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Abstract

We give a first polynomial-time algorithm for (Weighted) Feedback Vertex Set on
graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch
decomposition of mim-width w, we give an nO(w)-time algorithm that solves Feedback Vertex
Set. This provides a unified polynomial-time algorithm for many well-known classes, such as
Interval graphs, Permutation graphs, and Leaf power graphs (given a leaf root), and
furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-
width, such as Circular Permutation and Circular k-Trapezoid graphs (given a circular
k-trapezoid model) for fixed k. We complement our result by showing that Feedback Vertex
Set is W[1]-hard when parameterized by w and the hardness holds even when a linear branch
decomposition of mim-width w is given.

Keywords. Graph Width Parameters; Mim-Width; Graph Classes; Feedback Vertex Set.

1 Introduction

A feedback vertex set in a graph is a subset of its vertex set whose removal results in an acyclic
graph. The problem of finding a smallest such set is one of Karp’s 21 famous NP-complete problems
[26] and many algorithmic techniques have been developed to attack this problem, see e.g. the
survey [14]. The study of Feedback Vertex Set through the lens of parameterized algorithmics
dates back to the earliest days of the field [9] and throughout the years numerous efforts have been
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extended abstract that appeared at STACS 2018 [23] and the note [20]. Published in Algorithmica. The first part of
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IPEC 2017 [21].
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research took place while Kwon was at Logic and Semantics, Technische Universität Berlin, Berlin, Germany.
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made to obtain faster algorithms for this problem [2, 3, 6, 8, 9, 10, 18, 25, 31, 32]. In terms of
parameterizations by structural properties of the graph, Feedback Vertex Set is known to be
FPT parameterized by tree-width [3] and clique-width [5], and W[1]-hard but in XP parameterized
by the size of an independent set and the size of a maximum induced matching [24].

In this paper, we study Feedback Vertex Set parameterized by the maximum induced
matching width (mim-width for short), a graph parameter defined in 2012 by Vatshelle [34] which
measures how easy it is to decompose a graph along cuts1 with bounded maximum induced matching
size on the bipartite graph induced by edges crossing the cut. One interesting aspect of this width-
measure is that its modeling power is much stronger than tree-width and clique-width, and many
well-known and deeply studied graph classes such as Interval graphs and Permutation graphs
have (linear) mim-width 1, with decompositions that can be found in polynomial time [1, 34], while
their clique-width can be proportional to the square root of the number of vertices [17]. Hence,
designing an algorithm for a problem Π that runs in XP time parameterized by mim-width yields
polynomial-time algorithms for Π on several interesting graph classes at once.

We give an XP-time algorithm for Feedback Vertex Set parameterized by mim-width, as-
suming that a branch decomposition of bounded mim-width is given. This problem was mentioned
as an ‘interesting topic for further research’ in [24]. Since such a decomposition can be computed in
polynomial time [1, 34] for the following classes, this provides a unified polynomial-time algorithm
for Feedback Vertex Set on all of them: Interval and Bi-Interval graphs, Circular Arc,
Permutation and Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular
k-Trapezoid,2 k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k. Recently, a
superset of the authors proved that taking an (arbitrary) power of a graph increases its mim-width
by at most a factor of 2 [19], thereby strictly enhancing the previous list by e.g. powers of Permu-
tation graphs.3 Furthermore, the authors showed that Leaf Power graphs also have bounded
mim-width4 [23]. Our algorithm can be applied to Weighted Feedback Vertex Set as well,
which on several of these classes was not known to be solvable in polynomial time.

Theorem 1. Given an n-vertex graph and one of its branch decompositions of mim-width w, we
can solve (Weighted) Feedback Vertex Set in time nO(w).

Let us explain some of the essential ingredients of our dynamic programming algorithm which
solves the dual Maximum (Weight) Induced Forest problem. Note that the two problems are
equivalent in the mim-width parameterization. A crucial observation is that if a forest contains
no induced matching of size w + 1, then the number of internal vertices of the forest is bounded
by 6w (Lemma 8). Motivated by this observation, given a forest, we define the forest obtained by
removing its isolated vertices and leaves to be its reduced forest. Let (A,B) be a cut of a graph
G and denote by GA,B the bipartite graph induced by this cut. The observation implies that if
there is no induced matching of size w+1 in GA,B, then there are at most O(n6w) possible reduced
forests of some induced forests consisting of edges crossing this cut. We enumerate all of them, and
use them as indices of the table of our algorithm.

1A cut of a graph is a bipartition of its vertex set.
2Given a (circular) k-trapezoid model.
3It is known that powers of permutation graphs are not necessarily permutation graphs [4, 15].
4Note however that in contrast to the previously mentioned classes, for Leaf Power graphs it is currently not

known whether the corresponding decomposition can be computed in polynomial time. The construction in the proof
presented in [23] uses a given leaf root of the input graph and it is still not known whether a leaf root of a leaf power
graph can be computed in polynomial time.
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Following the given branch decomposition, we want to recursively ask whether for a forest R
in GA,B, there is a forest in the graph on the union of A and the boundary5 of B, such that its
restriction to GA,B has R as a reduced forest. When we decide to add some other vertex from B
to our forest at a later stage of the algorithm, we do not want to have an edge from A to B not
intersecting the vertices of R. One way to avoid these additional edges is to take a vertex cover M
of GA,B − V (R), and then ask whether there is a forest F on the union of A and the boundary of
B such that it avoids M and GA,B ∩ F has R as a reduced forest. We observe that for any such
forest F , there is always a vertex cover M that satisfies this condition. This suggests that we add
all possible minimal vertex covers of GA,B − V (R) as a second component of the table indices.

To argue that the number of table entries stays bounded by nO(w), we use the known result that
every n-vertex bipartite graph with maximum induced matching size w has at most nw minimal
vertex covers, and that we can enumerate them within the same time bound [21]. Remark that
in the companion paper [21], we use minimal vertex covers of a bipartite graph in a similar way.
However, in the algorithms described in [21], the full intersection of a solution with a cut could be
used as a part of the table indices, whereas in the present paper, we can only store reduced forests
(as opposed to the full forests), resulting in a more technical exposition.

Additionally, we observe that our algorithm can also be applied to the connected variant of
the problem, i.e. it can be used to solve the Maximum (Weight) Induced Tree problem in the
same parameterization and time bound as well.

A natural next question about the complexity of Feedback Vertex Set parameterized by
mim-width is whether the problem is fixed-parameter tractable. Under the standard assumption
that FPT 6= W[1], we rule out this possibility by showing that it is W[1]-hard in the even more
restrictive parameterization by linear mim-width.

Theorem 2 (See Corollary 24). Feedback Vertex Set is W[1]-hard parameterized by linear
mim-width, even if a linear branch decomposition of bounded mim-width is given.

More precisely, we show that the dual Maximum Induced Forest problem is W[1]-hard param-
eterized by solution size plus the mim-width of a given linear branch decomposition of the input
graph which implies the previous theorem. Moreover, our reduction shows hardness for the Maxi-
mum Induced Tree problem in the same parameterization as well. To obtain this result, we build
on a reduction that was recently given by Fomin, Golovach, and Raymond [16].

The rest of the paper is organized as follows: After giving some preliminary definitions and
tools in Section 2, we give necessary lemmas regarding reduced forests in Section 3. We obtain
our algorithm in Section 4 and present the hardness results in Section 5. We conclude with some
remarks in Section 6.

