2,840 research outputs found

    Novel Ternary Logic Gates Design in Nanoelectronics

    Get PDF
    In this paper, standard ternary logic gates are initially designed to considerably reduce static power consumption. This study proposes novel ternary gates based on two supply voltages in which the direct current is eliminated and the leakage current is reduced considerably. In addition, ST-OR and ST-AND are generated directly instead of ST-NAND and ST-NOR. The proposed gates have a high noise margin near V_(DD)/4. The simulation results indicated that the power consumption and PDP underwent a~sharp decrease and noise margin showed a considerable increase in comparison to both one supply and two supply based designs in previous works. PDP is improved in the proposed OR, as compared to one supply and two supply based previous works about 83% and 63%, respectively. Also, a memory cell is designed using the proposed STI logic gate, which has a considerably lower static power to store logic ‘1’ and the static noise margin, as compared to other designs

    UTB SOI SRAM cell stability under the influence of intrinsic parameter fluctuation

    Get PDF
    Intrinsic parameter fluctuations steadily increases with CMOS technology scaling. Around the 90nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Ultra thin body (UTB) SOI MOSFETs are expected to replace conventional MOSFETs for integrated memory applications due to superior electrostatic integrity and better resistant to some of the sources of intrinsic parameter fluctuations. To fully realise the performance benefits of UTB SOI based SRAM cells a statistical circuit simulation methodology which can fully capture intrinsic parameter fluctuation information into the compact model is developed. The impact on 6T SRAM static noise margin characteristics of discrete random dopants in the source/drain regions and body-thickness variations has been investigated for well scaled devices with physical channel length in the range of 10nm to 5nm. A comparison with the behaviour of a 6T SRAM based on a conventional 35nm MOSFET is also presented

    CNTFET inverter: a high voltage gain logic gate

    Get PDF
    Conventional CMOS technology provides a lot of opportunities in the field of electronics device. But presently, carbon nanotube field effect transistor (CNTFET) is a new technology for the application in the field of electronic device. Due to the limitation of the size of CMOS, CNTFETs are the promising substitute due to its nano scale size. CNTFET also shows the high stability, low power circuit design, high signal to noise margin (SNM) and high gain in the circuit design. A novel design of CNTFET based inverter with an optimum chiral vector is proposed in this paper. PSPICE platform is used to model and simulation this CNTFET inverter circuit. The proposed CNTFET inverter circuit is investigated based on noise margin characteristics. A maximum voltage gain of 45dB is observed from NCNTFET of the inverter and a high noise margin of 400mV and a low noise margin of 309mV are achieved from the proposed inverters. This approach is a useful technique for fabricating integrated logic devices and circuits based on CNTFETs

    On the Critical Role of Ferroelectric Thickness for Negative Capacitance Device-Circuit Interaction

    Get PDF
    This paper demonstrates the critical role that Ferroelectric (FE) layer thickness (tFE) plays in Negative Capacitance (NC) transistors connecting device and circuit levels together. The study is done through fully-calibrated TCAD simulations for a 14nm FDSOI technology node, exploring the impact of tFE on the figures of merit of n-type and p-type devices, voltage transfer characteristic (VTC) and noise margin of inverter as well as the speed of buffer circuits. First, we analyze the device electrical parameters (e.g., ION, SS, ION/IOFF and Cgg) by varying tFE up to the maximum level at which hysteresis in the I-V characteristic starts. Then, we analyze the deleterious impact of Negative Differential Resistance (NDR), due to the drain to gate coupling, demonstrating how it imposes an additional constraint limiting the maximum tFE. We show the consequences of NDR effects on the VTC and noise margin of inverter, which are essential components for constructing robust clock trees in any chip. We demonstrate how the considerable increase in the gate’s capacitance due to FE seriously degrades the circuit’s performance imposing further constraints limiting the maximum tFE. Further, we analyze the impact of tFE on the SRAM cell static performance metrics such hold noise margin (HNM), read noise margin (RNM) and write noise margin (WNM) at supply voltages of 0.7V and 0.4V. We demonstrate that the HNM and RNM in a NC-FDSOI FET based SRAM cell are higher then those of the baseline FDSOI FET based SRAM cell noise margin and further increase with tFE. However, the WNM in general follows a non monotonic trend w.r.t tFE, and the trend also depends on the supply voltage. Finally, we optimize the design of the SRAM cell considering overall performance metrics. All in all, our analysis provides guidance for device and circuit designers to select the optimal FE thickness for NCFETs in which hysteresis-free operations, reliability, and performance are optimized

    Modelling and experimental verification of the impact of negative bias temperature instability on CMOS inverter

    Get PDF
    Published in Microelectronics Reliability, Volume 49, Issues 9-11, September-November 2009, Pages 1048-1051The effects of negative bias temperature instability (NBTI) on the performance of a CMOS inverter have been investigated by means of both simulation and experimental methods. The simulation of NBTI effects on CMOS inverter has been done by shifting the pFET Vtho BSIM parameter. The results show that NBTI shifts the inverter transfer curve, reduces the low noise margin and current consumption but increases the high noise margin. A good agreement between simulation and experimental results has been obtained. Therefore, it can be assumed that the effect of NBTI on CMOS circuits can be mainly predicted by shifting the Vtho pFET parameter.Peer ReviewedPostprint (author’s final draft

    Expanded Noise Margin 10T SRAM Cell using Finfet Device

    Get PDF
    Static random access memory (SRAM) cells are being improved in order to increase resistance to device level changes and satisfy the requirements of low-power applications. A unique 10-transistor FinFET-based SRAM cell with single-ended read and differential write functionality is presented in this study. This cutting-edge architecture is more power-efficient than ST (Schmitt trigger) 10T or traditional 6T SRAM cells, using only 1.87 and 1.6 units of power respectively during read operations. The efficiency is attributable to a lower read activity factor, which saves electricity. The read static noise margin (RSNM) and write static noise margin (WSNM) of the proposed 10T SRAM cell show notable improvements over the 6T SRAM cell, increasing by 1.67 and 1.86, respectively. Additionally, compared to the 6T SRAM cell, the read access time has been significantly reduced by 1.96 seconds. Utilising the Cadence Virtuoso tool and an 18nm Advanced Node Process Design Kit (PDK) technology file, the design's efficacy has been confirmed. For low-power electronic systems and next-generation memory applications, this exciting 10T SRAM cell has a lot of potential
    corecore