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The study of the neutrinoless double beta (0]𝛽𝛽) decaymode can provide uswith important information on the neutrino properties,
particularly on the electron neutrino absolute mass. In this work we revise the present constraints on the neutrino mass parameters
derived from the 0]𝛽𝛽 decay analysis of the experimentally interesting nuclei. We use the latest results for the phase space factors
(PSFs) and nuclear matrix elements (NMEs), as well as for the experimental lifetime limits. For the PSFs we use values computed
with an improved method reported very recently. For the NMEs we use values chosen from the literature on a case-by-case basis,
taking advantage of the consensus reached by the community on several nuclear ingredients used in their calculation.Thus, we try
to restrict the range of spread of the NME values calculated with differentmethods and, hence, to reduce the uncertainty in deriving
limits for theMajorana neutrinomass parameter. Our results may be useful to have an updated image on the present neutrinomass
sensitivities associated with 0]𝛽𝛽 measurements for different isotopes and to better estimate the range of values of the neutrino
masses that can be explored in the future double beta decay (DBD) experiments.

1. Introduction

Neutrinoless double beta decay is a beyond standard model
(BSM) process by which an even-even nucleus transforms
into another even-even nucleus with the emission of two
electrons/positrons but no antineutrinos/neutrinos in the
final states. Its study is very attractive because it would clarify
the question about the lepton number conservation, decide
on the neutrinos character (are they Dirac or Majorana par-
ticles?), and give a hint on the scale of their absolute masses.
Moreover, the study of the 0]𝛽𝛽 decay has a broader potential
to search for other BSM phenomena. The reader can find
up-to-date information on these studies from several recent
reviews [1–6], which also contain therein a comprehensive list
of references in the domain.

The scale of the absolute mass of neutrinos is a key
issue for understanding the neutrino properties. It cannot
be derived from neutrino oscillation experiments which can
only measure the square of the neutrino mass differences
between different flavors [7–12]. Analysis of 0]𝛽𝛽 decay and

cosmological data are at present the most sensitive ways to
investigate this issue.

The lifetime of the 0]𝛽𝛽 decay modes can be expressed,
in a good approximation, as a product of a phase space
factor (depending on the atomic charge and energy released
in the decay, 𝑄𝛽𝛽), a nuclear matrix element (related to the
nuclear structure of the parent and daughter nuclei), and
a lepton number violation (LNV) parameter (related to the
BSM mechanism considered). Thus, to extract reliable limits
for the LNV parameters we need accurate calculations of
both PSFs and NMEs, as well as reliable measurements of the
lifetime.

The largest uncertainties in theoretical calculations for
DBD are related to the NMEs values. That is why there is
a continuous effort in the literature to develop improved
nuclear structure methods for their computation. At present,
the NMEs are computed by several methods which dif-
fer conceptually, the most employed being the proton-
neutron quasi-random phase approximation (pnQRPA) [13–
20], interacting shell model (ISM) [21–25], interacting
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boson approximation (IBA) [26–28], projected Hartree-
Fock-Bogoliubov (PHFB) [29, 30], and energy density func-
tional (EDS) method [31]. There are still large differences
between the NMEs values computed with different methods
and by different groups, and these have been largely discussed
in the literature (see, e.g., [2, 3]). On the other side, there is a
consensus in the community on the way that several nuclear
effects and nuclear parameters should be used in calculations.
In this work, we take advantage of this consensus when we
chose theNMEs values, trying to restrict their range of spread
and, consequently, to reduce the uncertainty in deriving the
neutrino Majorana mass parameters.

