33,632 research outputs found

    An Analytical Method for Detecting Toxic Metal Cations Using Cyclotriveratrylene Derivative Capped Gold Nanoparticles

    Get PDF
    Cyclotriveratrylene-oxime (CTV-oxime) derivatives that terminate with a dithiolate linker were synthesized enabling the supramolecular scaffold to adhere to gold nanoparticles (AuNPs) with the bowl-shaped cavity of the CTV scaffold exposed for utilization in host–guest chemistry. Exposure of these CTV functionalized AuNPs to varying concentrations of di- and trivalent metal cations resulted in the formation of large CTV-AuNP polymeric clusters and an accompanying a shift in the plasmon resonance. These interactions between the CTV-AuNPs and the metal cations in solution provides proof-of-concept that supramolecular functionalized AuNPs can be used as a simple and straightforward, on-site detection system for toxic metal cations in solution. The order of binding affinity of the metals studied based on observed Kd values is Cu2+ \u3e Zn2+ \u3e Pb2+ \u3e Hg2+ \u3e Eu3+ \u3e Cd2+

    Reduction by monovalent zinc, cadmium, and nickel cations

    Get PDF
    Understanding of chemical properties of monovalent transition metal cations in aqueous solutions was obtained by a study of kinetics of reduction of different inorganic substrates by zinc, cadmium, and nickel

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories

    Reusable chelating resins concentrate metal ions from highly dilute solutions

    Get PDF
    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed

    Novel phthalonitrile derivatives as potential compounds for extraction and complexation of metal cations

    Get PDF
    The synthesis and the binding properties of novel phthalonitrile derivatives 1-3 towards metal cations have been described in this paper. The complexation and extraction of some transition and heavy metal cations have been followed by UV-visible spectrophotometry absorption in methanol. The conductivity studies have been used in order to confirm complex’s stoichiometries. The treatment of UV spectra by digital program showed the formation of ML (with ML2 in some cases) (M=metal, L=ligand) species. Beyond the discussion of the stability profiles of complexes particular attention is paid to the selectivity towards Cu2+ in the 1st sequence of transition metal cations and towards Hg2+ in the sequence of heavy metal cations

    The rhizotoxicity of metal cations is related to their strength of binding to hard ligands

    Get PDF
    Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al3+ and Hg2+, which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca2+, Na+, Mn2+, and Zn2+, which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl+, Ag+, Cs+, and Cu2+) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms

    Analysis of biopharma raw materials by electrophoresis microchips with contactless conductivity detection

    Get PDF
    Detailed information concerning the composition of the raw materials employed in the production of biologics is important for the efficient control and optimization of bioprocesses. We demonstrate the application of electrophoresis microchips with capacitively-coupled contactless conductivity detection (C4D) to the analysis of wa-ter-soluble vitamins and metal cations in raw material solutions that are subse-quently fed into bioreactors for the production of biologics

    Reactions of Ta+, W+, and Pt+ with H2, D2, and HD: effect of lanthanide contraction and spin-orbit interactions on reactivity and thermochemistry

    Get PDF
    Journal ArticleThere have been extensive experimental studies of the reactions of atomic first-row and second-row transition metal cations with dihydrogen and its isotopic analogues in our group. For third-row transition metal cations, however, only La+ and Lu+ systems have been studied experimentally although theoretical calculations are in literature. 1-4

    THERMAL STABILITY OF METAL-PITCH DEPOSITS FROM A SPRUCE THERMOMECHANICAL PULP BY USE OF A DIFFERENTIAL SCANNING CALORIMETER

    Get PDF
    Pitch-related deposition has been a significant issue in paper mills that produce wood-containing paper grades. A component analysis showed that a mill deposit sample was a mixture of wood resin, fiber, metal cations, and other inorganics. Based on the differential scanning calorimeter (DSC) method, some critical parameters, including pH, metal cations, and their interactions, on the thermal stability of pitch-related deposits were studied. The valency of metal cations determined the ability of capturing pitch the formation of deposits. Trivalent Al3+ or Fe3+ ions had much stronger effects than divalent Ca2+, Mg2+, or Mn2+. It was also found that a higher pH and trivalent Al3+ or Fe3+ increased the thermal stability of deposits formed in colloidal pitch solutions
    corecore