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Abstract
The k-leaf power graph G of a tree T is a graph whose vertices are the leaves of T and whose edges
connect pairs of leaves at unweighted distance at most k in T . Recognition of the k-leaf power
graphs for k ≥ 6 is still an open problem. In this paper, we provide an algorithm for this problem
for sparse leaf power graphs. Our result shows that the problem of recognizing these graphs
is fixed-parameter tractable when parameterized both by k and by the degeneracy of the given
graph. To prove this, we describe how to embed the leaf root of a leaf power graph into a product
of the graph with a cycle graph. We bound the treewidth of the resulting product in terms of k

and the degeneracy of G. As a result, we can use methods based on monadic second-order logic
(MSO2) to recognize the existence of a leaf power as a subgraph of the product graph.
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1 Introduction

Leaf powers are a class of graphs that were introduced in 2002 by Nishimura, Ragde and
Thilikos [29], extending the notion of graph powers. For a graph G, the kth power graph
Gk has the same set of vertices as G but a different notion of adjacency: two vertices are
adjacent in Gk if there is a path of at most k edges between them in G. The leaf powers are
defined in the same way from trees, but only including the leaves of the trees as vertices.
The kth leaf power of a tree T has the leaves of T as its vertices, with two vertices adjacent
in the leaf power if there is a path of at most k edges between them in T . A given graph G

is a k-leaf-power graph when there exists a tree T for which G is the kth leaf power. In this
case, T is called the k-leaf root of G. For example, Figure 1 shows a 3-leaf power alongside
its 3-leaf root. Nishimura et al., further, derived the first polynomial-time algorithms to
recognize k-leaf powers for k = 3 and k = 4 [29].

The problem of recognizing leaf powers arises as a formalization of a problem in com-
putational biology, the reconstruction of evolutionary history and evolutionary trees from
information about the similarity between species [12, 21]. In this problem, the common
ancestry of different species can be represented by an evolutionary or phylogenetic tree, in
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16:2 Parameterized Leaf Power Recognition

Figure 1 A 3-leaf power graph G and its 3-leaf root T.

which each vertex represents a species and each edge represents a direct ancestry relation
between two species. We only have full access to living species, the species at the leaves of
the tree; the other species in the tree are typically long-extinct, and may be represented
physically only through fossils or not at all. If we suppose that we can infer, from observations
of living species, which ones are close together (within some number k of steps in this tree)
and which others are not, then we could use an algorithm for leaf power recognition to infer
a phylogenetic tree consistent with this data.

1.1 New Results
In this paper, we prove that the k-leaf powers of degeneracy d can be recognized in time
that is fixed-parameter tractable when parameterized by k and d. Here, the degeneracy of a
graph is the maximum, over its subgraphs, of the minimum degree of any subgraph. Our
result provides an algorithm whose running time is polynomial (in fact linear) in the size of
its input graph, multiplied by a factor that depends non-polynomially on k and d.

It is known that the k-leaf powers have bounded clique-width for bounded k [24]. A
wide class of graph problems (those expressible in a version of monadic second order logic
quantifying over only vertex sets, MSO1) can be solved in fixed-parameter time for graphs of
bounded clique-width, via Courcelle’s theorem [16]. However we have been unable to express
the recognition of leaf powers in MSO1. Instead, our algorithm uses a more powerful version
of monadic second order logic allowing quantification over edge sets, MSO2. The graphs of
bounded clique-width and bounded degeneracy have bounded treewidth, allowing us to apply
a form of Courcelle’s theorem for MSO2 and for graphs of bounded treewidth.