Unlike the NMEs, the PSFs have been calculated a long
time ago [32–39] and were considered to be computed with
enough precision. However, recently, they were recalculated
within an improved approach, by using exact electron Dirac
wave functions (w.f.) taking into account the finite nuclear
size and electron screening effects [40]. The authors found
differences between their results and those calculated previ-
ously with approximate electron w.f., especially for heavier
nuclei. We have also independently recalculated the PSFs
by developing new routines for computing the relativistic
(Dirac) electron w.f. by taking into account the nuclear finite
size and screening effects. In addition, we use a Coulomb
potential derived from a realistic proton density distribution
in the daughter nucleus [41, 42]. In this workwe use new PSFs
values obtained by improving the numerical precision of our
routines as compared with our previous works. The obtained
values are very close to those reported in [40, 41].

Finally, for the lifetime limits, we take the most recent
results found in the literature.

The paper is organized as follows. In the next section
we shortly recall the general formalism for the derivation
of the neutrino mass parameters from 0]𝛽𝛽 decay analysis,
highlighting the nuclear ingredients involved in calculations.
In Section 3 we discuss the way of choosing the NME values
and report our results for the light neutrino Majorana mass
parameters, while in Section 4 we formulate the conclusions
of our work.

2. Formalism

We shortly present the general formalism for the derivation
of neutrino mass parameters from 0]𝛽𝛽 decay analysis. We
start with the lifetime formula and then describe the main
steps and ingredients used in the theoretical calculation of
their components, that is, PSFs and NMEs.

Assuming that the dominant mechanism of occurrence
for the 0]𝛽𝛽 decay mode is the exchange of Majorana left-
handed light neutrinos between twonucleons from the parent
nucleus, the lifetime reads
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where 𝐺0] are the PSFs for this decay mode, depending on
the energy decay 𝑄𝛽𝛽 and nuclear charge 𝑍, 𝑀0] are the
corresponding NMEs, depending on the nuclear structure of
the parent and daughter nuclei involved in the decay, 𝑚𝑒 is

electron mass, and ⟨𝑚]⟩ is the light neutrino Majorana mass
parameter. This parameter can be expressed as a (coherent)
linear combination of the light neutrino masses:
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where 𝑈𝑒𝑘 are the elements of the first row in the PMNS
(Pontecorvo-Maki-Nakagawa-Sakata) neutrino matrix and
𝑚𝑘 are the light neutrinomasses [56]. From (1) the expression
of𝑚] reads

⟨𝑚]⟩ =
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√𝑇0] ⋅ 𝐺0]
. (3)

For deriving ⟨𝑚]⟩ we need accurate calculations of
both PSFs and NMEs for each isotope for which there are
experimental lifetime limits. The PSFs have been calculated
a long time ago in some approximations [32–39] and were
considered, until recently, to be computed with enough
precision. However, they were recalculated recently in [40–
42] using more advanced approaches for the numerical
evaluation of the Dirac wave functions with the inclusion
of nuclear finite size and screening effects. In addition, in
[41] the usual Coulomb spherical potential was replaced by
another one, derived from a more realistic proton density
distribution in the daughter nucleus. These recent PSF cal-
culations led to significant differences in comparison to the
older calculations, especially for the heavier isotopes, that
should be taken into account for a precise derivation of the
neutrino mass parameters.

The computation of the NMEs is a subject of debate in
the literature for long time, because they bring the large
uncertainties in the theoretical calculations for DBD. Dif-
ferent groups have developed several conceptually different
nuclear structure methods [13–31], as we have mentioned in
the previous section. The expression of the NMEs can be
written, in general, as a sum of three components:
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where 𝑀0]GT, 𝑀
0]
𝐹 , and 𝑀0]𝑇 are the Gamow-Teller (GT),

Fermi (𝐹), and Tensor (𝑇) components, respectively. These
are defined as follows:
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where 𝑂𝛼𝑚𝑛 are transition operators (𝛼 = GT, 𝐹, 𝑇) and
the summation is performed over all the nucleon states. An
important part of the NME calculation is the computation
of the reduced matrix elements of the two-body transition
operators 𝑂

