.3: The block diagram of kinematic level controller (a) KCSC, (b) KJSC

6.5 Experiment Results

The proposed DSMC scheme is tested on the 6-RSS parallel robot, as shown in Fig. 4.6a, and

the experiment setup is shown in Fig. 4.6b. In this section, two path tracking tests are performed

to investigate the effectiveness of the designed controller and compare the control performance of

the proposed DSMC scheme with the kinematic-level Cartesian space controller (KCSC) and joint

space controller (KJSC).

The KCSC is shown in Fig. 6.3a. By Defining the Cartesian space trajectory error as

eχ = χd − χm, (6.39)
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Table 6.1: Experiment 1- the RMSE and MAE levels of the three control schemes

Pose Characteristics KJSC KCSC DSMC

x direction
RMSE (mm) 2.8 1.1 0.44

MAE (mm) 2.5 0.97 0.36

y direction
RMSE (mm) 3.4 1.5 1.4

MAE (mm) 2.7 1.1 0.61

z direction
RMSE (mm) 2.1 1.2 0.63

MAE (mm) 1.8 1.0 0.46

α rotation
RMSE (10−3rad) 14.8 3.2 1.1

MAE (10−3rad) 12.5 2.8 0.92

β rotation
RMSE (10−3rad) 14.0 3.8 2.1

MAE (10−3rad) 12.4 3.3 1.7

γ rotation
RMSE (10−3rad) 14.6 3.5 1.6

MAE (10−3rad) 14.2 3.1 1.3

the controller is designed as:

θd = Jθ(kpeχ + kdėχ + ki

∫ t

0
eχdt), (6.40)

where Jθ is the analytical Jacobian matrix given by Eq. 5.3. In Eq. 6.40, kp, kd, and ki are the

constant positive definite diagonal matrices.

The KJSC is shown in Fig. 6.3b. The desired trajectory χd(t) in the Cartesian space is trans-

formed into the one in the joint space (θr) through analytically solving the inverse kinematic model

of the parallel robot. The joint space trajectory error is defined as:

ej = θr − θ, (6.41)

and the KJSC is designed as:

θd = kpej + kdėj + ki

∫ t

0
ejdt. (6.42)
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Figure 6.4: Experiment 1-the tracking performances of the three control schemes tested on the
6-RSS parallel robot: the desired trajectories (blue solid line), the pose of KJSC scheme (purple
dashed line), the pose of KCSC scheme (black dotted line), the pose of DSMC scheme (red dash-
dotted line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction; (d) Around α
Axis; (e) Around β Axis; (f) Around γ Axis
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Figure 6.5: Experiment 1-the tracking errors of the three control schemes tested on the 6-RSS
parallel robot: KJSC scheme (purple dashed line), KCSC scheme (black dotted line), DSMC scheme
(red dash-dotted line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction; (d)
Around α Axis; (e) Around β Axis; (f) Around γ Axis
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Figure 6.6: Experiment 1- the Kalman filter results: the measurement from optical CMM before
Kalman filter (blue solid line), the output of the Kalman filter (black dash-dotted line), (a) Along X
Direction; (b) Along Y Direction; (c) Along Z Direction; (d) Around α Axis; (e) Around β Axis;
(f) Around γ Axis
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6.5.1 Experiment 1

In Experiment 1, the pose of the end-effector frame is expected to track the sinusoid reference

Cartesian space trajectories with the frequency of 0.5rad/s. Note that the reference trajectories are

given in the kinematic and Euler singularity free workspace of the parallel robot. The details of the

singularity free workspace analysis for the 6-RSS parallel robot can be found in Section 4.4.1. The

dynamic parameters of the parallel robot and the gains of the built-in controller are based on the

identification results. The initial pose of the χ = [0(m), 0(m), 0.115(m), 0(rad), 0(rad), 0(rad)]

and the initial velocity and acceleration are zeros. The standard deviation of the measurement noise,