2 Preliminaries

For integers a and b with a ≤ b, we let [a..b] ..= {a, a + 1, . . . , b} and if a is positive, we define
[a] ..= [1..a]. Every graph in this paper is finite, undirected and simple. For a graph G we denote
by V (G) and E(G) ⊆

(
V (G)
2

)
its vertex and edge set, respectively. For graphs G and H we say that

G is a subgraph of H, if V (G) ⊆ V (H) and E(G) ⊆ E(H). Let G be a graph. For a vertex set
X ⊆ V (G), we denote by G[X] the subgraph induced by X, i.e. G[X] ..= (X,E(G) ∩

(
X
2

)
). We use

5I.e. the vertices in B that have neighbors in A.
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the shorthand G−X for G[V (G)\X]. For a vertex v ∈ V (G), let G−v ..= G−{v}, and for an edge
e ∈ E(G), let G− e = (V (G), E(G) \ {e}). For a vertex v ∈ V (G), we denote by NG(v) the set of
neighbors of v in G, i.e. NG(v) ..= {w ∈ V (G) | {v, w} ∈ E(G)}, and the number of neighbors of v
is called its degree, denoted by degG(v) ..= |NG(v)|. For A ⊆ V (G), let NG(A) be the set of vertices
in V (G) \A having a neighbor in A. We drop G as a subscript if it is clear from the context.

We denote by C(G) the set of connected components of G.

For two disjoint vertex sets X,Y ⊆ V (G), we denote by G[X,Y ] the bipartite subgraph of G
with bipartition (X,Y ) such that for x ∈ X, y ∈ Y , x and y are adjacent in G[X,Y ] if and only if
they are adjacent in G. A cut of G is a bipartition (A,B) of its vertex set. A set M of edges is
a matching if no two edges in M share an endpoint, and a matching {a1b1, . . . , akbk} is induced if
there are no other edges in the subgraph induced by {a1, b1, . . . , ak, bk}. A vertex set S ⊆ V (G) is
a vertex cover of G if every edge in G is incident with a vertex in S.

For two graphs G1 and G2, G1 ∪ G2 is the graph with the vertex set V (G1) ∪ V (G2) and the
edge set E(G1)∪E(G2), and G1 ∩G2 is the graph with the vertex set V (G1)∩V (G2) and the edge
set E(G1) ∩ E(G2).

A connected graph all of whose vertices have degree 2 is called a cycle. A graph that does not
contain a cycle as a subgraph is called a forest and a connected forest is a tree. A tree of maximum
degree 2 is called a path and we refer to the length of a path as the number of its edges.

A star is a tree on at least three vertices containing a special vertex, called its central vertex,
adjacent to all other vertices. We require a star to have at least three vertices to emphasize the
distinction between a star and a graph consisting of a single edge, as they require different treatment
in our algorithm.

2.1 Parameterized Complexity

We now give the basic definitions in parameterized complexity and refer to [7, 11] for an introduc-
tion.

Definition 3 (Parameterized Problem, FPT, XP). Let Σ be an alphabet. A parameterized
problem is a set Π ⊆ Σ∗ ×N, the second component being the parameter which usually expresses a
structural measure of the input.

1. A parameterized problem Π is fixed-parameter tractable (FPT) if there exists an algorithm
that for any 〈x, k〉 ∈ Σ∗ × N decides whether 〈x, k〉 ∈ Π in time f(k) · |x|O(1), for some
computable function f .

2. A parameterized problem Π is in XP if there exists an algorithm that for any 〈x, k〉 ∈ Σ∗×N
decides whether 〈x, k〉 ∈ Π in time f(k) · |x|g(k), for some computable functions f and g.

2.2 Branch Decompositions and Mim-Width

For a graph G and a vertex subset A of G, we define mimG(A) to be the maximum size of an
induced matching in G[A, V (G) \A].

A tree is called subcubic if all internal vertices have degree 3. A pair (T,L) of a subcubic tree
T on at least 2 vertices and a bijection L from V (G) to the set of leaves of T is called a branch
decomposition. For each edge e of T , let T e1 and T e2 be the two connected components of T − e, and
let (Ae1, A

e
2) be the vertex bipartition of G such that for each i ∈ {1, 2}, Aei is the set of all vertices
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in G mapped to leaves contained in T ei by L. The mim-width of (T,L), denoted by mimw(T,L),
is defined as maxe∈E(T ) mimG(Ae1). The minimum mim-width over all branch decompositions of
G is called the mim-width of G, and the linear mim-width of G if T is restricted to a tree where
each internal node is adjacent to at least one leaf. If |V (G)| ≤ 1, then G does not admit a branch
decomposition, and the mim-width and linear mim-width of G are defined to be 0.

To avoid confusion, we refer to elements in V (T ) as nodes and elements in V (G) as vertices
throughout the rest of the paper. Given a branch decomposition, one can subdivide an arbitrary
edge and let the newly created vertex be the root of T , in the following denoted by r. Throughout the
following we assume that each branch decomposition has a root node of degree two. For two nodes
t, t′ ∈ V (T ), we say that t′ is a descendant of t if t lies on the path from r to t′ in T . For t ∈ V (T ),
we denote by Gt the subgraph induced by all vertices that are mapped to a leaf that is a descendant
of t, i.e. Gt = G[Xt], where Xt = {v ∈ V (G) | L−1(t′) = v where t′ is a descendant of t in T}. We
use the shorthand Vt for V (Gt) and let Vt ..= V (G) \ Vt.

The following definitions which we relate to branch decompositions of graphs will play a central
role in the design of the algorithms in Section 4.

Definition 4 (Boundary). Let G be a graph and A,B ⊆ V (G) such that A ∩ B = ∅. We let
bdB(A) be the set of vertices in A that have a neighbor in B, i.e. bdB(A) ..= {v ∈ A | N(v)∩B 6= ∅}.
We define bd(A) ..= bdV (G)\A(A) and call bd(A) the boundary of A in G.

Definition 5 (Crossing Graph). Let G be a graph and A,B ⊆ V (G). If A ∩ B = ∅, we define
the graph GA,B ..= G[bdB(A),bdA(B)] to be the crossing graph from A to B.

If (T,L) is a branch decomposition of G and t1, t2 ∈ V (T ) such that Vt1 ∩ Vt2 = ∅, we use
the shorthand Gt1,t2

..= GVt1 ,Vt2 . We use the analogous shorthand notations Gt1,t2
..= GVt1 ,Vt2

and

Gt1,t2
..= GVt1 ,Vt2

(whenever these graphs are defined). For the frequently arising case when we

consider Gt,t for some t ∈ V (T ), we refer to this graph as the crossing graph w.r.t. t.

2.3 The Minimal Vertex Covers Lemma

We recall the minimal vertex covers lemma from the first volume of this series of papers. It shows
that given a vertex set A of G, the number of minimal vertex covers in GA,V (G)\A is bounded

by nmimG(A), and furthermore, the set of all minimal vertex covers can be enumerated in time
nO(mimG(A)). This observation is crucial to argue that in our dynamic programming algorithm,
there are at most nO(w) table entries to consider at each node of the given branch decomposition
(T,L), where w denotes the mim-width of (T,L).

Corollary 6 (Minimal Vertex Covers Lemma; [22]). Let H be a bipartite graph on n vertices
with a bipartition (A,B). The number of minimal vertex covers of H is at most nmimH(A), and the
set of all minimal vertex covers of H can be enumerated in time nO(mimH(A)).

3 Lemmas on reduced forests and vertex covers

In this section, we introduce some technical concepts and prove some technical lemmas that will be
used to devise and analyze the Feedback Vertex Set algorithm given in Section 4. As alluded
to in the introduction, we would like to store subgraphs of the intersection of induced forests with
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the edges crossing a cut. We call these subgraphs reduced forests and we begin by defining them
formally.

Definition 7 (Reduced Forest). Let F be a forest. A reduced forest of F is an induced subforest
of F obtained as follows.