𝛼. Their calculation can be decomposed into
products of reduced matrix elements within the spin and
relative coordinate spaces. Their explicit expressions are [4,
23]
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The most difficult is the computation of the radial part
of the two-body transition operators, which contains the
neutrino potentials. These potentials depend weakly on the
intermediate states and are defined by integrals ofmomentum
carried by the virtual neutrino exchanged between the two
nucleons [16]:
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where 𝑅 = 𝑟0𝐴
1/3 fm (𝑟0 = 1.2 fm), 𝜔 = √𝑞2 + 𝑚2]

is the neutrino energy, and 𝑗𝑖(𝑞𝑟) is the spherical Bessel
function (i = 0, 0, and 2 for GT, F, and T, resp.). Usually,
in calculations one uses the closure approximation which
consists of a replacement of the excitation energies of the
states in the intermediate odd-odd nucleus contributing to
the decay, by an average expression ⟨𝐸⟩. This approximation
works well in the case of 0]𝛽𝛽 decay modes and simplifies
much the calculations. The expressions of ℎ𝛼 (𝛼 = GT, 𝐹, 𝑇)
are
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where𝑚𝜋 is the pion mass,𝑚𝑝 is the proton mass, and
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with (𝜇𝑝 − 𝜇𝑛) = 4.71.
The expressions (9)-(10) include important nuclear ingre-

dients that should be taken into account for a precise
computation of the NMEs, such as the higher order currents
in the nuclear interaction (HOC) andfinite nucleon size effect
(FNS). Inclusion of HOC brings additional terms in the𝐻GT
component and leads to the appearance of the𝐻𝑇 component
in the expressions of the neutrino potentials. FNS effect is
taken into account through 𝐺𝑉 and 𝐺𝐴 form factors:
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For the vector and axial coupling constants, the majority of
the calculations take either the quenched value, 𝑔𝑉 = 1,
or the unquenched one, 𝑔𝐴 = 1.25, while the values of the
vector and axial vector form factors are Λ𝑉 = 850MeV
and Λ𝐴 = 1086MeV [1], respectively. As one can see, when
HOC and FNS corrections are included in the calculations,
the dependence of NMEs expression on 𝑔𝐴 is not trivial
and the NMEs values obtained with the quenched or the
unquenched value of this parameter cannot be obtained by
simply rescaling.

To compute the radial matrix elements ⟨𝑛𝑙|𝐻𝛼|𝑛
𝑙⟩ an

important ingredient is the adequate inclusion of SRCs,
induced by the nuclear interaction. The way of introducing
the SRC effects has also been subject of debate ([16–18, 20]).
The SRC effects are included by correcting the single particle
w.f. as follows:

𝜓𝑛𝑙 (𝑟) → [1 + 𝑓 (𝑟)] 𝜓𝑛𝑙 (𝑟) . (13)

The correlation function 𝑓(𝑟) can be parametrized in several
ways. There are three parameterizations which are used,
Miller-Spencer (MS), UCOM, and CCM (with CD-Bonn
and AV18 potentials). The Jastrow prescription [34] for the
correlation function is

𝑓 (𝑟) = −𝑐 ⋅ 𝑒
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and includes all these parameterizations, depending on values
of the a, b, c parameters.

Including HOC and FNS effects, the radial matrix ele-
ments of the neutrino potentials become
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where ] is the oscillator constant and 𝑉𝛼(𝑞) is an expression
containing the 𝑞 dependence of the neutrino potentials.

From (4)–(15) one can see that a set of approximations
and parameters are involved in the NMEs expressions, as
the HOC, FNS, and SRC effects and 𝑔𝐴, 𝑟0, (Λ𝐴, Λ 𝐵), ⟨𝐸⟩
parameters. Are there any recommendations on how should
they be included in the calculations? At present there is a
general consensus in the community in this respect that will
be discussed in the next section.

