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Abstract
For a family of graphs F , Weighted F-Deletion is the problem for which the input is a vertex
weighted graph G “ pV,Eq and the goal is to delete S Ď V with minimum weight such that GzS P F .
Designing a constant-factor approximation algorithm for large subclasses of perfect graphs has been
an interesting research direction. Block graphs, 3-leaf power graphs, and interval graphs are known
to admit constant-factor approximation algorithms, but the question is open for chordal graphs and
distance-hereditary graphs.

In this paper, we add one more class to this list by presenting a constant-factor approximation
algorithm when F is the intersection of chordal graphs and distance-hereditary graphs. They are
known as ptolemaic graphs and form a superset of both block graphs and 3-leaf power graphs above.
Our proof presents new properties and algorithmic results on inter-clique digraphs as well as an
approximation algorithm for a variant of Feedback Vertex Set that exploits this relationship
(named Feedback Vertex Set with Precedence Constraints), each of which may be of
independent interest.
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1 Introduction

Given a family of graphs F , we consider the following problem.

Weighted F-Deletion
Input : A graph G “ pV,Eq with vertex weights w : V Ñ R` Y t0u.
Question : Find a set S Ď V of minimum weight such that GzS P F .
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62:2 A Constant-Factor Approximation of Weighted Ptolemaic Deletion

Figure 1 A diamond, a gem, a house, a domino, a bull, and a dart.

This problem captures many classical combinatorial optimization problems including
Vertex Cover, Feedback Vertex Set, Odd Cycle Transversal, and the problems
corresponding to natural graph classes (e.g., planar graphs, chordal graphs, or graphs of
bounded treewidth) also have been actively studied. Most of these problems, including the
simplest Vertex Cover, are NP-hard, so polynomial-time exact algorithms are unlikely to
exist for them.

Parameterized algorithms and approximation algorithms have been two of the most
popular kinds of algorithms for NP-hard optimization problems, and F -Deletion has been
actively studied from both viewpoints. There is a large body of work in the theory of
parameterized complexity, where F -Deletion for many F ’s is shown to be in FPT or even
admits a polynomial kernel. The list of such F ’s includes chordal graphs [24, 17, 3], interval
graphs [8, 7, 4], distance-hereditary graphs [11, 19], bipartite graphs [26, 22], and graphs
with bounded treewidth [14, 21].

On the other hand, despite large interest, approximability for F -Deletion is not as well as
understood as parameterized complexity. To the best of our knowledge, for all F ’s admitting
parameterized algorithms in the above paragraph except Odd Cycle Transversal, the
existence of a constant-factor approximation algorithm is not ruled out under any complexity
hypothesis. When F can be characterized by a finite list of forbidden subgraphs or induced
subgraphs (not minors), the problem becomes a special case of Hypergraph Vertex Cover
with bounded hyperedge size, which admits a constant-factor approximation algorithm.
Besides them, the only classes of graphs that currently admit constant-factor approximation
algorithms are block graphs [1], 3-leaf power graphs [5], interval graphs [7], and graphs of
bounded treewidth [14, 15]. Weighted versions are sometimes harder than their unweighted
counterparts, and within graphs of bounded treewidth, the only two nontrivial classes whose
weighted version admits a constant-factor approximation algorithm are the set of forests
(Weighted Feedback Vertex Set) and the set of graphs excluding a diamond as a
minor [13]. See Figure 1.

When F is the set of perfect or weakly chordal graphs, it is known that a constant-factor
approximation algorithm is unlikely to exist [16]. Therefore, there has been recent interest
on identifying large subclasses of perfect graphs that admit constant-factor approximation
algorithms. Among the subclasses of perfect graphs, chordal graphs and distance-hereditary
graphs have drawn particular interest. Recall that chordal graphs are the graphs without
any induced Cě4

1, and distance-hereditary graphs are the graphs without any induced Cě5,
a gem, a house, or a domino. See Figure 1.

Chordal graphs are arguably the simplest graph class, apart from forests, which is
characterized by infinite forbidden induced subgraphs. Structural and algorithmic aspects
of chordal graphs have been extensively studied in the last decades, and it is considered
one of the basic graph classes whose properties are well understood and on which otherwise
NP-hard problems become tractable. As such, it is natural to ask how close a graph to a
chordal graph in terms of graph edit distance and there is a large body of literature pursuing
this topic [3, 2, 9, 17, 18, 24, 29].

1 Let Cěk be the set of cycles of length at least k.
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Fixed-parameter tractability and the existence of polynomial kernel of F-Deletion for
chordal graphs were one of important open questions in parameterized complexity [24, 17].
An affirmative answer to the latter in [17] brought the approximability for chordal graphs
to the fore as it uses an Opopt2 log opt lognq-factor approximation algorithm as a crucial
subroutine. It was soon improved to Opopt lognq-factor approximation [3, 20]. An important
step was taken by Agrawal et al. [2] who studied Weighted F -Deletion for chordal graphs,
distance-hereditary graphs, and graphs of bounded treewidth. They presented polylogpnq-
approximation algorithms for them, including Oplog2 nq-approximation for chordal graphs,
and left the existence of constant-factor approximation algorithms as an open question. For
now, even the existence of Oplognq-factor approximation is not known. This makes an
interesting contrast with F-Deletion for forests, that is, Feedback Vertex Set. An
algorithmic proof of Erdös-Pósa property2 for cycles immediately leads to an Oplognq-factor
approximation for Feedback Vertex Set while the known gap function of Erdös-Pósa
property for induced Cě4 is not low enough to achieve such an approximation factor [20].

Distance-hereditary graphs, in which any induced subgraph preserves the distances among
all vertex pairs, form another important subclass of perfect graphs. It is supposedly the
simplest dense graph class captured by a graph width parameter; distance-hereditary graphs
are precisely the graphs of rankwidth 1 [25]. F-Deletion for distance-hereditary graphs
has gained good attention for fixed-parameter tractability and approximability [2, 19, 11]
particularly due to the recent surge of interest in rankwidth. An Oplog3 nq-approximation is
known [2].

