45 research outputs found

    Parameterized Leaf Power Recognition via Embedding into Graph Products

    Get PDF
    The k-leaf power graph G of a tree T is a graph whose vertices are the leaves of T and whose edges connect pairs of leaves at unweighted distance at most k in T. Recognition of the k-leaf power graphs for k >= 6 is still an open problem. In this paper, we provide an algorithm for this problem for sparse leaf power graphs. Our result shows that the problem of recognizing these graphs is fixed-parameter tractable when parameterized both by k and by the degeneracy of the given graph. To prove this, we describe how to embed the leaf root of a leaf power graph into a product of the graph with a cycle graph. We bound the treewidth of the resulting product in terms of k and the degeneracy of G. As a result, we can use methods based on monadic second-order logic (MSO_2) to recognize the existence of a leaf power as a subgraph of the product graph

    Relating threshold tolerance graphs to other graph classes

    Get PDF
    A graph G=(V, E) is a threshold tolerance if it is possible to associate weights and tolerances with each node of G so that two nodes are adjacent exactly when the sum of their weights exceeds either one of their tolerances. Threshold tolerance graphs are a special case of the well-known class of tolerance graphs and generalize the class of threshold graphs which are also extensively studied in literature. In this note we relate the threshold tolerance graphs with other important graph classes. In particular we show that threshold tolerance graphs are a proper subclass of co-strongly chordal graphs and strictly include the class of co-interval graphs. To this purpose, we exploit the relation with another graph class, min leaf power graphs (mLPGs)

    Towards Constant-Factor Approximation for Chordal / Distance-Hereditary Vertex Deletion

    Get PDF
    For a family of graphs ?, Weighted ?-Deletion is the problem for which the input is a vertex weighted graph G = (V, E) and the goal is to delete S ? V with minimum weight such that G?S ? ?. Designing a constant-factor approximation algorithm for large subclasses of perfect graphs has been an interesting research direction. Block graphs, 3-leaf power graphs, and interval graphs are known to admit constant-factor approximation algorithms, but the question is open for chordal graphs and distance-hereditary graphs. In this paper, we add one more class to this list by presenting a constant-factor approximation algorithm when ? is the intersection of chordal graphs and distance-hereditary graphs. They are known as ptolemaic graphs and form a superset of both block graphs and 3-leaf power graphs above. Our proof presents new properties and algorithmic results on inter-clique digraphs as well as an approximation algorithm for a variant of Feedback Vertex Set that exploits this relationship (named Feedback Vertex Set with Precedence Constraints), each of which may be of independent interest

    All graphs with at most seven vertices are Pairwise Compatibility Graphs

    Full text link
    A graph GG is called a pairwise compatibility graph (PCG) if there exists an edge-weighted tree TT and two non-negative real numbers dmind_{min} and dmaxd_{max} such that each leaf lul_u of TT corresponds to a vertex u∈Vu \in V and there is an edge (u,v)∈E(u,v) \in E if and only if dmin≤dT,w(lu,lv)≤dmaxd_{min} \leq d_{T,w} (l_u, l_v) \leq d_{max} where dT,w(lu,lv)d_{T,w} (l_u, l_v) is the sum of the weights of the edges on the unique path from lul_u to lvl_v in TT. In this note, we show that all the graphs with at most seven vertices are PCGs. In particular all these graphs except for the wheel on 7 vertices W7W_7 are PCGs of a particular structure of a tree: a centipede.Comment: 8 pages, 2 figure

    Pairwise Compatibility Graphs (Invited Talk)