1. Remove all isolated vertices of F .

2. For each component C of F with |V (C)| = 2, remove one of its vertices.

3. For each component C of F with |V (C)| ≥ 3, remove all leaves of C.

Note that if F has no single-edge component, then the reduced forest is uniquely defined. We
give an upper bound on the size of a reduced forest of a forest F by a function of the size of a
maximum induced matching in F .

Lemma 8. Let p be a positive integer. If F is a forest whose maximum induced matching has size
at most p and R is a reduced forest of F , then |V (R)| ≤ 6p.

Proof. For a forest F , we denote by m(F ) the size of a maximum induced matching in F . We
prove the lemma by induction on m(F ). If m(F ) = 0, then F contains no edges, and |V (R)| = 0.
If m(F ) = 1, then F consists of one component that contains no path of length 4 and (possibly)
some isolated vertices which implies that R contains at most 2 vertices. We may assume that
m(F ) = p > 1. We may further assume that F contains no isolated vertices, as they will be
removed in the reduced forest.

Suppose F contains a connected component C containing no path of length 4. As observed,
C contains no induced matching of size larger than one. Since C contains an edge, we have
m(F − V (C)) = m(F ) − 1. Let RF−V (C) be a reduced forest of F − V (C) that is a restriction of
R. By the induction hypothesis, RF−V (C) contains at most 6(p− 1) vertices, and we have that R
contains at most 6(p−1) + 2 ≤ 6p vertices. Thus, we may assume that every connected component
C of F contains a path of length 4, implying that its reduced forest contains at least 3 vertices. It
also implies that every connected component of F has a unique reduced forest.

Now, suppose F contains a path v1v2v3v4v5 such that v1 and v5 are not leaves of F , and v2, v3, v4
have degree 2 in R. Let F ′ be the forest obtained from F by removing v2, v3, v4 and adding an
edge v1v5. Let R′ be the reduced forest of F ′.

We claim that m(F ′) ≤ m(F )−1. Let M be a maximum induced matching of F ′. If M contains
the edge v1v5, then we can obtain an induced matching for F by removing v1v5 and adding v1v2
and v4v5. If M does not contain v1v5, then one of v1 and v5 is not matched by M . Then for F ,
we can select one of v2v3 and v3v4 to increase the size of an induced matching. Thus, we have
m(F ′) ≤ m(F ) − 1. By the induction hypothesis, R′ contains at most 6(p − 1) vertices, and thus
R contains at most 6(p− 1) + 3 = 6p− 3 vertices. We may assume that there is no such path.

Let C be a connected component of F , and RC be the reduced forest of C. As RC contains at
least 3 vertices, the leaves of RC form an independent set. Let t be the number of leaves in RC .
Since each leaf of RC is adjacent to a leaf of C, C contains an induced matching of size at least t.
Thus, m(F − V (C)) ≤ m(F ) − t. Note that RC contains at most t vertices of degree at least 3.
Also, by the previous argument, there are at most 2 vertices between two vertices of degree other
than 2 in RC . Thus, RC contains at most t + t + 2(2t − 1) ≤ 6t vertices. Therefore, the result
follows by the induction hypothesis. �
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Let (A,B) be a vertex partition of a graph G, R be some induced forest in GA,B, and M
a minimal vertex cover of GA,B − V (R). In the algorithm, we want to ask if there exists an
induced forest F in G[A ∪ bd(B)] such that R is a reduced forest of F ∩ GA,B and F avoids the
vertices in M . However, it turns out that in this direct formulation it is difficult to account for
edges between vertices in bd(B). We therefore define the following notion on an induced forest in
G[A ∪ bd(B)]− E(G[bd(B)]), instead of G[A ∪ bd(B)].

Definition 9 (Forest respecting a given forest and a minimal vertex cover). Let (A,B) be
a vertex partition of a graph G. Let R be an induced forest in GA,B and M be a minimal vertex
cover of GA,B − V (R). An induced forest F in G[A ∪ bd(B)] − E(G[bd(B)]) respects (R,M) if it
satisfies the following.

1. R is a reduced forest of GA,B ∩ F .

2. V (F ) ∩M = ∅.

Suppose R is an induced forest in GA,B. For an induced forest F of G containing V (R), there
are two necessary conditions for R to be a reduced forest of F ∩ GA,B. First, in F ∩ GA,B, every
vertex in V (F ∩GA,B) \ V (R) has at most one neighbor in R; otherwise, when we take a reduced
forest of F ∩GA,B, this vertex should remain. Second, in F ∩GA,B, every leaf x of R should have
a neighbor y in V (F ∩ GA,B) \ V (R) (and the only neighbor of y in R is x); otherwise, we would
have removed x when taking a reduced forest.

Motivated by this observation we define the notion of potential leaves, which is a possible leaf
neighbor of some vertex in V (R). See Figure 1 for an illustration.

Definition 10 (Potential Leaves). Let (A,B) be a vertex partition of a graph G. Let R be an
induced forest in H ..= GA,B and M be a minimal vertex cover of H − V (R). For each vertex
x ∈ V (R), we define its set of potential leaves with respect to R and M , denoted by PLR,M (x), as

PLR,M (x) ..= NH(x) \ (NH(V (R) \ {x}) ∪ (M ∪ V (R))) .

We can observe the following.

Observation 11. Every forest F respecting (R,M) contains at least one vertex in PLR,M (x) for
each leaf x of R.

For a subset A′ of A, we consider a pair of an induced forest R′ and a minimal vertex cover M ′

of GA′,V (G)\A′ −V (R′) and we say that this pair is a restriction of a pair of R and M for A, if they
satisfy certain natural properties. In the dynamic programming algorithm, we use this notion to
study the structure of partial solutions w.r.t. cuts corresponding to a node t and the children of t.

Definition 12 (Restriction of a reduced forest and a minimal vertex cover). Let (A1, A2, B)
be a vertex partition of a graph G. Let R be an induced forest in GA1∪A2,B and M be a minimal
vertex cover of GA1∪A2,B − V (R). An induced forest R1 in GA1,A2∪B and a minimal vertex cover
M1 of GA1,A2∪B − V (R1) are restrictions of R and M to GA1,A2∪B if they satisfy the following:

1. V (R) ∩A1 ⊆ V (R1) and V (R1) ∩B ⊆ V (R).

2. Every vertex in (V (R1) \ V (R)) ∩A1 has at most one neighbor in V (R) ∩B.
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A

B

R MH

Figure 1: The graph R is an induced forest of GA,B and M is a minimal vertex cover of GA,B−V (R).
Observe that R is a reduced forest of H. The four vertices in V (H) \ V (R) are potential leaves
with respect to R and M .

3. M ∩A1 ⊆M1 and M1 ∩B ⊆M .

Lastly, we define a notion of compatibility of two partial solutions for the algorithm. To clarify,
in the following definition, the partitions of the connected components of Ri represent connectivity
information about induced forests in G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)]) respecting Ri.

Definition 13 (Compatibility). Let (A1, A2, B) be a vertex partition of a graph G. Let R be an
induced forest in GA1∪A2,B, and for each i ∈ {1, 2}, let Ri be an induced forest in GAi,A3−i∪B, and
Pi be a partition of C(Ri). We construct an auxiliary graph Q with respect to (R,R1, R2, P1, P2)
in G as follows. Let Q be the graph on the vertex set C(R) ∪ C(R1) ∪ C(R2) such that

– for H1 and H2 in distinct sets of C(R), C(R1), C(R2), H1 is adjacent to H2 in Q if and only if
V (H1) ∩ V (H2) 6= ∅,

– for i ∈ {1, 2} and the set of connected components contained in the same part of Pi, we add
a path on the parts of Pi,

– C(R) is an independent set.