Constant-factor approximation algorithms were designed for smaller subclasses of chordal
and distance-hereditary graphs. They include block graphs (excluding Cě4 and a diamond) [1]
and 3-leaf power graphs (excluding Cě4, a bull, a dart, and a gem) [6]. See Figure 1. Recently,
a p2` εq-factor approximation for split graphs was announced [23].

In this paper, we take a step towards the (affirmative) answer of the question of [2] by
presenting a constant-factor approximation algorithm for the intersection of chordal and
distance-hereditary graphs, known as ptolemaic graphs.3 They are precisely graphs without
any induced Cě4 or a gem, so it is easy to see that they form a superclass of both 3-leaf
power and block graphs.

Weighted Ptolemaic Deletion
Input : A graph G “ pV,Eq with vertex weights w : V Ñ R` Y t0u.
Question : Find a set S Ď V of minimum weight such that GzS is ptolemaic.

I Theorem 1.1. Weighted Ptolemaic Deletion admits a polynomial-time constant-
factor approximation algorithm.

1.1 Techniques

Our proof presents new properties and algorithmic results on inter-clique digraphs as well
as an approximation algorithm for a variant of Feedback Vertex Set that exploits this
relationship (named Feedback Vertex Set with Precedence Constraints), each of
which may be of independent interest.

2 Any graph has either a vertex-disjoint packing of k` 1 cycles, or a feedback vertex set of size Opk log kq.
3 The name ptolemaic comes from the fact that the shortest path distance satisfies Ptolemy’s inequality:

For every four vertices u, v, w, x, the inequality dpu, vqdpw, xq ` dpu, xqdpv, wq ě dpu,wqdpv, xq holds.

ISAAC 2020
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1.1.1 Inter-clique Digraphs
The starting point of our proof is to examine what we call an inter-clique digraph of G. Let
CpGq be the collection of all non-empty intersections of maximal cliques in G, see Section 2
for the formal definition. An inter-clique digraph ÝÑT pGq of G, or simply ÝÑT , is a digraph
isomorphic to the Hasse diagram of pCpGq,Ďq. A neat characterization of ptolemaic graphs
was presented by Uehara and Uno [28]: a graph G is ptolemaic if and only if its inter-clique
digraph is a forest. This immediately suggests the use of an Op1q-approximation algorithm
for Feedback Vertex Set on the inter-clique digraph. Indeed, the black-box application
of an Op1q-approximation algorithm for Feedback Vertex Set yields Op1q-approximation
algorithms for subclasses of ptolemaic graphs including block graphs [1] and 3-leaf power
graphs [5].

However, to leverage this characterization for Ptolemaic Deletion, two issues need to
be addressed. First, a polynomial-time algorithm to construct an inter-clique digraph of the
input graph G is needed, while the size of an inter-clique digraph can be exponentially large
for general graphs. Second, even with the inter-clique digraph of polynomial size at hand, the
application of Feedback Vertex Set remains nontrivial since (1) after deletion of vertices,
the structure of the inter-clique digraph may drastically change, and (2) feedback vertex
sets for the inter-clique digraph must satisfy additional constraints that a deletion of a node
C P CpGq must imply the deletion of all nodes reachable from it (because they are subsets
of C in G). Addressing each of these issues boils down to understanding the properties of
an inter-clique digraph and elaborating the relationship between the input graph and its
inter-clique digraph.

For general graphs, their inter-clique digraphs are acyclic digraphs in which each node
can be precisely represented by all sources that have a directed path to the node. It turns out
that eliminating from G all induced subgraphs isomorphic to C4 and gem is key to tackling
the aforementioned issues. We show that any hole of G indicates the existence of a cycle
in UndpÝÑT q, and vice versa when G is (C4, gem)-free (Lemmas 3.7-3.8). This in turn lets us
to identify a variant of Weighted Feedback Vertex Set, termed Feedback Vertex
Set with Precedence Constraints and defined in Section 1.1.2, which is essentially
equivalent to Ptolemaic Deletion on G when it takes the inter-clique digraph of G as an
input; see Proposition 3.11. Moreover, each subdigraph of ÝÑT induced by the ancestors of
any node v of ÝÑT is a directed tree rooted at v, see Lemma 3.5. (Similar statement holds for
the descendants of v.) This property is used importantly in analyzing our approximation
for Feedback Vertex Set with Precedence Constraints. As Feedback Vertex
Set with Precedence Constraints takes an inter-clique digraph as an input, we need
to construct it in polynomial time. This is prohibitively time-consuming for general graphs.
We show that the construction becomes efficient when G is both C4 and gem-free, see
Proposition 3.9.

1.1.2 Feedback Vertex Set with Precedence Constraints
Given acyclic directed graphs ÝÑG and a vertex v, let ancpvq and despvq be the set of ancestors
and descendants respectively, and let UndpÝÑGq denote the underlying undirected graph of ÝÑG .
It remains to design a constant-factor approximation algorithm for the following problem:

Feedback Vertex Set with Precedence Constraints (FVSP)
Input : An acyclic directed graph ÝÑG “ pV,Aq, where each vertex v has weight ωv P
R` Y t0u. For each v P V , the subgraph induced by ancpvq is an in-tree rooted at v.
Question : Delete a minimum-weight vertex set S Ď V such that (1) v P S implies
despvq Ď S, (2) UndpÝÑGzSq is a forest.
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It is a variant of Undirected Feedback Vertex Set (FVS) on UndpÝÑGq, with the
additional precedence constraint on S captured by directions of arcs in A. This precedence
constraint makes an algorithm for FVSP harder to analyze than FVS because a vertex v
can be deleted “indirectly”; even when v does not participate in any cycle, deletion of any
ancestor of v forces to v to be deleted, so the analysis for v needs to keep track of every
vertex in ancpvq.