However, there is an additional complication that makes it tricky to apply these methods
to leaf power recognition. The tree that we wish to find, for which our given input graph is
a leaf power, will in general include vertices and edges that are not part of the input, but
MSO2 can only quantify over subsets of the existing vertices and edges of a graph, not over
sets of vertices and edges that are not subsets of the input. To work around this problem,
we apply Courcelle’s theorem not to the given graph G itself, but to a product graph G� Ck

where Ck is a k-vertex cycle graph. We prove that the leaf root (the tree for which G is a leaf
power, if it is one) can be embedded as a subgraph of this product, that it can be recognized
by an MSO2 formula applied to this product, and that this product has bounded treewidth
whenever G is a k-leaf power of bounded degeneracy. In this way we can recognize G as
a leaf power, not by applying Courcelle’s theorem to G, but by applying it to the product
graph.
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Figure 2 A graph is a 4-leaf power if and only if it is chordal and does not contain any of the
graphs above as a subgraph.

Thus, our algorithm combines the following ingredients:
Our embedding of the k-leaf root as a subgraph of the product graph G� Ck.
Our logical representation of k-leaf roots as subgraphs of product graphs.
Courcelle’s theorem, which provides general-purpose algorithms for testing MSO2 formulas
on graphs of bounded treewidth.
The fact that the k-leaf powers, for bounded values of k, have bounded clique-width.
The fact that graphs of bounded clique-width and bounded degeneracy also have bounded
treewidth.
The fact that, by taking a product with a graph of bounded size, we preserve the bounded
treewidth of the product.

Our algorithm runs in fixed-parameter tractable time when parameterized by k and the
degeneracy d of the given input graph. In particular, it runs in linear-time when k and d are
both constant.

Our result provides the first known efficient algorithm for recognizing k-leaf powers for
k ≥ 6, for graphs of bounded degeneracy. More generally, our method of embedding into
graph products appears likely to apply to other graph problems involving network design (the
addition of edges to an existing graph, rather than the identification of a special subgraph of
the input). In the case we apply this method to leaf power recognition, we expect that it
should be possible to translate our MSO2 formula over the product graph into a significantly
more complicated MSO2 formula over the input graph, but the method of embedding into
graph products considerably simplifies our task of designing a logical formula for our problem.

1.2 Related Work
Polynomial-time algorithms are known for recognizing k-leaf powers for k ≥ 5.

A graph is a 2-leaf power if it is a disjoint union of cliques, so this class of graphs is trivial
to recognize.
There exist various ways to characterize 3-leaf powers [29, 7, 18, 30], some of which lead
to efficient algorithms. For instance, one way to determine if a graph is a 3-leaf power
is to check whether it is bull-, dart- and gem-free and chordal [18]. The chordal graphs
have a known recognition algorithm, and testing for the existence of any of the other
forbidden induced subgraphs is polynomial, because they all have bounded size.
Similarly, there are various known ways to characterize 4-leaf powers [29, 30, 19, 9]. One
is that graph is a 4-leaf power if and only if it is chordal and does not contain any
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Figure 3 The graph on the right is the strong product of a four-vertex path graph (top left) and
a four-vertex cycle graph (bottom left). The colors indicate the partition of the edges into vertical,
horizontal, and diagonal subsets.

of the graphs depicted in Figure 2 as induced subgraphs [30]. Again, this leads to a
polynomial-time recognition algorithm, because all of these graphs have bounded size.
k-leaf powers can be recognized in polynomial time if the (k−2)- Steiner root problem can
be solved in polynomial time. Chang and Ko in 2007, provided a linear-time algorithm
recognition for 3-Steiner root problem [11]. This implies that 5-leaf powers can be
recognized in linear time.

Polynomial-time structural characterization of k-leaf powers for k ≥ 6 is still an open problem.
Nonetheless, Brandstädt et al. provided a characterization for the distance-hereditary 5-leaf
powers [8].

Throughout the literature, there exist many structural characterizations of leaf powers
which provide potentially useful insight into this class of graphs. It is known, for instance,
that all leaf powers are strongly chordal, but the converse is not always true. Further,
Kennedy et al. showed that strictly chordal graphs are always k-leaf powers for k ≥ 4;
these are the chordal graphs that are also, dart- and gem-free. They provided a linear-time
algorithm to construct k-leaf roots of strictly chordal graphs [27].