We say that the tuple (R,R1, R2, P1, P2) is compatible inG ifQ has no cycles. We define U(R,R1, R2, P1, P2)
to be the partition of C(R) such that for H1, H2 ∈ C(R), H1 and H2 are contained in the same part
if and only if they are contained in the same connected component of Q.

The remainder of this section is devoted to proving three technical propositions related to
the notions introduced above that will be important to establish the correctness of the algorithm
proposed in Section 4. Let t ∈ V (T ) be an internal node in the given branch decomposition of G
with children a and b. In Section 3.1 we show that given any forest Ft in G[Vt ∪ bd(Vt)] respecting
a pair (Rt,Mt), we can find restrictions (Ra,Ma) and (Rb,Mb) to Ga,a and Gb,b, respectively, such

that a forest Fa in G[Va ∪ bd(Va)] respecting (Ra,Ma) and a forest Fb in G[Vb ∪ bd(Vb)] respecting
(Rb,Mb) can be combined to the forest Ft, i.e. we have that Ft = Fa ∪ Fb. In Section 3.2 we prove
the converse direction. For the sake of generality, we will state the results in terms of a 3-partition
(A1, A2, B) rather than (Va, Vb, Vt) (i.e., independently of a branch decomposition of a graph).
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3.1 Top to bottom

Proposition 14. Let (A1, A2, B) be a vertex partition of a graph G. Let R be an induced forest
in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R). Let H be an induced forest in
G[A1 ∪A2 ∪ bd(B)]− E(G[bd(B)]) respecting (R,M).

Then there are restrictions (R1,M1) and (R2,M2) of (R,M) to GA1,A2∪B and GA2,A1∪B, re-
spectively, such that

1. for each i ∈ {1, 2}, H ∩G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)]) respects (Ri,Mi),

2. every vertex in (V (R) \ (V (R1) ∪ V (R2))) ∩ B has at least two neighbors in (V (R1) ∩ A1) ∪
(V (R2) ∩A2), and

3. for each i ∈ {1, 2}, V (Ri) ∩A3−i ⊆ V (R3−i).

Proof. Let A = A1∪A2 and HA,B = H ∩GA,B. For each i ∈ {1, 2}, let F ∗i
..= H ∩G[Ai∪bd(A3−i∪

B)]−E(G[bd(A3−i ∪B)]), and let Fi ..= F ∗i ∩GAi,A3−i∪B, and let Ri be a reduced forest of Fi such
that the following holds.

(Single-edge Rule I.) For a single-edge component vw of Fi with v ∈ V (R) and w /∈ V (R), we
select v as a vertex of Ri.

(Single-edge Rule II.) For an edge vw with v ∈ A1, w ∈ A2, and v, w /∈ V (R) that is a single-
edge component in both F1 and F2, we select the same vertex as a vertex of Ri in both F1

and F2.

We first prove (2).

Claim 14.1. Every vertex in (V (R) \ (V (R1)∪ V (R2)))∩B has at least two neighbors in (V (R1)∩
A1) ∪ (V (R2) ∩A2).

Proof. Suppose there exists a vertex v in (V (R)\(V (R1)∪V (R2)))∩B having at most one neighbor
in (V (R1) ∩ A1) ∪ (V (R2) ∩ A2). If NH(v) contains exactly one vertex w, then vw was a single-
edge component of HA,B; otherwise, v would have been removed while taking the reduced forest of
HA,B. But then w /∈ V (R) because v ∈ V (R), and Single-edge rule I forces v ∈ V (R1) ∪ V (R2), a
contradiction with the assumption. So v has at least two neighbors in V (H) ∩ (A1 ∪A2). Thus, v
has a neighbor not contained in (V (R1)∩A1)∪ (V (R2)∩A2). Let w be such a vertex, and without
loss of generality, we assume that w ∈ A1.

If v has a neighbor other than w in F1, then v is contained in R1. So, in F1, w is the unique
neighbor of v in V (H) ∩A1. Also, since w /∈ V (R1), v is the unique neighbor of w in F1. Then vw
is a single-edge component of F1, and by Single-edge Rule I, we selected v as a vertex of R1. This
contradicts v /∈ V (R1).

We conclude that every vertex in (V (R) \ (V (R1) ∪ V (R2))) ∩ B has at least two neighbors in
(V (R1) ∩A1) ∪ (V (R2) ∩A2). �

We prove (3).

Claim 14.2. For each i ∈ {1, 2}, V (Ri) ∩A3−i ⊆ V (R3−i).
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Proof. Let v ∈ V (Ri) ∩ A3−i. As v ∈ V (Ri), v has a neighbor w in Fi. Note that either v has at
least two neighbors in Fi or vw is a single-edge component of Fi such that v is selected as a vertex
of Ri.

Assume that v has at least two neighbors in Fi. By construction, edges between these two
vertices and v are in H, and therefore, these two edges are also contained in F3−i as well. Then
since v has degree at least 2 in F3−i, v is in R3−i, as required.

Thus, we may assume that vw is a single-edge component of Fi. If w ∈ V (R), then it should
have a neighbor in B, which contradicts the fact that vw is a single-edge component of Fi. So,
w /∈ V (R).

Note that vw may not be a single-edge component of F3−i because of edges between A2 and B.
If NF3−i(v) contains a vertex other than w, then v is selected as a vertex of R3−i as w is a leaf of
F3−i. We may assume that w is the unique neighbor of v in F3−i. In particular, v /∈ V (R). Since
v is selected as a vertex of Ri, by Single-edge Rule II, v is also selected as a vertex of R3−i. Thus,
v ∈ V (R3−i), as required. �

In the remainder of this proof we show (1), i.e. that for each i ∈ {1, 2}, Ri is a restriction
of R. We will construct a minimal vertex cover Mi later, after confirming first two conditions of
Definition 12. We give the proof for i = 1; an analogous proof holds for i = 2.

Claim 14.3. V (R) ∩A1 ⊆ V (R1).

Proof. Let v ∈ V (R) ∩ A1. Since v ∈ V (R), v has at least one neighbor in HA,B, and thus, v has
at least one neighbor in F1 on B as well. So, either v has degree at least 2 in F1 or the unique
neighbor of v in F1 is its potential leaf with respect to (R,M) in HA,B. In the former case, clearly
v is contained in R1, and in the latter case, v was chosen as a vertex of R1 by Single-edge Rule I.�

Claim 14.4. V (R1) ∩B ⊆ V (R).

Proof. It is sufficient to prove that every vertex in (V (F1) \ V (R)) ∩ B is not contained in R1.
Suppose v is a vertex in (V (F1) \ V (R))∩B. If v has degree at least 2 in HA,B, then v ∈ V (R), so
we can assume that v has degree at most 1 in HA,B. If v is isolated in F1, then v /∈ V (R1), so v has
degree 1 in F1. Let w be the neighbor of v in F1. If w has degree at least 2 in F1, then v is removed
by definition of a reduced forest. So, vw is a single-edge component of F1, and since v /∈ V (R),
we have w ∈ V (R). Thus, by Single-edge Rule I, we have that v /∈ V (R1) and w ∈ V (R1). We
conclude that V (R1) ∩B ⊆ V (R). �

Claim 14.5. Every vertex in (V (R1) \ V (R)) ∩A1 has at most one neighbor in V (R) ∩B.

Proof. Suppose not and let v ∈ (V (R1) \ V (R)) ∩ A1 such that v has two neighbors x and y in
V (R) ∩ B. Clearly, {v, x, y} ⊆ V (H). But then, v ∈ V (R) by the definition of reduced forests, a
contradiction. �

We now construct a minimal vertex cover M1 of GA1,A2∪B −V (R1) which avoids F1, and verify
the third condition of Definition 12. See Figure 2 for an illustration of Y and Z that are constructed
below.