We adapt a recent constant-factor approximation algorithm for Subset Feedback
Vertex Set by Chekuri and Madan [10] for FVSP. The linear programming (LP) relaxation
variables are tzvuvPV , where zv is supposed to indicate whether v is deleted or not, as well as
txueuePA,uPe, where xue is supposed to indicate that in the resulting forest UndpÝÑGzSq rooted
at arbitrary vertices, whether e is the edge connecting u and its parent.

Minimize
ÿ

vPV

zvωv

Subject to zv ` xue ` xve “ 1 for each e “ pu, vq P A, zv `
ÿ

eQv

xve ď 1 for each v P V,

zu ď zv for each e “ pu, vq P A, 0 ď x, z ď 1.

Compared to the LP in [10], we added the zu ď zv for all pu, vq P A to encode the
fact that u’s deletion implies v’s deletion. This LP is not technically a relaxation, but one
can easily observe that in any integral solution, the graph induced by tv : zv “ 0u has at
most one cycle, which can be easily handled later.4 The rounding algorithm proceeds as
follows. Fix three parameters ε « 0.029, α « 0.514, β « 0.588. For notational convenience,
let x̄ue :“ 1´ xue. Also, for each e “ pu, vq P A, let ye “ zv ´ zu.

(i) Delete all vertex v with zv ě ε.
(ii) Sample θ uniformly at random from the interval rα, βs.
(iii) For each e “ pu, vq P A, if θ P rx̄ve ´ ye, x̄ves, delete despvq.

Slightly modifying the analysis of [10], one can show that after rounding, there is indeed
at most one cycle remained in each connected component. In terms of the total weight of
deleted vertices, it is easy to bound the total weight of deleted vertices in Step (i) and the
final cleanup step for one cycle. The main technical lemma of the analysis bounds the weight
of vertices deleted in Step (iii) by at most OpLPq.

I Lemma 1.2. For each v P V , Prrv is deleted in Step (iii)s ď Opzvq.

Recall that ancpvq induces the directed tree ÝÑT rooted on v where all arcs are directed
towards v, and deletion of any vertex in ÝÑT forces the deletion of v. The lemma is proved by
showing that while ancpvq can be large, all vertices that can be possibly deleted during the
rounding algorithm can be covered by at most two directed paths; it is proved by examining
behaviors of the rounding algorithm on directed trees, followed by an application of Dilworth’s
theorem. The new LP constraint zu ď zv for all pu, vq P A ensures that the sum of the
deletion probabilities along any path is at most Opzvq, so the total probability that v is
deleted can be bounded by Opzvq.

4 [10] added an additional cycle covering constraint in the LP. We find it conceptually easier to deal with
the last remaining cycle separately at the end.

ISAAC 2020
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2 Preliminaries

For a mapping f : X Ñ Y between two finite sets and a set A Ď X, we denote
Ť

xPAtfpxqu

by fpAq. For sets X and Y , we say that X and Y are overlapping if none of XzY , Y zX,
and X X Y is empty. For a family F of sets, F is laminar if F has no overlapping two
elements. In an undirected graph G, we say that two vertices u, v are true twins, or simply
twins, if NGrus “ NGrvs. Note that true twins must be adjacent. Since the true twin
relation is an equivalence relation, the true twin classes of V is uniquely defined. For graphs
G1, . . . , Gm, we say that G is pG1, . . . , Gmq-free if G has no induced subgraph isomorphic to
one of G1, . . . , Gm.

For a directed graph ÝÑG , we denote by UndpÝÑGq the underlying graph of ÝÑG . An ancestor
of v in ÝÑG is a vertex which is reachable to v in ÝÑG and a descendant of v in ÝÑG is a vertex
which is reachable from v in ÝÑG . Two vertices u and v are incomparable in ÝÑG if neither one is
an ancestor of the other. A source of ÝÑG is a vertex of ÝÑG without an in-coming arc and a sink
of ÝÑG is a vertex without an out-going arc. We denote by ancpÝÑG, vq the set of ancestors of v
in ÝÑG , by despÝÑG, vq the set of descendants of v in ÝÑG , and by srcpÝÑG, vq be the set of sources
of ÝÑG which are ancestors of v. When ÝÑG is clear from the context, we may simply write
ancpvq, despvq, and srcpvq, respectively. For an undirected cycle H in ÝÑH , we term a maximal
directed subpath of G a segment of the cycle H. The segment length of a cycle H is defined
as the number of segments of H. A segment decomposition of a cycle H is a cyclic sequence
of all segments of H such that any two consecutive segments share a vertex of ÝÑG . We will
write a segment decomposition of H as H “ x0, ~P1, x1, ~P2, x2, ¨ ¨ ¨ , x2`´1, ~P2`, x2`p“ x0q, in
which for every odd i, ~Pi is a forward-oriented path from xi´1 to xi and for every even i, Pi
is a backward-oriented path from xi´1 to xi.

2.1 Clique and inter-clique digraph

We denote the set of maximal cliques in a graph G by MpGq. We define the set CpGq all
non-empty intersections among maximal cliques, that is,

CpGq :“
ď

IĎMpGq

#

C : C “
č

MPI
M, C ‰ H

+

.

We may write MpGq and CpGq as M and C respectively, if it is clear from the context.
Cleary, CpGq defines a partially ordered set under the set containment relation Ď. A

Hasse diagram ÝÑ
H of a poset pS,ďq represents each element of S as a vertex and adds an arc

from y to x if and only if y ą x and there is no element z P S with y ą z ą x. We say that a
digraph ÝÑT is an inter-clique digraph of G if ÝÑT isomorphic to the Hasse diagram of the poset
pCpGq,Ďq. For an inter-clique digraph ÝÑT of G or the Hasse diagram ÝÑ

H , we call V pÝÑT q or
V p
ÝÑ
H q nodes instead of vertices in order to distinguish them from the vertices of G.
For a vertex set X Ď V pGq, we define srcpXq as the set of all maximal cliques containing

X. For v P V pGq, we may write srcpvq instead of srcptvuq. For a collection of sets X , srcpX q
is defined as the collection of sets (without duplicates) srcpX q “ tsrcpXq : X P X u. For the
Hasse diagram ÝÑ

H of pCpGq,Ďq and a clique C P CpGq, we have srcpCq “ srcpÝÑH,Cq, and this
justifies the reuse of the notation src for a vertex set, while srcpÝÑG, vq is already defined to
delineate the set of vertices with no in-coming arcs from which there is a directed path to v
in ÝÑG .
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2.2 Ptolemaic graphs
A graph is ptolemaic if for every four vertices a, b, c, and d in the same connected component,
G satisfies the following inequality:

distGpa, bq ¨ distGpc, dq ď distGpa, cq ¨ distGpb, dq ` distGpa, dq ¨ distGpb, cq.