For all k ≥ 2, every k-leaf power is also a (k + 2)-leaf power. A (k + 2)-leaf root of any
k-leaf-power can be obtained from its k-leaf root, by subdividing all edges incident to leaves.
However, the problems of recognizing k-leaf powers for different values of k do not collapse:
for all k ≥ 4, there exists a k-leaf power which is not a (k + 1)-leaf power [10].

2 Preliminaries

2.1 Definitions
Throughout this paper, we let G(V, E) denote a simple undirected graph (typically, the input
to the leaf power recognition problem). If u and v are two vertices in V that are adjacent in
G, we let e(u, v) denote the edge connecting them.

The strong product of graphs G1 and G2, denoted as G1 �G2, is a graph whose vertices
are ordered pairs of a vertex from G1 and a vertex from G2. In it, two distinct vertices
(u1, u2) and (v1, v2) are adjacent if and only if for all i ∈ {1, 2}, ui = vi or ui and vi are
adjacent in Gi. Figure 3 shows an example, the strong product of a four-vertex path graph
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with a four-vertex cycle graph. When we construct a strong product, we will classify the
edges of the product into three subsets:

We call an edge from (u1, u2) to (v1, v2) a vertical edge if u2 = v2. The edges of this type
form |V (G2)| disjoint copies of G1 as subgraphs of the product.
We call an edge from (u1, u2) to (v1, v2) a horizontal edge if u1 = v1. The edges of this
type form |V (G1)| disjoint copies of G2 as subgraphs of the product.
We call the remaining edges, for which u1 6= v1 and u2 6= v2, diagonal edges. The
subgraph composed of the diagonal edges forms a different kind of graph product, the
tensor product G1 ×G2.

We may think of these three edge sets as forming an (improper) edge coloring of the product
graph. In Figure 3 these edge sets are colored blue, red and green, respectively.

2.2 Graph Parameters
One of the simplest ways of parameterizing sparse graphs is by their degeneracy. The
degeneracy d(G) of a graph G is the smallest number such that every nonempty subgraph of
G contains at least one vertex of degree at most d(G). It may be computed in linear-time
by a greedy algorithm that repeatedly removes the minimum-degree vertex and records the
largest degree seen among the vertices at the time they are removed [28].

The notion of treewidth, a more complicated graph sparsity parameter, was first introduced
by Bertelé and Brioschi [3] and Halin [25] and later rediscovered by Robertson and Seymour
[31]. One way to define treewidth is to use the concept of tree decomposition. A tree
decomposition of graph G consists of a tree T where each vertex Xi ∈ T (called a bag) is a
subset of vertices of G . This tree and its bags are required to satisfy the following properties:

For each edge e(u, v) in G, there exists a bag in T containing both u and v; and
For each vertex v in G, the bags containing v form a nonempty connected subtree of T .

The width of a tree decomposition is the size of its largest bag, minus one. The treewidth
of a graph is defined as the minimum width achieved over all tree decompositions of the
graph. Bounded treewidth graphs are especially interesting from an algorithmic point of
view. Many well-known NP-complete problems have linear-time algorithms on graphs of
bounded treewidth [4].

Another related graph parameter, clique-width, was introduced by Courcelle et al. to
characterize the structural complexity of graphs [16]. The clique-width of a graph G is the
minimum number of labels necessary to construct G by means of four graph operations:
creation of a new vertex with a label, vertex disjoint union of labeled graphs, insertion of an
edge between two vertices with specified labels and relabeling of vertices. Relevantly for us,
Courcelle et al. showed that unit interval graphs are of unbounded clique-width. A graph is
an interval graph if and only if all its vertices can be mapped into intervals on a straight line
such that two vertices are adjacent when the corresponding intervals intersect each other. In
the unit interval graphs, each interval has a unit length. As shown by Brandstädt et al., unit
interval graphs belong to the class of leaf powers, which implies that leaf powers also have
unbounded clique-width [5, 6]. However, Gurski and Wanke proved that for a fixed k, k-leaf
powers have a clique-width of at most k + max(bk

2 c − 2, 0) [24]. Therefore, when seeking the
complexity of recognizing leaf powers, parameterized by k, we may restrict our attention to
graphs of bounded clique-width.