3. Numerical Results and Discussions

The neutrino mass parameters are derived from (3). To get
⟨𝑚]⟩ in the same units as𝑚𝑒 we take theNMEs dimensionless
and the PSFs (𝐺0]) in units of [yr]−1.

The PSF values were obtained by recalculating them with
our code, developed in [41], but with improved numerical
precision. At this point we mention that the improved PSF
values come, on the one hand, by the use of a Coulomb
potential describing a more realistic proton charge density in
the daughter nucleus instead of the (usual) constant charge
density one, to solve the Dirac equations for obtaining the
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electron w.f. On the other hand, we got better precision of
our numerical routines that compute the PSFs by enhancing
the number of the interpolation points on a case-to-case
basis until the results become stationary.The obtained values
are very close to both those reported previously in [40, 41].
This gives us confidence on their reliability. We mention
that these PSFs values differ from older calculations as, for
example, those reported in [33, 35–37] by up to 28%. Such
differences are important for precise estimations and justify
the reactualization of the PSFs values in extracting Majorana
neutrino mass parameters.

For the experimental lifetime we took the most recent
results reported in the literature. In particular, we remark the
newest results for 76Ge fromGERDA [49] and for 136Xe from
KamLAND-Zen [54].

The largest uncertainty in the derivation of ⟨𝑚]⟩ comes
from the values of the NMEs. Fortunately, at present there is
a general consensus in the community on the employment of
the different nuclear effects (approximations) and parameters
which appear in the NMEs expressions (see (4)–(15)) [57].
Thus, one can restrict the range of spread of the NMEs
values for a particular nucleus, if one takes into account some
recommendations resulting from the analysis of many NMEs
calculations. For example, one recommends the inclusion in
calculation of the HOC, FNS, and SRC effects (although their
effects can partially compensate each other [43]). For SRCs,
softer parametrizations likeUCOM[17, 18, 20] andCCM[58–
60] are recommended, while the MS produces a too severe
cut of the w.f. for very short internucleon distances, which
reflects into smaller NMEs values. Concerning the nuclear
parameters, one recommends the use of an unquenched value
for the 𝑔𝐴 axial vector constant, the values specified above for
the vector and axial vector form factors (Λ𝑉, Λ𝐴), and a value
of 𝑟0 = 1.2 fm for the nuclear radius constant. The value for
the average energy (⟨𝐸⟩), used in the closure approximation,
is a function of atomicmassA, but the results are less sensitive
to changes within a few MeV. The use in different ways of
these ingredients can result in significant differences between
the NMEs values. Hence, a consensus is useful to approach
the results obtained by different groups. Having agreement
on these nuclear ingredients, the differences in the NMEs
values should be searched in the features of the different
nuclear structure methods. These methods use different
ways of building the wave functions and different specific
model spaces and type of nucleon-nucleon correlations and
use some specific parameters [3, 24, 43]. Unfortunately, the
uncertainties in the NMEs calculation associated with a
particular nuclear structure method cannot be easily fixed
and they are still a subject of debate. As a general feature,
ShM calculations underestimate the NMEs values (due to the
limitations of the model spaces used), while the other meth-
ods overestimate them. There are, however, a few hints on
how to understand/bring closer the NMEs results obtained
with different methods. One idea would be to analyze the
structure of the wave functions used in terms of the seniority
scheme [57]. Another one is to (re)calculate the NME values
as to reproduce s.p. occupancies numbers measured recently
for 76Ge and 82Se nuclei [61, 62]. For example, when the

QRPA calculations have been modified with the s.p. energies
that reproduce the experimental occupancies, the newQRPA
NMEs values are much closer to the ShM ones.