Note that they can be equivalently defined as the set of (Cě4, gem)-free graphs. The following
theorem proves strong relationship between ptolemaic graphs and its inter-clique digraph.

I Theorem 2.1 (Uehara and Uno [28]). A graph G is ptolemaic if and only if UndpÝÑH q is a
forest, where ÝÑH is the Hasse diagram of pCpGq,Ďq.

3 Structures of Inter-clique digraphs

3.1 Basic properties of inter-clique digraphs
In this subsection, we investigate the properties of the Hasse diagram ÝÑH of the poset pCpGq,Ďq
for a graph G “ pV,Eq. All the results presented in this subsection assume no restriction on
the input graph G.

We first observe that each vertex v of V can be uniquely associated to a clique C of CpGq
with the property srcpvq “ srcpCq.

I Lemma 3.1. For every vertex v of G, there is a unique minimal element Cpvq P CpGq
containing v in the poset pCpGq,Ďq and it holds that Cpvq “

Ş

MPsrcpvqM .

We call the clique as depicted in Lemma 3.1 the canonical clique of v, namely the canonical
clique is defined as Cpvq “

Ş

MPsrcpvqM . Note that srcpvq “ srcpCpvqq.
In the following three lemmas, we investigate properties of descendants of nodes in ÝÑH . In

this extended abstract, the proofs of some lemmas will be deferred to the full version.

I Lemma 3.2. If a node C has immediate descendants C1, . . . , Cp with p ě 2 in ÝÑH , then
we have srcpCq “ srcpCiq X srcpCjq for every 1 ď i ă j ď p.

I Lemma 3.3. Let Z be a true twin class of G contained in a clique C P CpGq. Then the
following are equivalent.
(i) srcpCq Ĺ srcpZq.
(ii) There exists a proper descendant C 1 of C in ÝÑH such that Z Ď C 1.

I Lemma 3.4. Let C1 and C2 be two cliques of CpGq. Then ÝÑH contains at most one greatest
common descendant of C1 and C2.

3.2 Inter-clique digraphs of (C4, gem)-free graphs
Here, we examine how the extra assumption that G is (C4, gem)-free brings about a new
structure to emerge in the corresponding Hasse diagram ÝÑ

H .

I Lemma 3.5. Let G “ pV,Eq be a (C4, gem)-free graph and M be a maximal clique of G.
Then CM :“ tC P CpGq : C ĎMu is laminar and ÝÑH rCM s is an out-tree rooted at M .

The following two lemmas will be crucially used in the proof of Proposition 3.11 to
investigate the structure of minimal ptolemaic deletion set.

I Lemma 3.6. Let G “ pV,Eq be a (C4, gem)-free graph. If G has a hole H and v P V pHq,
then GrV pHq Y tv1uztvus contains a hole for every v1 P Cpvq.

ISAAC 2020
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I Lemma 3.7. Let G “ pV,Eq be a (C4, gem)-free graph. Then any undirected cycle H of
ÝÑ
H has segment length at least 8.

Sketch of the proof. Let H “ C0, ~P1, C1, ~P2, C2, ¨ ¨ ¨ , C2`´1, ~P2`, C2`p“ C0q be a segment
decomposition of H. We skip to prove the statement for ` ď 2. Suppose that ` “ 3, and note
that C2i is a common ancestor of C2i´1 and C2i`1 for every i P r3s. For each i P r3s, choose
an arbitrary clique C 1i which is a sink in ÝÑH and a descendant of C2i´1. Then it is easy to see
that C 1i is a descendant of C2i´1 only for each i. On the other hand, the cliques C2i´1 and
C2i`1 are completely adjacent for every i P r3s, which implies that C 11 Y C 12 Y C 13 is a clique
because C 1i Ď C2i´1 for each i P r3s. Consider a maximal clique M containing C 11 Y C 12 Y C 13
and note that all the nodes of H are descendants of M in ÝÑH . This contradicts Lemma 3.5,
which asserts that ÝÑH rCM s is an out-tree rooted at M , where CM :“ tC P CpGq : C Ď Mu.
This completes the proof of claim. J

From the laminar structure of ÝÑH rCM s, we can observe that any pair of nodes are
incomparable in ÝÑH if they do not belong to the same segment.

I Lemma 3.8. Let H be a cycle of ÝÑH with the shortest segment length with a segment
decomposition H “ C0, ~P1, C1, ~P2, C2, ¨ ¨ ¨ , C2`´1, ~P2`, C2`p“ C0q. Then for any two nodes
C,C 1 of H, C and C 1 are incomparable unless they belong to the same segment of H. In
addition, for i, j P r`s with |i´ j| ě 2, there is no common ancestor of C2i´1 and C2j´1 in ÝÑH .

3.3 Constructing inter-clique digraphs for (C4, gem)-free graphs
As an arbitrary graph can have prohibitively many maximal cliques, we cannot expect a
polynomial-time algorithm to construct inter-clique digraphs for general graphs. Instead,
we present a polynomial-time algorithm for (C4, gem)-free graphs. Let CM :“ tC P C : M P

srcpCqu for each M P M.

I Proposition 3.9. There is a polynomial-time algorithm which, given a (C4, gem)-free
graph G, constructs the Hasse diagram ÝÑ

H of pCpGq,Ďq.