These three properties are defined differently to each other, and may have significantly
different values. For instance, the complete bipartite graph Kn,n has clique-width two but
treewidth and degeneracy n, and the n× n grid graph has degeneracy two but clique-width
and treewidth Ω(n). Nevertheless, there is an important relation between them: in the
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graphs of bounded degeneracy and bounded clique-width, the treewidth is also bounded.
More specifically, if a graph has clique-width k and contains no complete bipartite subgraph
Kt,t, then it has treewidth at most 3k(t − 1) − 1. Since such a subgraph would force the
degeneracy to be at least t, it follows that the graphs of degeneracy d and clique-width k

have treewidth at most 3kd− 1 [23].

2.3 Courcelle’s Theorem
By considering graphs as logical structures, their properties can be expressed in first-order
and second-order logic. In first-order logic, graph properties are expressed as logical formulas
wherein the variables range over vertices and the predicates include equality and adjacency
relations. Second-order logic is an extension of first-order logic with the power to quantify
over relations. Particularly, many natural graph properties can be described in monadic
second-order logic, which is a restriction of second-order logic in which only unary relations
(sets of vertices or edges) are allowed [15].

There exist two variations of monadic second-order logic: MSO1 and MSO2. In MSO1,
quantification is allowed only over sets of vertices, while MSO2 allows quantification over
both sets of vertices and sets of edges. MSO2 is strictly more expressive; there are some
properties, such as Hamiltonicity [14], which are expressible in MSO2 but not in MSO1. A
graph property is MSO2-expressible if there exists an MSO2 formula to express it, in which
case the corresponding class of graphs becomes MSO2-definable.

The connection between treewidth and monadic second-order logic is given by Courcelle’s
theorem, according to which every property definable in monadic second-order logic can be
tested in linear time on graphs of bounded treewidth [13]. Later, Courcelle et al. extended
this theorem to the class of graphs with bounded clique-width when the underlying property
is MSO1-definable [17]. In our application of Courcelle’s theorem, we will use an MSO2
formula with a free variable horizontal, an edge set, which we will use to pass to the
formula certain information about the structural decomposition of the graph it is operating
on. This extension of Courcelle’s theorem to formulas with a constant number of additional
free variables, whose values are assigned through some extra-logical process prior to applying
the theorem, is non-problematic and standard.

However, even in MSO2, it is only possible to quantify over subsets of vertices and edges
that belong to the graph to which the logical formula is applied. Much of the difficulty of the
leaf power problem rests in this restriction. If we could quantify over edges and vertices that
were not already present, we could construct a formula that asserts the existence of sets of
vertices and edges forming a leaf root of a given graph, and then add clauses to the formula
that ensure that the quantified sets describe a valid leaf root. However, we are not allowed
such quantification, because in general the leaf root has vertices and edges that do not belong
to our input graph. To apply Courcelle’s theorem to leaf power recognition, we must instead
find a way to express the property of being a leaf power using only quantification over subsets
of vertices and edges of the graph to which we apply the theorem. For this reason, the
problem of leaf power recognition forms an important test case for the ability to express
graph problems in MSO logic.