Note that there may be an edge between (V (R) \V (R1))∩B and A1 \V (F1) \ (M ∩A1), which
is not hit by M . For example, it is possible that a vertex a ∈ A1 \ V (F1) \ (M ∩ A1) and a vertex
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Figure 2: An illustration of Y and Z.

b ∈ (V (R)\V (R1))∩B are adjacent in G (but not in H) and a was a potential leaf of b with respect
to R and M , but b has only neighbors on A2 in HA,B, so that b ∈ V (R). In this case, when we
look at GA1,A2∪B − V (R1), a and b are not contained in V (R1) and a is not contained in M ∩A1.
To hit such edges, we define Z as the set of all vertices in A1 \ V (F1) \ (M ∩A1) having a neighbor
in (V (R) \ V (R1)) ∩B.

We also need to hit all edges between A1 and A2 in GA1,A2∪B − V (R1). We use vertices in A2

to hit these edges. We define Y to be the set of all vertices in A2 \ V (F1) having a neighbor in
A1 \ V (R1) \ (M ∩A1).

Let M ′ ..= M ∪ Y ∪ Z. We first show that M ′ is a vertex cover of GA1,A2∪B − V (R1).

Claim 14.6. The set M ′ is a vertex cover of GA1,A2∪B − V (R1).

Proof. Suppose there is an edge yz in GA1,A2∪B − V (R1) not covered by M ′. As Y hits all edges
between A1 and A2 in GA1,A2∪B − V (R1), this edge is an edge between A1 and B. Assume that
y ∈ A1 and z ∈ B.

As V (R) ∩ A1 ⊆ V (R1), z cannot be in B \ (V (R) ∪M), and thus, z ∈ (V (R) \ V (R1)) ∩ B.
However, since Z covers all edges between A1 \V (R1)\ (M ∩A1) and (V (R)\V (R1))∩B, y should
be contained in Z, a contradiction. Therefore, M ′ is a vertex cover of GA1,A2∪B − V (R1). �

Now, we take a minimal vertex cover M1 of GA1,A2∪B−V (R1) contained in M ′. Clearly, the set
M1 is a minimal vertex cover of GA1,A2∪B − V (R1) satisfying that M ∩A1 ⊆M1 and M1 ∩B ⊆M
by construction. So, M1 satisfies the third condition of Definition 12 and (R1,M1) is a restriction
of (R,M).

It remains to show that F ∗1 respects (R1,M1). By construction, R1 is a reduced forest of F1 so
we only have to show that that V (F ∗1 ) ∩M1 = ∅, and in particular, by the construction, it suffices
to prove that Z ∩ V (F ∗1 ) = ∅.

Claim 14.7. Z ∩ V (F ∗1 ) = ∅.

Proof. Suppose not; let x ∈ Z∩V (F ∗1 ). Because x /∈ V (F1), x has no neighbor in B inG[A1∪bd(B)].
Therefore, x /∈ Z, by definition. �

We conclude that F ∗1 respects (R1,M1). �

11



Proposition 15. Let (A1, A2, B) be a vertex partition of a graph G. Let R be an induced forest
in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R). Let H be an induced forest in
G[A1 ∪A2 ∪ bd(B)]− E(G[bd(B)]) respecting (R,M) and for each i ∈ {1, 2},

– let (Ri,Mi) be a restriction of (R,M) that H ∩G[Ai ∪ bd(A3−i ∪B)]− E(G[bd(A3−i ∪B)])
respects (guaranteed by Proposition 14), and

– let Pi be the partition of C(Ri) such that for C,C ′ ∈ C(Ri), C and C ′ are in the same part
if and only if they are contained in the same connected component of H ∩G[Ai ∪ bd(A3−i ∪
B)]− E(G[bd(A3−i ∪B)]).

Then (R,R1, R2, P1, P2) is compatible.

Proof. Let Q be the auxiliary graph of (R,R1, R2, P1, P2). It is not difficult to see that if Q contains
a cycle, then H also contains a cycle, which leads to a contradiction. Thus, Q has no cycles. �

3.2 Bottom to top

Proposition 16. Let (A1, A2, B) be a vertex partition of a graph G. Let R be an induced forest
in GA1∪A2,B and M be a minimal vertex cover of GA1∪A2,B − V (R) such that for every vertex x of
degree at most 1 in R, PLR,M (x) 6= ∅. For each i ∈ {1, 2},

– let Ri be an induced forest in GAi,A3−i∪B and Mi be a minimal vertex cover of GAi,A3−i∪B −
V (Ri), and Hi be an induced forest in G[Ai ∪ bd(A3−i ∪B)]−E(G[bd(A3−i ∪B)]) respecting
(Ri,Mi),

– let Pi be the partition of C(Ri) such that for C,C ′ ∈ C(Ri), C and C ′ are in the same part if
and only if they are contained in the same connected component of Hi,

– (Ri,Mi) is a restriction of (R,M).

Furthermore,

– for each i ∈ {1, 2}, V (Ri) ∩A3−i ⊆ V (R3−i),

– every vertex in (V (R) \ (V (R1) ∪ V (R2))) ∩ B has at least two neighbors in (V (R1) ∩ A1) ∪
(V (R2) ∩A2),

– (R,R1, R2, P1, P2) is compatible.

Then there is an induced forest H in G[A1 ∪ A2 ∪ bd(B)] − E(G[bd(B)]) respecting (R,M) such
that

– V (H) ∩ (A1 ∪A2) = (V (H1) ∩A1) ∪ (V (H2) ∩A2).

Proof. For each i ∈ {1, 2}, we obtain H ′i from Hi by removing all vertices that are contained in
(A3−i∪B)\V (Ri). This procedure achieves that V (H ′i)∩V (GAi,A3−i∪B) = V (Ri)∩V (GAi,A3−i∪B).
We take a new graph

H∗ ..= G[V (H ′1) ∪ V (H ′2) ∪ V (R)].

As (R,R1, R2, P1, P2) is compatible, we can verify that H∗ is a forest. Let H be the graph
obtained from H∗ − (B \ V (R)) by adding a potential leaf to each vertex in V (R) ∩ (A1 ∪ A2) of
degree at most 1 in R and then removing newly created edges between vertices contained in B. We
show that H is a forest.
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Claim 16.1. H is a forest such that V (H) ∩ (A1 ∪A2) = (V (H1) ∩A1) ∪ (V (H2) ∩A2).

Proof. Since H∗ is a forest, H∗− (B \ V (R)) is also a forest. Adding a potential leaf of a vertex in
V (R)∩ (A1 ∪A2) preserves the property of being a forest, as we removed all edges in B. When we
take H from H∗, we only change the vertices in B. Also, for each i ∈ {1, 2}, we have that

– V (R) ∩Ai ⊆ V (Ri) ⊆ V (Hi) by the first condition of Definition 12, and

– V (Ri) ∩A3−i ⊆ V (R3−i) by the precondition of this proposition.

Therefore, we have V (H) ∩ (A1 ∪A2) = (V (H1) ∩A1) ∪ (V (H2) ∩A2). �

In the remainder, we prove that H respects (R,M). We need to verify that

1. R is a reduced forest of GA1∪A2,B ∩H.

2. V (H) ∩M = ∅.

Condition (2) is easy to verify. Since we remove all vertices in M ∩ B ⊆ B \ V (R) when we
construct H from H∗ and then add only potential leaves with respect to R and M , we have
V (H) ∩ (M ∩B) = ∅. Furthermore, V (H) ∩ (M ∩ (A1 ∪A2)) = ∅ because

– V (H) ∩ (A1 ∪A2) = (V (H1) ∩A1) ∪ (V (H2) ∩A2),

– for each i ∈ {1, 2}, M ∩Ai ⊆Mi by the third condition of Definition 12.