Sketch of the proof. Let Z be the partition of V into true twin classes and n :“ |V pGq|.
Since G has no C4 as an induced subgraph, it has at most n2 maximal cliques and these
cliques can be enumerated with polynomial delay [12, 27]. Thus, all of M, Z, and srcpZq
can be computed in polynomial time. Observe that for certain cliques C P CpGq, srcpCq is
already contained in srcpZq. By Lemma 3.3, we can easily show that if C P CpGq is a sink or
has a unique immediate descendant in ÝÑH , then srcpCq P srcpZq. Let RX,0 :“ srcpZq. For
i ě 1, we define RX,i recursively as RX,i :“ RX,i´1 Y tR X R1 : R,R1 P RX,i´1u. Let the
height of a node v of an acyclic digraph ÝÑG be the length of a longest directed path from v to
a sink in ÝÑG . The height of ÝÑG is defined as the maximum over the heights of all nodes of ÝÑG .

B Claim 3.10. RX,s “ srcpCpGqq, where s is the height of ÝÑH .

Proof. It suffices to prove the following for each i ě 0: for any node C at height i in ÝÑH , we
have srcpCq P RX,i. By the previous paragraph, we only need to consider a node C such that
C has height i ą 0 and (at least) two immediate descendants C1, C2 in ÝÑH . By induction
hypothesis and because of that the height of the immediate descendants of C is at most
i ´ 1, we have srcpC1q, srcpC2q P RX,i´1. Therefore, we have srcpC1q X srcpC2q P RX,i by
definition. Then by Lemma 3.2, it holds that srcpCq P RX,i as claimed. C

By Lemma 3.5, we can show that for each maximal clique M , the height of ÝÑH rCM s is at
most |Z|, and therefore the height of ÝÑH is at most |Z|, that is, at most n. As we compute
RX,i`1 from RX,i repeatedly, we need a guarantee that the sizes of the computed sets RX,i
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do not grow exponentially. For each maximal cliqueM , by the laminarity of CM , we can show
that |CM | ď 2n, and therefore |CpGq| ď 2n3. Then we can compute each RX,i in polynomial
time and srcpCpGqq can be computed in polynomial time by Claim 3.10. As we compute
RX,i, the containment relations amongst the elements of RX,i can be determined as well.
Then ÝÑH obviously comes from the Hasse diagram of psrcpCpGqq,Ďq. J

3.4 Reduction from Ptolemaic Deletion to Feedback Vertex Set with
Precedence Constraints

Let G “ pV,Eq be a (C4, gem)-free graph with weight ωo : V Ñ R` Y t0u,
ÝÑ
H be the Hasse

diagram of pCpGq,Ďq, and ÝÑT “ pN,Aq be an inter-clique digraph isomorphic to ÝÑH with an
arc-preserving mapping γ : CpGq Ñ N . Notice that the canonical clique can be construed as
a function which maps each vertex v of G to the clique C P CpGq such that srcpvq “ srcpCq.
We define a mapping C´1 : CpGq Ñ 2V so that it maps each clique C of CpGq to its preimage
under the canonical clique as a function from V to CpGq: if there is no vertex v P V with
Cpvq “ C, then the preimage of C under the canonical clique is H. We define φ : V Ñ N

and φ´1 : N Ñ 2V such that φpvq “ γpCpvqq and φ´1pxq “ C´1pγ´1pxqq. Now the node
weight function ω : N Ñ R` Y t0u is defined as ωpxq :“

ř

vPφ´1pxq ω
opvq.

For a set of nodes R of ÝÑT , the closure of R, denoted as R˚, is a minimal superset of R
for which the following holds:
(a) all descendants of R of weight zero are contained in R˚,
(b) if all immediate descendants of a node v are in R˚ and φ´1pvq “ H, then v P R˚.

I Proposition 3.11. Let G “ pV,Eq be a (C4, gem)-free graph with vertex weight ωo : V Ñ R.
Let ÝÑT “ pN,Aq be an inter-clique digraph of G with an arc-preserving mapping γ : CpGq Ñ N

and with node weight ω : C Ñ R`Yt0u, such that ωpxq :“
ř

vPφ´1pxq ω
opvq. Then the following

two statements hold.
1. For any minimal ptolemaic deletion set S Ď V , (i) φpSq˚ is downward-closed in ÝÑT , (ii)

UndpÝÑT zφpSq˚q is a forest, and (iii)
ř

xPφpSq˚ ωpxq “
ř

vPS ω
opvq

2. For any R Ď N such that (i) R is downward-closed in ÝÑT , and (ii) UndpÝÑT zRq is a forest,
φ´1pRq is a ptolemaic deletion set of G of weight

ř

xPR ωpxq.

Sketch of the Proof. We first prove (1)-(i). We first observe that if S is a minimal deletion
set, S contains the canonical clique Cpvq of v whenever S contains v P V .

B Claim 3.12. If S Ď V is a minimal ptolematic deletion set, then Cpvq Ď S whenever v P S.
Consequently, φ´1pxq Ď S for every x P φpSq.

Proof. Suppose Cpvq Ę S for some v P S. Since G is (C4, gem)-free, GzS is ptolemaic if and
only if GzS is chordal. Since S is minimal, GzpSztvuq has a hole H intersecting v. By the
assumption, there exists v1 P CpvqzS. However, Lemma 3.6 implies that GrpV pHqztvuqYtv1us
contains a hole and thus GzS contains a hole, a contradiction. The second statement is
immediate from the first statement. C

Consider a vertex v P S of G and an arbitrary descendant x of φpvq in ÝÑT . We claim
that x P φpSq˚. If φ´1pxq “ H, then by definition ωpxq “

ř

vPH ω
opvq “ 0 and thus

the claim trivially holds by definition of φpSq˚. Otherwise, let w P φ´1pxq and we have
φ´1pxq Ď γ´1pxq Ď γ´1pφpvqq “ Cpvq Ď S. Thus, w P φ´1pxq Ď S which implies x P φpSq,
and φpSq˚ is downward-closed in ÝÑT .
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To see that (1)-(ii), let H be a cycle of ÝÑT zφpSq˚ with the least segment length and let
x0, ~P1, x1, ~P2, x2, ¨ ¨ ¨ , x2`´1, ~P2`, x2`p“ x0q be a segment decomposition of H. Consider the
cliques γ´1px2i´1qzS of G for i P r`s. We can show by (1)-(i) and the definition of the closure
of a node set, that for every i P r`s, there exists a vertex vi P γ´1px2i´1qzS of G.