A problem is fixed-parameter tractable with respect to a parameter x of the input if the
problem can be solved in time f(x)nO(1) where n is the size of the input, f is a computable
function of x (independent of n), and the exponent of n in the O(1) term is independent
of x. Courcelle’s theorem is the foundation of many fixed-parameter tractable algorithms
[2, 22, 20, 26], as it proves that properties expressible in MSO1 or MSO2 are fixed-parameter
tractable with respect to the clique-width or treewidth (respectively) of the input graph.
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Figure 4 A 4-leaf power graph G (left), and its leaf root T (right). Each leaf of T is labeled by
the vertex of G that it represents, and each internal node of T is labeled by its closest leaf node.
When there are ties at a node (as for instance at the root of T ) the choice of label is made arbitrarily
among the closest leaf nodes whose labels appear among the children of the node.

3 Embedding Leaf Roots Into Graph Products

Let G be a k-leaf power graph, and T be a k-leaf root of G. If G is not connected, we can
handle each of its connected components independently; in this way, we can assume from
now on, without loss of generality that G is a connected graph with at least three vertices,
and that T is a leaf root chosen arbitrarily among the possible k-leaf roots of T . It follows
from these assumptions that T is a tree, because every edge in G must be represented by a
path in T . Because T has at least three leaves, it has at least one interior node; we choose
one of these nodes arbitrarily to be the root of T . Additionally, every vertex or edge of T

participates in a path of length at most k between two leaves, representing an edge of G. For,
if some vertices and edge do not participate in these paths, removing all non-participating
vertices and edges from T would produce a smaller leaf root, without creating any new leaves.
But this removal would disconnect pairs of leaves on the opposite sides of any removed edge,
contradicting the assumption that G is connected.

As the first step of the embedding, we label the vertices of T with the names of vertices
in G. Each vertex of T will get a label in this way; some labels will be used more than once.
In particular, we label each leaf of T by the vertex of G represented by that leaf. Then, as
shown in Figure 4, we give each non-leaf node of T the same label as its closest leaf. If there
are two or more closest leaves, we choose which one to use as the label arbitrarily among the
labels already applied to the child of the given interior node. In this way, when the same
label appears more than once, the tree nodes having that label form a connected path in T .

As we now show, these labels, together with the depths of the nodes modulo k, can be
used to embed the k-leaf root T into the strong product G�Ck, where Ck denotes a k-vertex
cycle graph.

I Lemma 1. If G is a connected k-leaf power graph on three or more vertices, and T is
any k-leaf root of G, then T can be embedded as a subgraph of the strong product G� Ck.
Additionally, the embedding can be chosen in such a way that each horizontal cycle in the
strong product (the product of a vertex v of G with Ck) contains exactly one leaf of the
embedded copy of T , the leaf representing v.

Proof. We map a vertex u of T to the pair (v, i) where v is the label assigned to u (the name
of a vertex in G) and i is the depth of u (its distance from the root of T ), taken modulo k.
This pair is one of the vertices of the strong product, so we have mapped vertices of T

into vertices of the strong product. An example of such embedding can be seen in Figure

IPEC 2018
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Figure 5 The graph on the bottom left is a 4-leaf root T of graph G (top left). T can be embedded
in the strong product G�C4 (right), by mapping each vertex u of T to the pair (v, i) where v is the
label of u and i is the depth of u (modulo k).

Figure 5. Because G is assumed to be connected, each node of T participates in at least
one path of length at most k between two leaves of T , representing an adjacency of G; it
follows that the label for each node of T is at most k− 1 steps away from the node, and that
each path of same-labeled nodes in T has length at most k − 1. As a consequence, when we
take depths modulo k, none of these paths can wrap around the cycle and cover the same
vertex of the product graph more than once. That is, our mapping from T to G � Ck is
one-to-one. Because each leaf of T is labeled with the vertex of G that it represents, this
mapping has the property described in the lemma, that each horizontal cycle in the strong
product contains exactly one leaf of the embedded copy of T , the leaf representing the vertex
whose product with Ck forms that particular horizontal cycle.