Rc, can be derived in the numerous measurement tests of the optical CMM. A satisfactory Kalman

filter result can be derived by tuning the standard deviation of the modeling error Qc. The control

rate is set the same as the sampling rate of the optical CMM, 0.033s. Both positional and rotational

tracking performances of the three controllers are shown in Fig. 6.4, and the tracking errors between

the reference trajectories and the measurement can be seen in Fig. 6.5. In the figures, the reference

trajectories, the measurement pose trajectories, and the tracking errors of the three controllers are

given in the individual dimension of the pose. Note that there are step changes in the y and z

direction reference path at the initial status to test the effectiveness of the controllers. And the root-

mean-square error (RMSE), and mean absolute error (MAE) are given in Table 6.1 to compare the

tracking performance of the three controllers.

In Figures 6.4 and 6.5, it is evident that the joint space controller (KJSC) has much larger errors

compared with the Cartesian space controllers (KCSC and DSMC), due to the kinematic errors

during the transformation of the desired trajectories. The Cartesian space controllers can effectively

track the sinusoid 6D trajectories with small steady states errors and rapid converge speed, and

are robust to the sensor noises and modeling errors. It can be seen that the rotational tracking

performance is more oscillatory than the positional tracking performance especially in α and β

rotations. This phenomenon may be caused by the fact that the orientation measurement tends to

be nosier than the position measurement from the optical CMM sensor. This can also be seen in

the Kalman filter results in Fig. 6.6. For brevity, only the positional and rotational results of the

Kalman filter in DSMC scheme are given. It is also worthwhile mentioning that a compromise
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should be made between the converge speed and the noise filtering effect when tuning the Kalman

filter. With the dynamic compensation in the DSMC scheme, the steady state errors in the DSMC

scheme is smaller than those in compared with the KCSC scheme. Although, in some directions and

rotations, the KCSC owns that in a faster converge speed, but with larger overshoot compared with

the DSMC scheme. Furthermore, in terms of the RMSE and MAE, it is obvious that the DSMC

scheme achieves better tracking performance in all dimensions. In conclusion, the first experiment

can validate the effectiveness and the robustness of the designed DSMC scheme when tracking the

constant frequency sinusoid reference trajectories. And the superiority of the DSMC scheme to

KJSC and KCSC is further illustrated in Table 6.1 on the RMSE and MAE results.

6.5.2 Experiment 2

To further test the effectiveness and the robustness of the proposed DSMC scheme under varying

frequency harmonic reference trajectories, the Finite Fourier series-based trajectories shown in Eq.

6.43 are used as the references.

χdi(t) =

n∑
l=1

[
sin(ω0lt)

ω0l
sli −

cos(ω0lt)

ω0l
cli] + χ0i (6.43)

where χdi(t) is the i-th column of the pose trajectory, n is the harmonics number, ω0 is the fun-

damental frequency, and sli, c
l
i, χ0i are the trajectory parameters. In the second experiment, n is

chosen as 5 and ω0 is set as 0.15rad/s. Therefore, the reference trajectories combines 5 different

frequencies varying from 0.15rad/s to 0.75rad/s. Other parameters are chosen to generate singu-

larity free reference trajectories. The step changes are given to all dimensions of the reference pose

path at the beginning. To test the robustness of the control schemes, in Experiment 2, all the settings

and parameters for the control schemes and the Kalman filter are set as the same as Experiment 1.