We observe that all vi’s are distinct. Suppose that vi “ vj for i ‰ j, and without loss of
generality we may assume that 1 ď i ă j ď `. Then the canonical clique Cpviq is a common
descendant of γ´1px2i´1q and γ´1px2j´1q, or equivalently, φpviq is a common descendant of
x2i´1 and x2j´1. Let x˚ be the greatest common descendant of x2i´1 and x2j´1 in ÝÑT , which
is unique by Lemma 3.4. Let P and Q be the directed px2i´1, x

˚q-path and the directed
px2j´1, x

˚q-path. Due to Lemma 3.8, both directed paths are disjoint from H except from the
two starting vertex x2i´1 and x2j´1. Then we can find a cycle from H with a shorter segment
length by replacing a subpath of H between x2i´1 and x2j´1 with P, x˚, Q, a contradiction.

Furthermore, vi and vi`1 are adjacent because the cliques γ´1px2i´1q and γ´1px2pi`1q´1q

are complete to each other in G due to the existence of common ancestor x2i in
ÝÑ
T . That is,

J “ v1, . . . , v`, v1 forms a cycle, and its length is at least four by Lemma 3.7. Furthermore,
Lemma 3.8 implies that J is a hole, which altogether avoids S because of our choice of vi as
a vertex of γ´1px2i´1qzS. This contradicts the assumption that S is a ptolemaic deletion
set, which proves (1)-(ii). We skip to prove (1)-(iii).

To see (2), suppose that for a node set R of ÝÑT (i) R is downward-closed in ÝÑT , and
(ii) UndpÝÑT zRq is a forest while

Ť

xPR φ
´1pxq is not a ptolemaic deletion set of G. Let

H “ v1, . . . , vs, v1 be a hole of length s ě 5 in Gz
Ť

xPR φ
´1pxq. Consider the canonical

cliques Cpv1q, . . . , Cpvsq and their corresponding nodes x1, . . . , xs in ÝÑT . The adjacency of vi
and vi`1 ensures that xi and xi`1 has a common ancestor for all i P rss, where s ` 1 “ 1.
Furthermore, none of the nodes from these common ancestors is contained in R since otherwise,
some xi must belong to the downward-closed set R. This, however, means that x1, . . . , xs
are contained in a closed walk of ÝÑT zR, contradicting (ii). We conclude that

Ť

xPR φ
´1pxq is

a ptolemaic deletion set of G and its weight is easily computed as suggested. J

I Theorem 3.13. There is a polynomial-time algorithm which, given a graph G “ pV,Eq

with vertex-weight ωo : V Ñ R` Y t0u, returns a ptolemaic deletion set S Ď V of weight at
most 68 ¨ OPTpto, where OPTpto is the minimum weight of a ptolematic deletion set of G.

Sketch of the proof. We skip the trivial runtime analysis. In order to turn the input graph
into a (C4, gem)-free graph, we can design a simple linear programming (LP) to hit all C4
and gem, and let X be the set of vertices whose LP value is at least 1{5. Since every copy of
C4 (resp. gem) must have a vertex with LP value at least 1{4 (resp. 1{5), G1 :“ GzX is (C4,
gem)-free. Furthermore, the total weight of X is at most 5 times the LP value, which is at
most 5OPTpto.

Each vertex of G1 inherits its weight ωov in G. We construct an inter-clique digraph
ÝÑ
T “ pN,Aq of G1 with a node-weight ω as in Proposition 3.11. The node set ancpxq forms
an in-tree rooted at x due to Lemma 3.5, which means that pÝÑT , ωq is a legitimate instance
to Feedback Vertex Set with Precedence Constraints. Then by Theorem 4.1,
we get a solution R P N such that R is downward-closed in ÝÑT , UndpÝÑT zRq is a forest, and
ωpRq ď 63OPTfvsp, where OPTfvsp is the minimum weight of a solution to Feedback
Vertex Set with Precedence Constraints. Since OPTfvsp ď OPTpto by (1) of
Proposiotion 3.11,

Ť

xPR φ
´1pxq YX is a desired ptolemaic deletion set of G. J

4 Constant-factor approximation algorithm

In this section, we consider Feedback Vertex Set with Precedence Constraints
introduced in Section 1.1.2.
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Feedback Vertex Set with Precedence Constraints
Input : An acyclic directed graph ÝÑG “ pV,Aq, where each vertex v has weight ωv P
R` Y t0u. For each v P V , the subgraph induced by ancpvq is an in-tree rooted at v.
Question : Delete a minimum-weight vertex set S Ď V such that (1) v P S implies
despvq Ď S, (2) UndpÝÑGzSq is a forest.

It is a variant of Undirected Feedback Vertex Set on UndpÝÑGq, with the additional
precedence constraint on S is captured by the direction of arcs in A. The main result of this
section is an Op1q-approximation algorithm for this problem.

I Theorem 4.1. There is a polynomial-time 63-approximation algorithm for Feedback
Vertex Set with Precedence Constraints.

We consider the following linear programming (LP) relaxation. The relaxation variables
are tzvuvPV , where zv is supposed to indicate whether v is deleted or not, as well as
txueuePA,uPe, where xue is supposed to indicate that in the resulting forest UndpÝÑGzSq rooted
at arbitrary vertices, whether e is the edge connecting u and its parent.

Minimize
ÿ

vPV

ωvzv

Subject to zv ` xue ` xve “ 1 @e “ pu, vq P A (1)

zv `
ÿ

eQv

xve ď 1 @v P V (2)

zu ď zv @e “ pu, vq P A

0 ď x, z ď 1.