We must also show that this mapping from T to G� Ck maps each pair of vertices that
are adjacent in T into a pair of vertices that are adjacent in G� Ck. Recall that adjacency
in G� Ck is the conjunction of two conditions: two vertices in the product are adjacent if
their first coordinates are equal or adjacent in G and their second coordinates are equal or
adjacent in Ck. Because every two adjacent vertices in T have depths that differ by one, the
second coordinates of their images in the product will always be adjacent in Ck. It remains
to show that, when two vertices are adjacent in T , their images in the product have first
coordinates that are equal or adjacent in G. That is, the labels of the two adjacent vertices
in T should be equal or adjacent.

Rephrasing what we still need to show, it is the following: whenever two adjacent vertices
in T have different labels, those labels represent adjacent vertices in G.

To see that this is true, consider two adjacent vertices u1 and its parent u2 in T , labeled
by two different vertices v1 and v2 in G. As we already stated at the start of this section,
the assumption of the lemma that G is connected implies that edge u1u2 in T participates in
at least one path P of length at most k between two leaves, corresponding to an adjacency
in G. But because v1 and v2 are represented by the closest leaves to u1 and u2 (respectively)
the length of the path in T between the leaves representing v1 and v2 must be at most
equal to the length of P . Therefore, there is a path of length at most k between the leaves
representing v1 and v2, so v1 and v2 are adjacent in the k-leaf power G, as required. J
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Based on this embedding, we can prove the following characterization of leaf powers,
which we will use in our application of Courcelle’s theorem to the problem. It is important,
for this characterization, that we express everything intrinsically in terms of the properties
of the product graph G� Ck, its edge coloring, and its subgraphs, without reference to the
given graph G.

I Lemma 2. A given connected graph G on three or more vertices is a k-leaf power if and
only if the product G� Ck has a subgraph T with the following properties:
1. T is 1-degenerate (i.e., a forest).
2. Every vertex of G�Ck is connected by horizontal edges of the product to exactly one leaf

of T .
3. Two vertices of G� Ck are the endpoints of a non-horizontal edge of the product if and

only if the corresponding leaves of T (given according to Property 2) are the distinct
endpoints of a path of length at most k in T .

Proof. A subgraph obeying these properties is a forest (Property 1), whose leaves can be
placed into one-to-one correspondence with the vertices of G (Property 2, using the fact that
the horizontal cycles of the product correspond one-for-one with vertices of G). It has a path
of length at most k between two leaves if and only if the corresponding vertices of G are
adjacent (Property 3). So if it exists, it is a k-leaf root of G and G is a k-leaf power.

In the other direction, if G is a connected k-leaf power, let T be a k-leaf root of G,
embedded according to Lemma 1. Then T is a subtree of the product graph (Property 1),
with exactly one leaf for each horizontal cycle (Property 2), that forms a k-leaf root of G

(Property 3). So when G is a k-leaf power, a subgraph T obeying the properties of the lemma
exists. J

4 Logical Expression

In this section, we describe how to express the components of Lemma 2, our characterization
of the products G� Ck that contain a k-leaf root of G, in monadic second-order logic. Our
logical formula will involve a free variable horizontal, the subset of edges of the given
graph (assumed to be of the form G� Ck) that are horizontal in the product (that is, edges
that connect two copies of the same vertex in G). We will also assume that V and E refer to
the vertices and edges of the graph G�Ck. In our logical formulas, we will express the type
of each quantified variable (whether it is a vertex, edge, set of vertices, or set of edges) by
annotating its quantifier with a membership or subset relation. For instance, “∀x ∈ V : . . . ”
quantifies x as a vertex variable. We will express the incidence predicate between an edge
e and a vertex v (true if v is an endpoint of e, false otherwise) by e ( v. Because our
formulas will also use equality as a predicate, we will express the equality between names of
formulas and their explicit logical formulation using a different symbol, ≡. In our formulas,
predicates (equality, incidence, and adjacence) will be considered to bind more tightly than
logical connectives, allowing us to omit parentheses in many cases.