    Get PDF
    Pairwise Compatibility Graphs (PCG) are graphs introduced in relation to the biological problem of reconstructing phylogenetic trees. Without demanding to be exhaustive, in this note we take a quick look at what is known in the literature for these graphs. The evolutionary history of a set of organisms is usually represented by a tree-like structure called phylogenetic tree, where the leaves are the known species and the internal nodes are the possible ancestors that might have led, through evolution, to this set of species. Edges are evolutionary relationships between species, while the edge weights represent evolutionary distances among species (evolutionary times). The phylogenetic tree reconstruction problem consists in finding a fully labeled phylogenetic tree that'best' explains the evolution of given species, where'best' means that it optimizes a specific target function. Tree reconstruction problem is proved to be NP-hard under many criteria of optimality, so the performance of the heuristics for this problem is usually experimentally evaluated by comparing the output trees with the partial trees that are unanimously recognized as sure by biologists. But real data consist of a huge number of species, and it is unfeasible to compare trees with such a number of leaves, so it is common to exploit sample techniques. The idea is to find efficient ways to sample subsets of species from a large set in order to test the heuristics on the smaller sub-trees induced by the sample. The constraints on the sample attempt to ensure that the behavior of the heuristics will not be biased by the fact it is applied on the sample instead of on the whole tree. Since very close or very distant taxa can create problems for phylogenetic reconstruction heuristics [9], the following definition of Pairwise Compatibility Graphs [12] appears natura

    On relaxing the constraints in pairwise compatibility graphs

    Full text link
    A graph GG is called a pairwise compatibility graph (PCG) if there exists an edge weighted tree TT and two non-negative real numbers dmind_{min} and dmaxd_{max} such that each leaf lul_u of TT corresponds to a vertex u∈Vu \in V and there is an edge (u,v)∈E(u,v) \in E if and only if dmin≤dT(lu,lv)≤dmaxd_{min} \leq d_T (l_u, l_v) \leq d_{max} where dT(lu,lv)d_T (l_u, l_v) is the sum of the weights of the edges on the unique path from lul_u to lvl_v in TT. In this paper we analyze the class of PCG in relation with two particular subclasses resulting from the the cases where \dmin=0 (LPG) and \dmax=+\infty (mLPG). In particular, we show that the union of LPG and mLPG does not coincide with the whole class PCG, their intersection is not empty, and that neither of the classes LPG and mLPG is contained in the other. Finally, as the graphs we deal with belong to the more general class of split matrogenic graphs, we focus on this class of graphs for which we try to establish the membership to the PCG class.Comment: 12 pages, 7 figure

    Mim-Width II. The Feedback Vertex Set Problem

    Get PDF
    Under embargo until: 2020-07-18We give a first polynomial-time algorithm for (WEIGHTED) FEEDBACK VERTEX SET on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an nO(w)-time algorithm that solves FEEDBACK VERTEX SET. This provides a unified polynomial-time algorithm for many well-known classes, such as INTERVAL graphs, PERMUTATION graphs, and LEAF POWER graphs (given a leaf root), and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as CIRCULAR PERMUTATION and CIRCULAR k-TRAPEZOID graphs (given a circular k-trapezoid model) for fixed k. We complement our result by showing that FEEDBACK VERTEX SET is W[1]-hard when parameterized by w and the hardness holds even when a linear branch decomposition of mim-width w is given.acceptedVersio

    Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs

    Get PDF
    In this paper, we revisit the split decomposition of graphs and give new combinatorial and algorithmic results for the class of totally decomposable graphs, also known as the distance hereditary graphs, and for two non-trivial subclasses, namely the cographs and the 3-leaf power graphs. Precisely, we give strutural and incremental characterizations, leading to optimal fully-dynamic recognition algorithms for vertex and edge modifications, for each of these classes. These results rely on a new framework to represent the split decomposition, namely the graph-labelled trees, which also captures the modular decomposition of graphs and thereby unify these two decompositions techniques. The point of the paper is to use bijections between these graph classes and trees whose nodes are labelled by cliques and stars. Doing so, we are also able to derive an intersection model for distance hereditary graphs, which answers an open problem.Comment: extended abstract appeared in ISAAC 2007: Dynamic distance hereditary graphs using split decompositon. In International Symposium on Algorithms and Computation - ISAAC. Number 4835 in Lecture Notes, pages 41-51, 200
    corecore