Let OPT be the weight of the optimal solution, and LP ď OPT be the optimal value
of the above LP. After solving the LP, we perform the following rounding algorithm. It is
parameterized by three parameters ε, α, β P p0, 1q that satisfy

2α ě 1` ε, (3)
3p1´ βq ě 1` 8ε. (4)

(The final choice will be ε « 0.029, α « 0.514, β « 0.588.) For notational convenience, let
x̄ue :“ 1´ xue. Also, for each e “ pu, vq P A, let ye “ zv ´ zu. Each vertex v P V maintains
a set Lv Ď A. Initially, all Lv’s are empty.
(i) Delete all vertex v with zv ě ε.
(ii) Sample θ uniformly at random from the interval rα, βs.
(iii) For each e “ pu, vq P A,

If θ P rx̄ve ´ ye, x̄ves, delete despvq. Say v is directly deleted by e.
Otherwise,

If θ ą x̄ve, then add e to Lv and say v points to e.
If θ ą x̄ue, then add e to Lu and say u points to e.

Though the above rounding algorithm is stated as a randomized algorithm, it is easy to
make it deterministic, because there are at most Opmq subintervals of rα, βs such that two θ
values from the same interval behave exactly the same in the rounding algorithm.

We first analyze the total weight of deleted vertices. In Step (i), we delete all vertices
whose LP value zv ě ε, so the total weight of deleted vertices in Step (i) is at most LP{ε. The
following lemma bounds the weight of vertices deleted in Step (iii) by at most 2LP{pβ ´ αq.
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I Lemma 4.2. For each v P V , Prrv is deleted in Step (iii)s ď 2zv

β´α .

Proof. Due to Step (i), we can assume that every vertex v satisfies zv ă ε and each arc e
satisfies ye ă ε.

Fix a vertex v P V . Let ÝÑT “ pV p
ÝÑ
T q, Ap

ÝÑ
T qq be the subgraph of ÝÑG induced ancpvq. By

the definition of Feedback Vertex Set with Precedence Constraints, ÝÑT is an
in-tree rooted at v. We first prove the following claim that if we consider any directed path
pu0, . . . , ukq of

ÝÑ
T and the value of xui,pui´1,uiq that ui gives to its incoming edge pui´1, uiq,

the value at the end pi “ kq is almost as large as the value at the beginning pi “ 1q.

B Claim 4.3. Let pu0, . . . , ukq be a directed path in ÝÑT and ei “ pui´1, uiq. Then for any
i P rks, xuiei

ě xu1e1 ´ pzui
´ zu1q ě xu1e1 ´ ε.

Proof. The proof proceeds by induction. The base case i “ 1 is obviously true. When the
claim holds for i´ 1, the constraint (2) of the LP (for ui´1) implies

xui´1ei´1 ` zui´1 ` xui´1ei ď 1,

and the constraint (1) of the LP implies (for ei)

zui
` xui´1ei

` xuiei
“ 1.

Subtracting the first inequality from the second equality yields

xuiei
ě xui´1ei´1 ´ pzui

´ zui´1q,

which, by the induction hypothesis, is at least

xu1e1 ´ pzui´1 ´ zu1q ´ pzui ´ zui´1q “ xu1e1 ´ pzui ´ zu1q. C

For e “ pw, uq P ApÝÑT q, call e a target if Prru is directly deleted by es ą 0, which implies
x̄ue ´ ye ă β ñ xue ą 1 ´ β ´ ye ą 1 ´ β ´ ε. For two arcs e, f P ApÝÑT q, say they are
incomparable if there is no directed path from the tail of one arc to tail of the other in ÝÑT
(though they may share the head.)

B Claim 4.4. There are no three pairwise incomparable targets.

Proof. Assume towards contradiction that there exist three pairwise incomparable targets
e1 “ pw1, u1q, e2 “ pw2, u2q, e3 “ pw3, u3q. It implies that xuiei

ą 1 ´ β ´ ε for each i. By
Claim 4.3, for any i and any arc e1 “ pw1, u1q P ApÝÑT q that has a directed path from ei, we
have

xu1e1 ą xuiei ´ ε ą 1´ β ´ 2ε. (5)

For each i P r3s, consider the path Pi from wi to v, and let gi be the last arc of Pi that does
not appear in any other Pj ’s. We consider the following two cases depending on how they
intersect, and show both cannot happen.

First, suppose all g1, g2, g3 meet at the same vertex w; in other words, gi “ pti, wq for some
ti’s. Then by (5), xwgi ą 1´β´2ε for each i. With (4), it implies

ř

i xwgi ą 3p1´βq´6ε ě 1,
which violates the constraint (2) of the LP.

Finally, without loss of generality, suppose g1 and g2 meet at u, which is not incident on
g3; in other words, g1 “ pt1, uq, g2 “ pt2, uq, g3 “ pt3, wq for some ti’s, where w is an ancestor
of u in ÝÑT and is the first vertex where all P1, P2, P3 intersect. Let ÝÑT be the parent of u in
the tree ÝÑT (ÝÑT may be equal to w), and g “ pu, tq. Then (5), implies xugi ą 1´ β ´ 2ε for
i P t1, 2u, which, combined with the LP constraint (2) for u, yields

xug ă 1´ 2p1´ β ´ 2εq “ 2β ´ 1` 4ε.
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𝑢1 𝑢2 𝑢3
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𝑢

𝑤

𝑒1 𝑒2 𝑒3

𝑔1 𝑔2

ℎ

𝑔3

𝑤1 𝑤2 𝑤3
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𝑤

𝑒1 𝑒2 𝑒3

𝑔1 𝑔2
𝑔3

𝑔 𝑡

Figure 2 Two cases for g1, g2, g3. The left figure shows the case when they all meet at the same
vertex w. The right figure shows when g1 and g2 meet first at u and meet g3 with w later. Real
lines indicate an individual arc and dotted lines indicate a directed path.

Together again with the LP constraint (1) for g, we have

xtg ą 1´ xug ´ zt ą 2´ 2β ´ 5ε.