A subgraph of the given graph may be represented by its set S of edges. In this
representation, adjacency between two vertices a and b may be expressed by the formula

adjacent(a, b, S) ≡ ∃e ∈ S : (e( a ∧ e( b).

The following formula expresses the property that the neighbors of vertex ` in subgraph S

include at most one vertex from a set X:

leaf(`, X, S) ≡ ∀c, d ∈ X :
((

adjacent(`, c, S) ∧ adjacent(`, d, S)
)
→ c = d

)
.

IPEC 2018



16:10 Parameterized Leaf Power Recognition

This allows us to express the acyclicity of a subgraph S in terms of 1-degeneracy: every
nonempty subset Y of vertices contains a leaf.

acyclic(S) ≡ ∀X ⊂ V : (∃x ∈ X)→ ∃` ∈ X : leaf(`, X, S).

This already allows us to express the first condition of Lemma 2.
We will also use a predicate for whether two vertices p and q are connected by horizontal

edges. This is true if there is no cut (C, V \ C) that separates them.

aligned(p, q) ≡ ∀C ⊂ V :
(
p ∈ C ∧ ¬(q ∈ C)

)
→

∃h ∈ horizontal : ∃y, z ∈ V :
(
y ∈ C ∧ ¬(z ∈ C) ∧ h( y ∧ h( z

)
.

This allows us to express a predicate for the property that vertex ` is a leaf of subgraph S

on the same horizontal level as another vertex v (that is, ` is the representative leaf for v’s
level):

representative(v, `, S) ≡ leaf(`, V, S) ∧ aligned(v, `).

The second part of Lemma 2 is that every level has exactly one representative leaf:

represented(S) ≡
(
∀v ∈ V : ∃` ∈ V : representative(v, `, S)

)
∧(

∀v, `1, `2 ∈ V :
(
representative(v, `1, S) ∧ representative(v, `2, S)

)
→ `1 = `2

)
Unlike for the previous formulas, there is no way of expressing the existence of a path of

length k from u to v in subgraph S, for a variable k, in MSO2. We need a different formula
pathk for each k. We do not require these paths to be simple, as this would only complicate
the formula without simplifying our use of it. However it is essential for our application to
the third condition of Lemma 2 that we require our paths to have distinct endpoints.

pathk(u, v, S) ≡ ∃w1, w2, . . . wk−1 ∈ V : ∃e1, e2, . . . ek ∈ S :
¬(u = v) ∧ e1 ( u ∧ e1 ( w1 ∧ e2 ( w1 ∧ · · · ∧ ek ( wk−1 ∧ ek ( v.

Other than the inequality of the two endpoints, this formula allows repetitions of vertices
and edges within each path. In particular, it allows wi and wi+1 to be equal to each other,
repeating one endpoint of an edge twice and omitting the other endpoint. Because we allow
repetitions in this way, this formulation of the path predicate has the following convenient
property:

I Lemma 3. For all k ≥ 1 and all u, v, and S, we have that

pathk(u, v, S)→ pathk+1(u, v, S).

Proof. Let w1, . . . wk−1 and e1, . . . ek be the vertices and edges witnessing the truth of
pathk(u, v, S), let wk = v, and let ek+1 = ek. Then w1, . . . , wk and e1, . . . , ek+1 witness the
truth of pathk+1(u, v, S). J

I Corollary 4. Two vertices u and v of a subgraph S of a given graph obey the predicate
pathk(u, v, S) if and only if they are distinct and their distance in S is at most k.

This allows us to express the final part of Lemma 2, the requirement that each two vertices
are connected by a non-horizontal edge if and only if their representatives are connected by
a short path:

rootk(S) ≡ ∀u, v ∈ V :
((
∃e ∈ E : e( u ∧ e( v ∧ ¬(e ∈ horizontal)

)
←→

∃x, y ∈ V :
(
representative(u, x, S) ∧ representative(v, y, S) ∧ pathk(x, y, S)

))
.
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I Lemma 5. There exists an MSO2 formula that is modeled by a graph G� Ck and its set
horizontal of horizontal edges exactly when G� Ck meets the conditions of Lemma 2.