The tracking performances of the control schemes are shown in Fig. 6.7 and 6.8. The reference

trajectories, the measurement pose trajectories and the errors of the three controllers are given. The

Kalman filter results working with the DSMC scheme are given in Fig. 6.9. The RMSE and MAE of

the control schemes are summarized in Table 6.2. From Fig. 6.7, it is illustrated that compared with

the joint space controller, both Cartesian space control schemes have satisfactory tracking errors
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Figure 6.7: Experiment 2-the tracking performances of the three control schemes tested on the
6-RSS parallel robot: the desired trajectories (blue solid line), the pose of KJSC scheme (purple
dashed line), the pose of KCSC scheme (black dotted line), the pose of DSMC scheme (red dash-
dotted line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction; (d) Around α
Axis; (e) Around β Axis; (f) Around γ Axis
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Figure 6.8: Experiment 2-the tracking errors of the three control schemes tested on the 6-RSS
parallel robot: KJSC scheme (purple dashed line), KCSC scheme (black dotted line), DSMC scheme
(red dash-dotted line), (a) Along X Direction; (b) Along Y Direction; (c) Along Z Direction; (d)
Around α Axis; (e) Around β Axis; (f) Around γ Axis
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Figure 6.9: Experiment 2- the Kalman filter results: the measurement from optical CMM before
Kalman filter (blue solid line), the output of the Kalman filter (black dash-dotted line), (a) Along X
Direction; (b) Along Y Direction; (c) Along Z Direction; (d) Around α Axis; (e) Around β Axis;
(f) Around γ Axis
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Table 6.2: Experiment 2- the RMSE and MAE levels of the three control schemes

Pose Characteristics KJSC KCSC DSMC

x direction
RMSE (mm) 3.2 1.2 0.60

MAE (mm) 2.9 0.96 0.33

y direction
RMSE (mm) 3.2 1.5 1.1

MAE (mm) 2.7 1.0 0.54

z direction
RMSE (mm) 3.1 1.9 1.3

MAE (mm) 2.6 1.3 0.57

α rotation
RMSE (10−3rad) 13.9 4.5 3.4

MAE (10−3rad) 11.3 3.0 1.4

β rotation
RMSE (10−3rad) 9.4 3.6 2.8

MAE (10−3rad) 7.4 2.4 1.6

γ rotation
RMSE (10−3rad) 14.5 2.9 2.5

MAE (10−3rad) 13.7 1.8 1.0

and rapid converge speed, and can track the harmonic references with varying frequencies. Similar

to Experiment 1, more oscillations are observed in the rotational tracking than that in the positional

tracking due to the noisier rotation measurement of the optical CMM. Compared with Experiment

1, the tracking responds in Experiment 2 have the similar properties except that the tracking errors

of the control schemes are increased at the high frequency part of the reference trajectories in Fig.

6.7 and 6.8, especially in x, y, z and α directions. The main reason is that the influences of the

dynamics of the parallel robot and other uncertainties such as the friction are increased substantially

with the increase of the velocity. However, due to the dynamic compensation and robustness of the

DSMC scheme, the tracking errors in DSMC scheme are significantly less than those in the KJSC

and KCSC schemes. Furthermore, from Table 6.2, it is evident that the DSMC scheme achieves

better tracking performance than KJSC and KCSC do.

In the second experiment, the effectiveness and the robustness of the proposed DSMC scheme

are further validated by giving varying and higher frequency harmonic reference trajectories. The

DSMC scheme is more robust to the higher velocity situation compared with KJSC and KCSC

scheme. And the superiority of the DSMC scheme to KJSC and KCSC scheme is further illustrated

by the better RMSE and MAE results shown in Table 6.2.
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6.6 Summary

In this chapter, a dynamic sliding mode control (DSMC) scheme combined with the visual ser-

voing method is proposed to improve the tracking performance of the 6-RSS parallel robot based

on the optical coordinate measuring machine (CMM) sensor. The torque command generated by

DSMC can be applied to the position controlled industrial robot through a position-to-torque con-

verter. A third-order Kalman filter is utilized to eliminate the noise in the measurement data from

C-track. The real-time experiment tests on a 6-RSS parallel robot demonstrated that the developed

DSMC scheme is robust to the modeling errors and uncertainties. Compared with the classical kine-

matic level joint space and Cartesian space controllers, the proposed DSMC exhibits the superiority

in terms of tracking performance and robustness.
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Chapter 7