Let h be the last arc of the path from u to w. Using Claim 4.3 again, we conclude that
xwh ą 2´ 2β ´ 6ε. Combined with xwg3 ą 1´ β ´ 2ε and h and g3 are different, it implies
xwh ` xwg3 ą 3´ 3β ´ 8ε ě 1 by (4), which contradicts the constraint (2) of the LP for w.

C

Now we compute the probability that v is deleted by Step (iii) of the rounding algorithm.
It happens whether v itself is directly deleted or some vertex u P ancpvq “ V p

ÝÑ
T q is directly

deleted by a target e “ pw, uq. By Claim 4.4, no three targets are pairwise comparable, and
by Dilworth’s Theorem, all targets are contained in two directed paths P1, P2 in ÝÑT . By the
choice of the rounding algorithm, for one path P1 “ pu0, . . . , uk “ vq, for each i P rks,

Prrui is directly deleted by pui´1, uiqs ď
ypui´1,uiq

β ´ α
“
zui
´ zui´1

β ´ α
.

Summing over all i’s yields

k
ÿ

i“1

zui ´ zui´1

β ´ α
“
zuk

´ zu0

β ´ α
ď

zv
β ´ α

.

We can apply the same analysis to P2 and use the union bound. J

We now examine structure of the remaining graph after the rounding procedure. We first
show that in the original graph, each arc, if not deleted, is pointed to by at least one of its
endpoints.

B Claim 4.5. For each e “ pu, vq P A, if neither u nor v was deleted during the rounding, e
is pointed to by at least one of them.

Proof. Since v is not deleted, it means zv ă ε, which, by (1), implies that xue`xve ą 1´εô
x̄ue ` x̄ve ă 1` ε. Since θ ě α, by (3), either θ ě x̄ue or θ ě x̄ue. C

The following lemma shows that after the rounding, each connected component (in the
undirected sense) has at most one cycle.
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I Lemma 4.6. Let S be the set of vertices deleted during the rounding algorithm. In each
connected component of UndpÝÑGzSq, there is at most one (undirected) cycle.

Proof. The proof proceeds by examining how vertices can possibly point to adjacent arcs.
First, the following claim shows that one vertex cannot point to more than two arcs.

B Claim 4.7. Every vertex v P V points to at most two arcs.

Proof. Assume towards contradiction that v points to three arcs e, f, and g. It implies
x̄ve, x̄vf , x̄vg are all strictly less than θ ď β, which implies that xve ` xvf ` xvg ą 3p1´ βq.
Since 3p1´ βq ě 1 by (4), it contradicts the constraint (2) of the LP relaxation. C

Moreover, the following claim constrains the way arcs in a cycle are pointed to by its vertices.

B Claim 4.8. For every arc e P A, if it is pointed to by exactly one of its endpoint, say v,
then it is the only arc that v points to.

Proof. We first show θ ă xve ` zv. If e “ pu, vq, the assumption that u does not point to e
implies

θ ă x̄ue “ 1´ xue “ 1´ p1´ xve ´ zvq “ xve ` zv,

where the second equality follows from (1). Even when e “ pv, uq, the assumption that e is
not deleted and u does not point to e implies

θ ă x̄ue ´ ye “ x̄ue ´ pzu ´ zvq “ 1´ xue ´ zu ` zv “ xve ` zv,

where the last equality follows from the constraint (1) of the LP relaxation. Therefore,
θ ă xve ` zv in any case.

If v points to any other arc f , it implies

θ ą x̄vf “ 1´ xvf ě zv ` xve,

where the inequality follows from the constraint (2) of the LP relaxation. This leads to
contradiction, proving the claim. C

Therefore, after the rounding, in the remaining graph ÝÑGzS, (i) every remaining arc is
pointed by at least one of its endpoints, (ii) each vertex points to at most two arcs, and (iii)
if one vertex does not point to an arc incident on it, the other endpoint uniquely points to
the arc.

Consider an undirected cycle pv1, . . . , vk, vk`1q in UndpÝÑGzSq with v1 “ vk`1, so that
either pvi, vi`1q or pvi`1, viq is in A for every i P rks. Let tvi, vi`1u denotes an undirected
edge. If an edge in this cycle is pointed to by only one of its endpoints (without loss of
generality, say tvk, v1u is only pointed to by v1), then v1 cannot point to any other edge, so
tv2, v1u is uniquely pointed to by v2 by (iii), and this inductively leads to every tvi, vi`1u

uniquely pointed to by vi`1 for 1 ď i ă k. Note that all v1, . . . , vk cannot point to any edge
outside the cycle. Even when all edges are pointed to by both endpoints, by (ii), all v1, . . . , vk
cannot point to any edge outside the cycle.

Assume towards contradiction that there are two undirected cycles C1 and C2 (not
necessarily vertex or edge disjoint) in the same connected component of UndpÝÑGzSq. If
V pC1q X V pC2q ‰ H, there must be a vertex v P C2 that points to an edge in C1zC2. This
contradicts the above paragraph. If C1 and C2 are vertex disjoint, let pv1, . . . , vkq be an
undirected path from C1 and C2 where v1 P C1 and vk P C2. By the above paragraph,
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tv1, v2u is uniquely pointed to by v2 and inductively tvi, vi`1u is uniquely pointed to by vi`1.
But applying the same argument from tvk´1, vku, tvi, vi`1u must be uniquely pointed to
by vi, leading to contradiction. Therefore, there must be only one undirected cycle in each
connected component. J

After the rounding, each connected component has at most one cycle, so we can easily
compute the optimal solution efficiently. Therefore, we compute a feasible solution that
respects the constraints of the Feedback Vertex Set with Precedence Constraints.
Since the total weights of deleted vertices in each step is at most LP{ε in Step (i), at most
2LP{pβ ´αq in Step (iii), and at most OPT in the final cleanup step, the final approximation
ratio is

1
ε
`

2
β ´ α

` 1 ď 62.2

by our choice of ε “ 0.0293258, α “ 0.514663, β “ 0.588465.
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