Proof. The formula is

∃S :
(
acyclic(S) ∧ represented(S) ∧ rootk(S)

)
.

A subgraph defined by a set S of its edges meets the first condition of the lemma if acyclic(S)
is true, it meets the second condition of the lemma if represented(S) is true, and it meets
the third condition of the lemma if rootk(S) is true. J

I Corollary 6. The property of a graph G being k-leaf power can be expressed as an MSO2
formula of G� Ck and of the set horizontal of horizontal edges of this product graph.

5 Fixed-Parameter Tractability of Leaf Powers

In order to apply Courcelle’s theorem to the product graph G� Ck we need to bound its
treewidth.

I Lemma 7. If G has treewidth t and H has a bounded number of vertices s then G �H

has treewidth at most s(t + 1)− 1.

Proof. Given any tree-decomposition of G with width t, we can form a decomposition of
G�H by using the same tree, and placing each vertex (v, w) of G�H (where v and w are
vertices of G and H respectively) into the same bag as vertex v of G. The size of the largest
bag of the tree-decomposition of G is t + 1, so the size of the largest bag of the resulting
tree-decomposition of the product graph is s(t + 1). The treewidth is one less than the size
of the largest bag. J

I Corollary 8. If G has a bounded treewidth and k is bounded, then G�Ck also has bounded
treewidth.

This gives us our main theorem:

I Theorem 9. For fixed constants k and d, it is possible to recognize in linear time (with
fixed-parameter tractable dependence on k and d) whether a graph of degeneracy at most d is
a k-leaf power.

Proof. If we consider the class of graphs with bounded degeneracy d, trivially these graphs
do not contain the complete bipartite graph Kd+1,d+1 as a subgraph. Gurski and Wanke
proved that k-leaf powers with fixed k have bounded clique-width [24]. In separate work, they
also proved that every class of graphs with bounded clique-width and no Ka,a subgraph has
bounded treewidth [23]. These results immediately imply that k-leaf powers with bounded
degeneracy have bounded treewidth, and it follows from Corollary 8 that G� Ck also has
bounded treewidth. Therefore, by applying Courcelle’s theorem to the MSO2 formula of
Corollary 6 we obtain the result. J

6 Conclusion

We have provided a fixed-parameter algorithm to recognize k-leaf powers for graphs of
bounded degeneracy. Our method embeds a k-leaf root of a k-leaf power graph in the product
graph of the input graph and a k-vertex cycle Ck, finds a logical characterization of the
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leaf roots that are embedded in this way, and applies Courcelle’s theorem to determine the
existence of a subgraph of the product graph that meets our characterization.

It is perhaps of interest to observe that, although acyclic and aligned involve quantifi-
cation over vertex sets, the only quantification over edge sets that we use is in the formula
of Lemma 5. If we could eliminate all edge sets from our formula (including horizontal),
and obtain an MSO1 formula for k-leaf powers in place of the MSO2 formula that we use,
it might be possible to eliminate the dependence on degeneracy from our parameterized
analysis.

Our methods of using low-treewidth supergraphs to represent vertices and edges that are
not part of the input graph, and of using graph products to find these supergraphs, may
be useful in other graph problems. For instance, this method would have greatly simplified
the application of Courcelle’s theorem in our recent work on planar split thickness [20]: a
graph G has planar split thickness k if and only if G �Kk has a planar subgraph S such
that, for each non-horizontal edge of the product, the endpoints of the edge are aligned with
the endpoints of an edge in S. In reducing the logical complexity of problems such as these,
our method also makes it more likely that faster model checkers for restricted fragments
of MSO logic [1] can be applied to our problem. Additionally, and more speculatively, the
reduced logical complexity of our method may help guide future efforts to solve the problem
directly using dynamic programming rather than by applying Courcelle’s theorem.
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