We now verify condition (1). Let HA,B
..= H ∩GA1∪A2,B. We first verify the following.

Claim 16.2. Every vertex of V (HA,B) \ V (R) has degree at most 1 in HA,B.

Proof. Let v ∈ V (HA,B) \ V (R). First assume that v ∈ A1 ∪ A2. Without loss of generality, we
assume that v ∈ A1. Since M is a vertex cover of GA1∪A2,B−V (R), the neighborhood of v in HA,B

is contained in V (R) ∩B.
Suppose for contradiction that in HA,B, v has at least two neighbors in V (R)∩B. Since (R1,M1)

is a restriction of (R,M), by the second condition of Definition 12, v is not contained in R1. If v has
at least two neighbors in V (R1)∩B, then v should be contained in R1, a contradiction. Therefore, v
has at least one neighbor in (V (R)\V (R1))∩B, say w. Then vw is an edge of H1∩GA1,A2∪B−V (R1),
which contradicts the assumption that R1 is a reduced forest of H1 ∩ GA1,A2∪B. Therefore, v has
at most one neighbor in V (R) ∩B, as required.

Now we assume v ∈ B. By construction, v is a potential leaf of some vertex in R. Thus v has
degree 1 in HA,B, as required. �

We argue that R is a reduced forest of HA,B. Let v ∈ V (R). If v has degree at least 2 in HA,B,
then v is contained in any reduced forest of HA,B. Suppose v has degree at most 1 in HA,B.

Suppose v ∈ A1∪A2. In this case, by construction, v is incident with its potential leaf in HA,B,
say w. This means that vw is a single-edge component in HA,B, and we can take v as a vertex in
R.

Now, suppose v ∈ B. First assume that v ∈ V (Ri) for some i ∈ {1, 2}. If v has degree 1 in Ri,
then it also has at least one potential leaf in Hi ∩ GAi,A3−i∪B, and thus v has degree 2 in HA,B,
a contradiction. Thus, v has no neighbor in Ri, and has exactly one potential leaf, say w. By
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Claim 16.2, v is the unique neighbor of w in R, and thus vw is a single-edge component of HA,B.
Thus, we can take v as a vertex in R. Suppose v ∈ (V (R) \ (V (R1) ∪ V (R2))) ∩ B. Then by
the precondition, it has at least two neighbors in (V (R1) ∩ A1) ∪ (V (R2) ∩ A2) ⊆ (V (H1) ∩ A1) ∪
(V (H2)∩A2). Therefore, it is contained in any reduced forest of HA,B. With Claim 16.1, it shows
that R is a reduced forest of HA,B. �

4 Feedback Vertex Set on graphs of bounded mim-width

In this section we give an algorithm that solves the Feedback Vertex Set problem on graphs
on n vertices together with one of its branch decomposition of mim-width w in time nO(w). We
first give an algorithm for the unweighted version of the problem and then argue how to modify it
for the weighted version.

First, we observe that given a graph G, a subset of its vertex set S ⊆ V (G) is by definition a
feedback vertex set if and only if G− S is an induced forest; that is, V (G) \ S induces a forest. It
is therefore readily seen that computing the minimum size of a feedback vertex set is equivalent to
computing the maximum size of an induced forest, so in the remainder of this section we solve the
following problem which is more convenient for our exposition.

Maximum Induced Forest
Input: A graph G on n vertices, a branch decomposition (T,L) of G and an integer k.
Parameter: w ..= mimw(T,L).
Question: Does G contain an induced forest having at least k vertices?

We furthermore assume that G is connected; otherwise, we can solve it for each connected
component. Also, we assume that G contains at least 2 vertices.

We solve the Maximum Induced Forest problem by bottom-up dynamic programming over
(T,L), the given branch decomposition of G, starting at the leaves of T . Let t ∈ V (T ) be a
node of T . To motivate the table indices of the dynamic programming table, we now observe
how a solution to Maximum Induced Forest, an induced forest F , interacts with the graph
Gt+bd

..= G[Vt ∪ bd(Vt)] − E(G[bd(Vt)]). The intersection of F with Gt+bd is an induced forest
which throughout the following we denote by Ft+bd

..= F ∩ Gt+bd. Since we want to bound the
number of table entries by nO(w), we have to focus in particular on the interaction of F with the
crossing graph Gt,t which is an induced forest in Gt,t, denoted by Ft,t ..= F [V (Gt,t)].

However, it is not possible to enumerate all induced forests in a crossing graph as potential
table indices: Consider for example a star on n vertices and the cut consisting of the central vertex
on one side and the remaining vertices on the other side. This cut has mim-value 1 but it contains
2n induced forests, since each vertex subset of the star induces a forest on the cut. The remedy for
this issue are reduced (induced) forests, introduced in Section 3.

In order to avoid having exponentially (in n) many table entries at each node t ∈ V (T ), we use
all reduced forests of Gt,t to represent the ways in which induced forests can intersect with Gt,t as
parts of the table entries. By Lemma 8, the number of reduced forests in each cut of mim-value w
is bounded by O(n6w). However, reduced forests alone do not provide enough information about
induced forests in Gt,t. We now analyze the structure of Ft,t to motivate the additional objects that
can be used to represent Ft,t in such a way that the number of all possible table entries remains

bounded by nO(w).
Let R be a reduced forest of Ft,t. The induced forest Ft,t has three types of vertices in Gt,t:
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– The vertices of the reduced forest R.

– The leaves of the induced forest Ft,t that are not contained in R, denoted by L(Ft,t).

– Vertices in Ft,t that do not have a neighbor in Ft,t on the opposite side of the boundary, in
the following called non-crossing vertices and denoted by NC(Ft,t).

As outlined above, the only type of vertices in Ft,t that will be used as part of the table indices
are the vertices of a reduced forest of Ft,t, since otherwise, the number of possible indices might
be exponential in n. Hence, we neither know about the leaves of Ft,t (apart from components that
are single edges) nor its non-crossing vertices upon inspecting this part of the index. Suppose we
have a vertex v ∈ (L(Ft,t) ∪ NC(Ft,t)) ∩ Vt and consider N∗

t
(v) ..= (NG(v) ∩ Vt) \ V (R). Then,

Ft,t does not use any vertex x in N∗
t
(v): If v is a leaf in Ft,t, then the presence of the edge {v, x}

would make it a non-leaf vertex and if v is a non-crossing vertex, the presence of {v, x} would make
v a vertex incident with an edge of the forest crossing the cut. An analogous point can be made
for a vertex in (L(Ft,t) ∪ NC(Ft,t)) ∩ Vt. In the table indices, we capture this property of Ft,t by
considering a minimal vertex cover of Gt,t − V (R) that avoids all leaves and non-crossing vertices
of Ft,t. We observe that such a minimal vertex cover always exists. (Note that L(Ft,t) ∪ NC(Ft,t)
is an independent set in Gt,t.)

Observation 17. Let G be a graph and X ⊆ V (G) an independent set in G. Then, there exists a
minimal vertex cover M of G such that X ∩M = ∅.

Lastly, we have to keep track of how the connected components of Ft,t (respectively, R) are
joined together via the forest Ft+bd. This forest induces a partition of C(R) in the following way:
Two components C1, C2 ∈ C(R) are in the same part of the partition if and only if C1 and C2 are
contained in the same connected component of Ft+bd.