In Table 1 we display the NMEs values obtained with
different nuclear methods. For uniformity and in agreement
with the consensus discussed above, we chose those results
that were performed with the inclusion of HOC, FNS, and
SRC (UCOM and CD-Bonn) effects and with unquenched
𝑔𝐴 = 1.25, as nuclear ingredients. We mention that
the newest experimental determinations of this parameter
report values even larger (1.269, 1.273) [63]. However, the
differences between NMEs values obtained with 𝑔𝐴 = 1.25–
1.273 are not significant [43]. The NMEs values for 76Ge
and 82Se written in parenthesis represent the adjusted NMEs
values obtained with QRPA method by the Tuebingen and
Jyvaskyla groups, when the s.p. energies were adjusted to the
occupancy numbers reported in [61, 62]. One remarks that
the QRPA calculations with s.p. occupancies in accordance
with experiment get significantly close to the ShM results,
which is remarkable. In the future, one expectsmeasurements
of the occupancy numbers for other nuclei, as well. Also, it
would be interesting if other methods, besides QRPA, would
try to recalculate the NMEs by adjusting s.p. energies to
experimental occupancy numbers.

We also make some remarks about the NMEs values on
a case-by-case basis. For 48Ca we appreciate that ShM cal-
culations give more realistic results than the other methods.
In support of this claim we mention that, in the case of
this isotope, ShM calculations are performed within the full
pf shell and using good effective NN interactions, checked
experimentally on other spectroscopic quantities [43, 44,
64]. Also, we remark that NMEs values obtained with ShM
for this isotope were used to correctly predict 𝑇2]1/2, before
its experimental measurement [65]. For the isotopes with
A = 96–130 there is a larger spread of the NMEs values
calculated with different methods and, consequently, a larger
uncertainty in predicting the ⟨𝑚]⟩ parameters. For 136Xe
there are new ShM large-scale calculations with inclusion of
a larger model space than the older calculations [45]. For this
isotope the NMEs values are more grouped. Corroborated
with a quite good experimental lifetime, from this isotope one
gets the most stringent constraint for the ⟨𝑚]⟩ parameter.

In Table 2 we present our results for the Majorana
neutrino mass parameters (⟨𝑚]⟩) together with the values of
𝑄𝛽𝛽, the PSFs (𝐺

0]), NMEs (𝑀0]), and experimental lifetime
(𝑇0]1/2) for all the isotopes for which data exists. Making a
sort of the NMEs values from the literature according to
the considerations presented, we reduce the interval of their
spread to about a factor of 2, even less (with one exception).
This results in reducing the uncertainty in deriving the
constraints on the light neutrino Majorana mass parameters,
while taking into account NME values obtained with all the
main nuclear methods existent on the market. One observes
that the stringent constraints are obtained from the 136Xe
isotope, followed by the 76Ge one. This is due to both
the experimental sensitivity of the experiments measuring
these isotopes and the reliability of the PSFs and NMEs
theoretical calculations. The experiments measuring these
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Table 1: The NMEs obtained with different methods. The values are obtained using an unquenched value for 𝑔𝐴 and softer SRC
parametrizations, which are specified in the second column.

Method SRC 48Ca 76Ge 82Se 96Zr 100Mo 116Cd 130Te 136Xe 150Nd
[43] ShM CD-BONN 0.81 3.13 2.88
[44] ShM CD-BONN 0.90 2.21 [45]
[24] ShM UCOM 0.85 2.81–3.52 2.64 2.65 2.19
[27] IBM-2 CD-BONN 2.38 6.16 4.99 3.00 4.50 3.29 4.61 3.79 2.88
[3] QRPA CD-BONN 5.93 (3.27) 5.30 (4.54) 2.19 4.67 3.72 4.80 3.00 3.16 [46]
[47] QRPA UCOM 5.36 (4.11) 3.72 3.12 3.93 4.79 4.22 2.80
[31] GCM CD-BONN 2.37 4.60 4.22 5.65 5.08 4.72 5.13 4.20 1.71
[29, 30] PHFB CD-BONN 2.98 6.07 3.98 2.68

Table 2: Majorana neutrino mass parameters together with the other components of the 0]𝛽𝛽 decay halftimes: the 𝑄𝛽𝛽 values, the
experimental lifetime limits, the phase space factors, and the nuclear matrix elements.

