8,888 research outputs found

    Sources of total, non-milk extrinsic, and intrinsic and milk sugars in the diets of older adults living in sheltered accommodation

    Get PDF
    The WHO recommends limiting non-milk extrinsic sugars (NMES) consumption to ≤ 10 % energy to reduce the risk of unhealthy weight gain and dental caries, and to restrict frequency of intake to ≤ 4 times/d to reduce risk of dental caries. Older adults, especially those from low-income backgrounds, are at increased risk of dental caries, yet there is little information on sugars intake (frequency of intake and food sources) in this age group. The aim of this report is to present baseline data from a community-based dietary intervention study of older adults from socially deprived areas of North East England, on the quantity and sources of total sugars, NMES, and intrinsic and milk sugars, and on frequency of NMES intake. Dietary intake was assessed using two 3-d estimated food diaries, completed by 201 participants (170 female, thirty-one male) aged 65–85 years (mean 76·7 (sd 5·5) years) recruited from sheltered housing schemes. Total sugars represented 19·6 %, NMES 9·3 %, and intrinsic and milk sugars 10·3 % of daily energy intake. Eighty-one (40·3 %) exceeded the NMES intake recommendation. Mean frequency of NMES intake was 3·4 times/d. The fifty-three participants (26·4 %) who exceeded the frequency recommendation ( ≤ 4 times/d) obtained a significantly greater percentage of energy from NMES compared with those participants who met the recommendation. The food groups ‘biscuits and cakes’ (18·9 %), ‘soft drinks’ (13·1 %) and ‘table sugar’ (11·1 %) made the greatest contributions to intakes of NMES. Interventions to reduce NMES intake should focus on limiting quantity and frequency of intake of these food groups

    A Pilot Study to Measure Upper Extremity H-reflexes Following Neuromuscular Electrical Stimulation Therapy after Stroke

    Get PDF
    Upper extremity (UE) hemiparesis persists after stroke, limiting hand function. Neuromuscular electrical stimulation (NMES) is an effective intervention to improve UE recovery, although the underlying mechanisms are not fully understood. Our objective was to establish a reliable protocol to measure UE agonist–antagonist forearm monosynaptic reflexes in a pilot study to determine if NMES improves wrist function after stroke. We established the between-day reliability of the H-reflex in the extensor carpi radialis longus (ECRL) and flexor carpi radialis (FCR) musculature for individuals with prior stroke (n = 18). The same-day generation of ECRL/FCR H-reflex recruitment curves was well tolerated, regardless of age or UE spasticity. The between-day reliability of the ECRL H-reflex was enhanced above FCR, similar to healthy subjects [20], with the Hmax the most reliable parameter quantified in both muscles. H-reflex and functional measures following NMES show the potential for NMES-induced increases in ECRL Hmax, but confirmation requires a larger clinical study. Our initial results support the safe, easy, and efficacious use of in-home NMES, and establish a potential method to measure UE monosynaptic reflexes after stroke

    Skinfold thickness affects the isometric knee extension torque evoked by neuromuscular electrical stimulation

    Get PDF
    Background: Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. Objective: To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. Method: First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). Results: NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). Conclusion: These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies

    Constraints on light neutrino parameters derived from the study of neutrinoless double beta decay

    Get PDF
    The study of the neutrinoless double beta (0ββ0 \beta\beta) decay mode can provide us with important information on the neutrino properties, particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters derived from the 0ββ0 \beta\beta decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors (PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetimes limits. For the PSFs we use values computed with an improved method reported very recently. For the NMEs we use values chosen from literature on a case-by-case basis, taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation. Thus, we try to restrict the range of spread of the NME values calculated with different methods and, hence, to reduce the uncertainty in deriving limits for the Majorana neutrino mass parameter. Our results may be useful to have an up-date image on the present neutrino mass sensitivities associated with 0ββ0 \beta\beta measurements for different isotopes and to better estimate the range of values of the neutrino masses that can be explored in the future double beta decay (DBD) experiments.Comment: 11 page

    Neutrinoless ββ\beta\beta decay nuclear matrix elements in an isotopic chain

    Full text link
    We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, Mcl2νM^{2\nu}_{\mathrm{cl}}, display a constant proportionality with respect to the Gamow-Teller part of the neutrinoless NME, MGT0νM^{0\nu}_{\mathrm{GT}}. This opens the possibility of determining the MGT0νM^{0\nu}_{\mathrm{GT}} matrix elements from β∓\beta^{\mp} Gamow-Teller strength functions. Finally, the interconnected role of deformation, pairing, configuration mixing and shell effects in the NMEs is discussed

    Differential contractile response of critically ill patients to neuromuscular electrical stimulation

    Get PDF
    BACKGROUND: Neuromuscular electrical stimulation (NMES) has been investigated as a preventative measure for intensive care unit-acquired weakness. Trial results remain contradictory and therefore inconclusive. As it has been shown that NMES does not necessarily lead to a contractile response, our aim was to characterise the response of critically ill patients to NMES and investigate potential outcome benefits of an adequate contractile response. METHODS: This is a sub-analysis of a randomised controlled trial investigating early muscle activating measures together with protocol-based physiotherapy in patients with a SOFA score ≥ 9 within the first 72 h after admission. Included patients received protocol-based physiotherapy twice daily for 20 min and NMES once daily for 20 min, bilaterally on eight muscle groups. Electrical current was increased up to 70 mA or until a contraction was detected visually or on palpation. Muscle strength was measured by a blinded assessor at the first adequate awakening and ICU discharge. RESULTS: One thousand eight hundred twenty-four neuromuscular electrical stimulations in 21 patients starting on day 3.0 (2.0/6.0) after ICU admission were included in this sub-analysis. Contractile response decreased from 64.4% on day 1 to 25.0% on day 7 with a significantly lower response rate in the lower extremities and proximal muscle groups. The electrical current required to elicit a contraction did not change over time (day 1, 50.2 [31.3/58.8] mA; day 7, 45.3 [38.0/57.5] mA). The electrical current necessary for a contractile response was higher in the lower extremities. At the first awakening, patients presented with significant weakness (3.2 [2.5/3.8] MRC score). When dividing the cohort into responders and non-responders (> 50% vs. ≤ 50% contractile response), we observed a significantly higher SOFA score in non-responders. The electrical current necessary for a muscle contraction in responders was significantly lower (38.0 [32.8/42.9] vs. 54.7 [51.3/56.0] mA, p < 0.001). Muscle strength showed higher values in the upper extremities of responders at ICU discharge (4.4 [4.1/4.6] vs. 3.3 [2.8/3.8] MRC score, p = 0.036). CONCLUSION: Patients show a differential contractile response to NMES, which appears to be dependent on the severity of illness and also relevant for potential outcome benefits. TRIAL REGISTRATION: ISRCTN ISRCTN19392591 , registered 17 February 201
    • …
    corecore