We are now ready to define the indices of the dynamic programming table T to keep track
of sufficiently much information about the partial solutions in the graph Gt+bd. Throughout the
following, we denote by Rt the set of all induced forests of Gt,t on at most 6w vertices (which by
Lemma 8 contains all reduced forests in Gt,t). For R ∈ Rt, we let Mt,R be the set of all minimal
vertex covers of Gt,t − V (R) and Pt,R the set of all partitions of the connected components of R.

For an illustration of the above discussion and also the definition of the table indices, which
we start on now, see Figure 3. For (R,M,P ) ∈ Rt × Mt,R × Pt,R and i ∈ {0, . . . , n}, we set
T [t, (R,M,P ), i] ..= 1 (and to 0 otherwise), if and only if the following conditions are satisfied.

1. There is an induced forest F in G[Vt∪bd(Vt)]−E(G[bd(Vt)]), such that V (F )∩Vt has size i.

2. Let Ft,t = F ∩Gt,t, i.e. Ft,t is the subforest of F induced by the vertices of the crossing graph
Gt,t. Then, R is a reduced forest of Ft,t.

3. M is a minimal vertex cover of Gt,t − V (R) such that V (F ) ∩M = ∅.

4. P is a partition of C(R) such that two components C1, C2 ∈ C(R) are in the same part of the
partition if and only if C1 and C2 are contained in the same connected component of F .

For a node t ∈ V (T ), we let Tt be the subtable of T with respect to t as the table entries that have
t as a first index. I.e. for (R,M,P ) ∈ Rt×Mt,R×Pt,R and i ∈ {0, . . . , n}, we let Tt[(R,M,P ), i] ..=
T [t, (R,M,P ), i]. Note that (2) and (3) express that F respects (R,M). Regarding (3), recall that
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Figure 3: An example of a crossing graph Gt,t together with an induced forest F and their interac-
tion. The forest Ft,t = F [V (Gt,t)] is displayed to the left of the dividing line in the drawing and the
4 vertices and 1 edge in bold form a reduced forest R of Ft,t. The square vertices form a minimal
vertex cover of Gt,t − V (R) satisfying (3). Furthermore, Ci (i ∈ [3]) are the connected components
of R and Di (i ∈ [2]) are the connected components of F .

even though the leaves and non-crossing vertices of Ft,t are still contained in Gt,t−V (R), a minimal
vertex cover that avoids the leaves and non-crossing vertices of Ft,t always exists by Observation 17.

Recall that r ∈ V (T ) denotes the root of T , the tree of the given branch decomposition of G.
From Property (1) we immediately observe that the table entries store enough information to obtain
a solution to Maximum Induced Forest after all table entries have been filled. In particular, we
make

Observation 18. The graph G contains an induced forest on i vertices if and only if T [r, (∅, ∅, ∅), i] =
1.

Before we proceed with the description of the algorithm, we first show that the number of table
entries is bounded by a polynomial whose degree is linear in the mim-width w of the given branch
decomposition.

Proposition 19. There are at most nO(w) table entries in T .

Proof. Let t ∈ V (T ). We show that the number of table entries in Tt is bounded by nO(w) which
together with the observation that |V (T )| = O(n) yields the proposition. By definition, |Rt| =
O(n6w) and by the Minimal Vertex Covers Lemma we have for each R ∈ Rt that |Mt,R| = nO(w).
The size of Pt,R is at most the number of partitions of a set of size 6w, and hence at most B6w <
(w/ log(w))O(w) by standard upper bounds on the Bell number B6w. Finally, there are n+1 choices
for the integer i. To summarize, there are at most

O
(
n6w

)
· nO(w) · (w/ log(w))O(w) · (n+ 1) = nO(w)

table entries in Tt and the proposition follows. �

We now show how to compute the table entries in T . First, we explain how to compute the
entries in T` for the leaves ` of T and then how to compute the entries in the internal nodes of T
from the entries stored in the tables corresponding to their children.
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Leaves of T . Let t ∈ V (T ) be a leaf of T and v = L−1(t). Clearly, the crossing graph Gt,t is a star
S with central vertex v or a single edge. Hence, any induced forest F in G[{v}∪N(v)]−E(G[N(v)])
satisfies that either V (F ) = {v} or V (F ) ⊆ N(v) or F contains an edge in Gt,t. In the last case,
either F is a single edge or a star with central vertex v. Let R be a reduced forest of F . The cases
we have to consider to fill the table entries are the following.

If F = ∅, then both {v} and N(v) are feasible minimal vertex covers and clearly, P = ∅. If
V (F ) = {v}, then R = ∅, M = N(v), P = ∅, and i = 1. If V (F ) ⊆ N(v), then R = ∅, M = {v},
P = ∅, and i = 0. Throughout the following, we assume that F contains an edge in Gt,t.

Suppose F is a single edge {v, w}. Then, R is either the vertex v or the vertex w. If V (R) = {v},
then Gt,t − V (R) does not contain any edges and hence Mt,R = {∅}. Furthermore, F has size one
in G[Vt] = G[{v}]. If V (R) = {w}, then v is a leaf in F and hence the only minimal vertex cover
satisfying (3) is the set of neighbors of v without w, i.e. the set N(v) \ {w}. The size of F in G[Vt]
is 1. In both cases, F only has one component, so Pt,R = {{R}}.

Now suppose that F has at least three vertices. Then, F is a star with central vertex v and
hence, the reduced forest of any such F is the single vertex v. Since the vertices of F in Vt are not
counted in the table entry by (1), we only have to consider one index where the reduced forest is v,
the minimal vertex cover is empty (again since Gt,t − {v} does not have any edges), the partition
of R is the singleton partition and i = 1, since F has size one in G[Vt] = G[{v}]. To summarize,
the table entries for the leaf t are set as follows.

T [t, (R,M,P ), i] ..=



1, if R = ∅,M ∈ {{v}, N(v)}, P = ∅, i = 0
1, if R = ∅,M = N(v), P = ∅, i = 1
1, if R = G[{v}],M = ∅, P = {R}, i = 1
1, if R = G[{w}] where w ∈ N(v),M = N(v) \ {w},

P = {R}, i = 1
0, otherwise

Internal Nodes of T . Let t ∈ V (T ) be an internal node with children a and b. Using Proposi-
tions 14, 15 and 16, we can show the following.

Proposition 20. Let I = [(R,M,P ), i] ∈ (Rt ×Mt,Rt × Pt,Rt) × {0, . . . , n} such that for every
vertex x of degree at most 1 in R, PLR,M (x) 6= ∅. Then T [t, (R,M,P ), i] = 1 if and only if there
are restrictions (Ra,Ma) and (Rb,Mb) of (R,M) to Ga,a and Gb,b, respectively, and partitions Pa
and Pb of C(Ra) and C(Rb), respectively, and integers ia and ib such that

– T [ta, (Ra,Ma, Pa), ia] = 1 and T [tb, (Rb,Mb, Pb), ib] = 1,

– (R,Ra, Rb, Pa, Pb) is compatible and P = U(R,Ra, Rb, Pa, Pb),

– every vertex in (V (R) \ (V (Ra) ∪ V (Rb))) ∩ B has at least two neighbors in (V (Ra) ∩ Va) ∪
(V (Rb) ∩ Vb),

– V (Ra) ∩ Vb ⊆ V (Rb) and V (Rb) ∩ Va ⊆ V (Ra),

– ia + ib = i.