𝑄𝛽𝛽 [MeV] 𝑇0]𝛽𝛽exp [yr] 𝐺0]𝛽𝛽 [yr−1] 𝑀0]𝛽𝛽 ⟨𝑚]⟩ [eV]
48Ca 4.272 >5.8 1022 [48] 2.46𝐸 − 14 0.81–0.90 <[15.0–16.7]
76Ge 2.039 >2.1 1025 [49] 2.37𝐸 − 15 2.81–6.16 <[0.37–0.82]
82Se 2.995 >3.6 1023 [50] 1.01𝐸 − 14 2.64–4.99 <[1.70–3.21]
96Zr 3.350 >9.2 1021 [51] 2.05𝐸 − 14 2.19–5.65 <[6.59–17.0]
100Mo 3.034 >1.1 1024 [50] 1.57𝐸 − 14 3.93–6.07 <[0.64–0.99]
116Cd 2.814 >1.7 1023 [52] 1.66𝐸 − 14 3.29–4.79 <[2.00–2.92]
130Te 2.527 >2.8 1024 [53] 1.41𝐸 − 14 2.65–5.13 <[0.50–0.97]
136Xe 2.458 >1.6 1025 [54] 1.45𝐸 − 14 2.19–4.20 <[0.25–0.48]
150Nd 3.371 >1.8 1022 [55] 6.19𝐸 − 14 1.71–3.16 <[4.84–8.95]

isotopes are already exploring the quasi-degenerate scenarios
for the neutrino mass hierarchy (which is around 0.5 eV).
With the ingredients presented in Table 2 (PSFs and NMEs)
one can appreciate, as well, the sensitivities, translated into
neutrino mass parameters, of the future generation of DBD
experiments.

4. Conclusions

We report new values of light Majorana neutrino mass
parameters from a 0]𝛽𝛽 decay analysis extended to all the
isotopes for which theoretical and experimental data exists.
We used the most recent results for the experimental lifetime
𝑇
0]
1/2 as well as for the theoretical quantities 𝐺0] and 𝑀0].

For the PSFs we use newly obtained values, recalculated with
an approach described in [41] but with improved numerical
accuracy. We use exact electron w.f. obtained by solving a
Dirac equation when finite nuclear size and screening effects
are included and, in addition, a Coulomb potential derived
from a realistic proton distribution in the daughter nucleus
has been employed. For choosing the NMEs we take advan-
tage of the general consensus in the community on several
nuclear ingredients involved in the calculations (HOC, FHS,
and SRCs effects, values of several nuclear input parameters)
and restrict the range of spread of the NMEs values, reported
in the literature. This, in turn, reduces the uncertainty in
deriving constraints on the light Majorana neutrino mass

parameters, while taking into account NME values obtained
with all the main nuclear methods. The stringent constraints
are obtained from the 136Xe and 76Ge isotopes, due to both
the experimental sensitivity and the reliability of the PSFs
and NMEs calculations. The experiments measuring these
isotopes are already exploring the quasi-degenerate scenarios
for the neutrino mass hierarchy which is around 0.5 eV. Our
results may be useful for having an up-to-date image on
the current neutrino mass sensitivities associated with 0]𝛽𝛽
measurements for different isotopes and to better estimate
the range of the neutrino masses that can be explored in the
future DBD experiments.

Note. After the submission of this paper Exo-2000 published
their 2-year new limits for the neutrinoless double beta decay
of 136Xe, which is less than the value that we used for deriving
the neutrinomass parameter in this case. For this isotope, the
presently stringent limit for the lifetime is 1.9 × 10

25 y, from
KamLand-Zen experiment [33]. Hence, we use this value,
which shifts the interval of the neutrino mass parameter to
[0.23–0.44], which represents a small change in our results
for this isotope.
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