Conclusion and Future Works

7.1 Summary of the Thesis

The parallel robots exhibit some outstanding superiorities on the repeatability, stiffness and

force-to-weight ratio compared with the serial robots. As a result, parallel robots, especially 6-DOF

parallel robots have been applied to various industrial applications such as flight simulator, and

have great potential to be utilized in the AFP system. However, the absolute accuracy of the par-

allel robots cannot meet the growing requirement from industry, due to the existence of numerous

legs and joints. How to design effective algorithms and controllers to improve the positioning and

tracking accuracy of the parallel robots poses a challenge to the control community. Researchers

have developed various methods to calibrate the kinematic parameters, identify the dynamic param-

eters and design the controllers to achieve a better positioning and tracking accuracy of the parallel

robots. In this Ph.D. project, the existing problems and gaps of the current research are analyzed. By

introducing the optical CMM sensor, a series of vision-based solutions including visual calibration,

identification and servoing algorithms for the 6-RSS parallel robot are proposed.

(1) Kinematic analysis and dynamic modeling of the 6-RSS parallel robot

The inverse kinematic problem of the 6-RSS parallel robot is solved analytically. A quasi-Stewart

115



forward kinematic method is developed to solve the forward kinematic problem of the 6-RSS par-

allel robot numerically. The superiority of the method in terms of the convergence speed is demon-

strated by the simulation, comparing with the normal forward kinematic method. The derived kine-

matic solutions will be used to determine the proper workspace and to develop the kinematic cali-

bration method. The Jacobian matrices reveling the velocity mappings from the joint space, wrench

and link frame velocity to the workspace velocity of the 6-RSS parallel robot are developed for

building the dynamic model. The explicit form of the dynamic model of the 6-RSS parallel robot is

obtained based on the virtual work principle. The built dynamic model will be utilized to design the

identification method and advanced dynamic model-based controller for the 6-RSS parallel robot.

(2) Relative pose-based kinematic calibration method for the 6-RSS parallel robot using

optical CMM sensor

A relative pose-based kinematic calibration method is proposed for a 6-RSS parallel robot by using

the optical CMM system. The developed calibration algorithm can improve the positioning accuracy

according to more accurate kinematic parameters. In this algorithm, the base frame pose w.r.t. the

sensor frame is not needed, which leads to an effective relative calibration method for the parallel

robot. Since the forward kinematic model is used in the relative pose based calibration, the optimal

actuator strokes of the parallel robot are derived to ensure the homeomorphism mapping of the for-

ward kinematic model. The simulation results show the relative pose based calibration algorithm

successfully improves the relative accuracy of the parallel robot. The comparison with the implicit

calibration demonstrates that the RPBA can deliver a more satisfactory accuracy. The experimental

tests on an arbitrary trajectory with 100 configurations further show the proposed RPBA has im-

proved the positional accuracy in the workspace effectively. The developed calibration algorithm

can be applied to other types of parallel and serial robots. And the calibrated kinematic parameters

would be used in a 6-RSS parallel robot visual servoing system.

(3) Visual closed-loop output-error identification method based on an optical CMM sensor

for parallel robot

A visual closed-loop output-error identification method based on an optical CMM sensor for

parallel robots is proposed. An outer loop visual servoing controller is employed in both the real
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plant and the simulation model to stabilize the two systems. The benefits of the proposed method

are summarized as follows: elimination of the need for the joint and torque measurements, the

exact knowledge of the built-in joint controller of the industrial robots, and the time-consuming

forward kinematics calculation. The accuracy of the built dynamic model are validated by the

Matlab/SimMechanics simulation. The experimental test results show that the identified dynamic

model can capture the dynamics of the real parallel robot with satisfactory accuracy. The proposed

method can be easily applied to other types of industrial parallel robots with unknown PID built-

in controller or its variants, such as 6 DOF Stewart platforms, 6 UPS and 6 RUS parallel robots

etc. The complexity of those dynamic models is similar to that of the 6-RSS parallel robot. Since

the analytical solution of the forward kinematics of those 6 DOF parallel robots does not exist,

the proposed visual identification method does not need the forward kinematic model. Taking the

advantages of the visual sensor, the dynamic model can be identified for the visual servoing purpose.

