1,014 research outputs found

    Restorative and afflicting qualities of the micro-space encounter:psychophysiological reactions to the spaces of the city

    Get PDF
    There is a long-standing narrative within health research that nature (or green space) is beneficial for health while urban (or grey spaces) are not. This prior research often focuses on broad, often binary, nature/urban categorizations rather than the particular qualities of the micro-space encounter, stimulating embodied stress or restorative human reactions. Drawing on the findings of an interdisciplinary and exploratory mixed-methods study investigating how people physiologically respond to their environment, this paper discusses the micro-space encounters which can evoke restorative and afflicting human responses. In doing so, this paper demonstrates the strengths of combining biosensing technology with qualitative methods but stresses that narrative and psychophysiological capture only identifies a small aspect of an experience

    An isogeometric analysis for elliptic homogenization problems

    Full text link
    A novel and efficient approach which is based on the framework of isogeometric analysis for elliptic homogenization problems is proposed. These problems possess highly oscillating coefficients leading to extremely high computational expenses while using traditional finite element methods. The isogeometric analysis heterogeneous multiscale method (IGA-HMM) investigated in this paper is regarded as an alternative approach to the standard Finite Element Heterogeneous Multiscale Method (FE-HMM) which is currently an effective framework to solve these problems. The method utilizes non-uniform rational B-splines (NURBS) in both macro and micro levels instead of standard Lagrange basis. Beside the ability to describe exactly the geometry, it tremendously facilitates high-order macroscopic/microscopic discretizations thanks to the flexibility of refinement and degree elevation with an arbitrary continuity level provided by NURBS basis functions. A priori error estimates of the discretization error coming from macro and micro meshes and optimal micro refinement strategies for macro/micro NURBS basis functions of arbitrary orders are derived. Numerical results show the excellent performance of the proposed method

    Inside the intimate zone: The case of aural micro-space in multichannel compositional practice

    Get PDF
    This paper aims to present the notion of aural microspace, an area whose aural architecture is not accessible unless it is mediated by recording technology and discuss the exploration of this concept in compositional practice. The author analyses the characteristics of acoustic space from a spectromorphological, cultural and technical perspective, with a focus on auditory intimacy and is proposing novel ways for working in this domain with references to two multichannel acousmatic works, Topophilia and Karst Grotto

    A micromorphic continuum formulation for finite strain inelasticity

    Get PDF
    This work proposes a generalized theory of deformation which can capture scale effects also in a homogenously deforming body. Scale effects are relevant for small structures but also when it comes to high strain concentrations as in the case of localised shear bands or at crack tips, etc. In this context, so-called generalized continuum formulations have been proven to provide remedy as they allow for the incorporation of internal length-scale parameters which reflect the micro-structural influence on the macroscopic material response. Here, we want to adopt a generalized continuum framework which is based on the mathematical description of a combined macro- and micro-space [8]. The approach introduces additional degrees of freedom which constitute a so-called micromorphic deformation. First the treatment presented is general in nature but will be specified for the sake of an example and the number of extra degrees of freedom will be reduced to four. Based on the generalized deformation description new strain and stress measures are defined which lead to the formulation of a corresponding generalized variational principle. Of great advantage is the fact that the constitutive law is defined in the generalized space but can be classical otherwise. This limits the number of the extra material parameters necessary to those needed for the specification of the micro-space, in the example presented to only one

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - II: Dirac versus Bergmann observables and the Objectivity of Space-Time

    Get PDF
    (abridged)The achievements of the present work include: a) A clarification of the multiple definition given by Bergmann of the concept of {\it (Bergmann) observable. This clarification leads to the proposal of a {\it main conjecture} asserting the existence of i) special Dirac's observables which are also Bergmann's observables, ii) gauge variables that are coordinate independent (namely they behave like the tetradic scalar fields of the Newman-Penrose formalism). b) The analysis of the so-called {\it Hole} phenomenology in strict connection with the Hamiltonian treatment of the initial value problem in metric gravity for the class of Christoudoulou -Klainermann space-times, in which the temporal evolution is ruled by the {\it weak} ADM energy. It is crucial the re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose their (nearly unknown) connection to gauge transformations on-shell; this is expounded in the first paper (gr-qc/0403081). The use of the Bergmann-Komar {\it intrinsic pseudo-coordinates} allows to construct a {\it physical atlas} of 4-coordinate systems for the 4-dimensional {\it mathematical} manifold, in terms of the highly non-local degrees of freedom of the gravitational field (its four independent {\it Dirac observables}), and to realize the {\it physical individuation} of the points of space-time as {\it point-events} as a gauge-fixing problem, also associating a non-commutative structure to each 4-coordinate system.Comment: 41 pages, Revtex

    A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation

    Get PDF
    The development of a metal–organic framework/α-alumina composite leads to a novel concept: efficient adsorption occurs within a plurality of radial micro-channels with no loss of the active adsorbents during the process. This composite can effectively remediate arsenic contaminated water producing potable water recovery, whereas the conventional fixed bed requires eight times the amount of active adsorbents to achieve a similar performance

    On non-measurable sets and invariant tori

    Full text link
    The question: "How many different trajectories are there on a single invariant torus within the phase space of an integrable Hamiltonian system?" is posed. A rigorous answer to the question is found both for the rational and the irrational tori. The relevant notion of non-measurable sets is discussed.Comment: 8 pages, 1 figur
    corecore