(4) Dynamic model based visual servoing method for the 6-RSS parallel robot

A dynamic sliding mode control (DSMC) scheme combined with the visual servoing method is

proposed to improve the tracking performance of the 6-RSS parallel robot based on the optical

coordinate measuring machine (CMM) sensor. The torque command generated by DSMC can be

applied to the position controlled industrial robot through a position-to-torque converter. A third-

order Kalman filter is utilized to eliminate the noise in the measurement data from C-track. The real-

time experiment tests on a 6-RSS parallel robot demonstrated that the developed DSMC scheme is

robust to the modeling errors and uncertainties. Compared with the classical kinematic level joint

space and Cartesian space controllers, the proposed DSMC exhibits the superiority in terms of

tracking performance and robustness.

7.2 Future Works

The positioning and tracking accuracy of the 6-RSS parallel robot has been improved by de-

veloped visual calibration, identification and servoing algorithms in this project. There are some

recommended research work needed to be conducted, which are listed as followings.
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(1) The proposed visual calibration, identification and servoing methods has great potentials to be

applied to other type of parallel robots. Some experiment tests and research work are needed

to be carried out to make the algorithms universal.

(2) The backlash and time-delay nonlinearities are taken as uncertainties in the proposed visual

servoing algorithm. More efficient control methods dealing with the nonlinearities are needed

to be studied. For example, by considering the flexible body dynamic model of the parallel

robots and adding encoders on the revolute joints, combine the singularity perturbed theory

and visual servoing to develop more effective controllers.

(3) Since the dynamic modeling and identification process is very complicated for the parallel

robots, some black box model-based methods like neural networks model can be developed

to implement on-line identification and control for the parallel robot.

(4) Another potential research field is designing more effective filters which have faster converge

speed and higher filtering ability.

(5) In the AFP system, the parallel robot will collaborate with the serial robot. Hence to improve

the final manufacturing results, the cooperative calibration and control methods are needed to

improve the relative pose accuracy between the parallel robot and the serial robot instead of

emphasizing the individual accuracy of the robots.
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Appendix

The derivative of the wrench Jacobian, J̇ai , is given as follows:

J̇ai =

⎡
⎢⎣ J̇aui

ŝJ̇adi

⎤
⎥⎦ , (A.1)

where

J̇adi = − ṁ

m2
[ lTi (ai × li)

T ] +
1

m

[
(ω2i × li)

T ([ai]X [ω2]Xli)
T − ([li]X [ω]Xai)

T

]
,

(A.2)

and

m = (wi × li) · ŝ

ṁ = ([wi]X [ω2]Xli − [li]X [ω1]Xwi) · ŝ

J̇aui = ([ŝ]X [ω1]Xcwi)Jadi + ([ŝ]Xcwi)J̇adi

(A.3)

In addition, the link Jacobian J̇bi is obtained by:

J̇bi =

⎡
⎢⎣ J̇bui

J̇bdi

⎤
⎥⎦ (A.4)

in which

J̇bdi =
1

‖li‖2 {[ω2 × li]X [wi]X ŝJadi+[
[ω2 × li]X [li]X [ω × ai]X − [ω2 × li]X [ai]X

]

+ [li]X [ω1 ×wi]X ŝJadi + [li]X [wi]X ŝJ̇adi},

(A.5)
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and

J̇bui
= −[ω1 ×wi]X ŝJadi − [wi]X ŝJ̇adi − [ω2 × li]XJbdi − [cli ]X J̇bdi (A.6)
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