Proof. Suppose T [t, (R,M,P ), i] = 1. Let H be an induced forest of G[Vt ∪bd(Vt)]−E(G[bd(Vt)])
that is a partial solution with respect to (R,M,P ) and i. For each x ∈ {a, b}, let Hx

..= H ∩
(G[Vx ∪ bd(Vx)]−E(G[bd(Vx)])). By Proposition 14, there are restrictions (Ra,Ma) and (Rb,Mb)
of (R,M) to Va and Vb, respectively, such that
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– Ha respects (Ra,Ma), and Hb respects (Rb,Mb), and

– every vertex in (V (R) \ (V (Ra) ∪ V (Rb))) ∩ B has at least two neighbors in (V (Ra) ∩ Va) ∪
(V (Rb) ∩ Vb),

– V (Ra) ∩ Vb ⊆ V (Rb) and V (Rb) ∩ Va ⊆ V (Ra).

For each x ∈ {a, b}, let Px be the partition of C(Rx) such that two graphs in C(Rx) are contained
in the same part if and only if they are contained in the same connected component of Hx. Then
by Proposition 15, the tuple (R,Ra, Rb, Pa, Pb) is compatible and it is not difficult to verify that
P = U(R,Ra, Rb, Pa, Pb). Let ix ..= |V (H) ∩ V (G[Vx])|. Then, ia + ib = i as Va and Vb are disjoint.
This concludes the forward direction.

To verify the converse direction, suppose the latter conditions hold. For each x ∈ {a, b}, let Hx

be an induced forest in G[Vx ∪ bd(Vx)] − E(G[bd(Vx)]) that is a partial solution with respect to
(Rx,Mx, Px) and ix. By the second, third, and fourth condition, we can apply Proposition 16 to
conclude that there is an induced forest H in G[Vt∪bd(Vt)]−E(G[bd(Vt)]) respecting (R,M) such
that

H ∩G[Vt] = (Ha ∩G[Va]) ∪ (Hb ∩G[Vb]).

Therefore, we have |V (H)∩Vt| = |V (Ha)∩Va|+ |V (Hb)∩Vb| = ia+ ib = i, so T [t, (R,M,P ), i] = 1,
as required. �

Based on Proposition 20, we can proceed with the computation of the table at an internal node
t with children a and b. Let I = [(R,M,P ), i] ∈ (Rt ×Mt,Rt × Pt,Rt)× {0, . . . , n}.

Step 1 (Valid Index). We verify whether I is valid, i.e. whether it can represent a valid partial
solution in the sense of the definition of the table entries. That is, each vertex of degree at
most 1 in R has to have at least one potential leaf.

Step 2 (Reduced Forests). We consider all pairs of indices for Ta and Tb denoted by

– Ia = [(Ra,Ma, Pa), ia] ∈ (Ra ×Ma,Ra × Pa,Ra)× {0, . . . , n} and

– Ib = [(Rb,Mb, Pb), ib] ∈ (Rb ×Mb,Rb
× Pb,Rb

)× {0, . . . , n}.

We check

– (Ra,Ma) and (Rb,Mb) are restrictions of (R,M) to Ga,a and Gb,b respectively,

– T [ta, (Ra,Ma, Pa), ia] = 1 and T [tb, (Rb,Mb, Pb), ib] = 1,

– (R,Ra, Rb, Pa, Pb) is compatible and P = U(R,Ra, Rb, Pa, Pb),

– every vertex in (V (R) \ (V (Ra) ∪ V (Rb))) ∩ B has at least two neighbors in (V (Ra) ∩
Va) ∪ (V (Rb) ∩ Vb),

– V (Ra) ∩ Vb ⊆ V (Rb) and V (Rb) ∩ Va ⊆ V (Ra),

– ia + ib = i.

If there are Ia and Ib satisfying all of the above conditions, then we assign T [t, (R,M,P ), i] =
1 and otherwise, we assign T [t, (R,M,P ), i] = 0. Correctness follows from Proposition 20.
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We finish by analyzing the running time of the algorithm. At each node t ∈ V (T ), we can
enumerate all table indices in time nO(w) by Corollary 6 and Proposition 19. Let I = [(R,M,P ), i] ∈
(Rt ×Mt,Rt × Pt,Rt) × {0, . . . , n}. If t is a leaf node, then T [t, (R,M,P ), i] can be computed in
linear time. Assume that t is an internal node. We can check in linear time whether I is valid
or not. Next, for all pairs of Ia = [(Ra,Ma, Pa), ia] ∈ (Ra ×Ma,Ra × Pa,Ra) × {0, . . . , n} and
Ib = [(Rb,Mb, Pb), ib] ∈ (Rb ×Mb,Rb

× Pb,Rb
) × {0, . . . , n} we verify that the conditions of Step

2 hold, which can be done in time O(n2). Therefore, by Proposition 19, we can decide whether
T [t, (R,M,P ), i] = 1 or not in time nO(w). As T contains O(n) nodes, we can solve Maximum
Induced Forest, and by duality Feedback Vertex Set in time nO(w).

We can easily modify our algorithm into an algorithm solving the weighted version of the
problem. In Weighted Feedback Vertex Set, we are given a graph and a weight function
ω : V (G) → R, we want to find a set S with minimum ω(S) such that G − S has no cycles.
Similar to Feedback Vertex Set, we can instead solve the problem of finding an induced forest
F with maximum ω(V (F )). Instead of specifying i in the table index [t, (R,M,P ), i], we store at
T [t, (R,M,P )] the maximum value ω(V (F ) ∩ Vt) over all induced forests F that respect (R,M)
and whose connectivity partition is P . The procedure for leaf nodes is analogous. In the internal
node, we compare all pairs (Ra,Ma, Pa) and (Rb,Mb, Pb) for children ta and tb, and take the maxi-
mum among all sums T [ta, (Ra,Ma, Pa)] + T [tb, (Rb,Mb, Pb)]. Therefore, we can solve Weighted
Feedback Vertex Set (and Maximum Weight Induced Forest) in time nO(w) as well. We
have proved Theorem 1.

Our algorithm can furthermore be used to solve the connected variant of the Maximum (Weight)
Induced Forest problem, namely Maximum (Weight) Induced Tree. To see this, note that
one part of the table indices is the connectivity partition of all forests that correspond to a given
index. Each part of this partition represents a connected component of a corresponding forest.
Hence, we can solve Maximum (Weight) Induced Tree as follows. First, we compute all the
table entries as when solving Maximum (Weight) Induced Forest. Then, when reading off
the solution value to the problem in the table entries corresponding to the root of the branch de-
composition, we simply restrict our search to table indices whose connectivity partitions consist of
a single part: these entries are precisely the ones that correspond to solutions that form a tree.

Corollary 21. Given an n-vertex graph and one of its branch decompositions of mim-width w, we
can solve Maximum (Weight) Induced Forest and Maximum (Weight) Induced Tree in
time nO(w).

5 W[1]-hardness results

We now prove that Feedback Vertex Set is W[1]-hard parameterized by mim-width, ruling out
the possibility of FPT-algorithms for this parameterized problem under the standard assumption
that FPT 6= W[1]. Again we will prove our results by considering the Maximum Induced Forest
problem, the dual to Feedback Vertex Set. Before we proceed, we will introduce some more
preliminaries and notation. In particular, we introduce H-graphs which are crucially used in the
reduction.

Throughout this section, for a graphG, we let |G| ..= |V (G)| and ||G|| ..= |E(G)|. Let uv ∈ E(G).
We call the operation of adding a new vertex x to V (G) and replacing uv by the path uxv the edge
subdivision of uv. We call a graph G′ a subdivision of G if it can be obtained from G by a series of
edge subdivisions.

19



u1

w(1,3)

u3

u2

w(1,2) w(2,3)

πx
1

πy
1

πx
2 πy

2

πx
3

πy
3

πx
(1,2)

π
y

(1,2)
π
y

(2,3)

πx
(2,3)

πx
(1,3)

π
y

(1,3)

Figure 4: Illustration of the graph H for k = 3.

H-Graphs. Let X be a set and S be a family of subsets of X. The intersection graph of S is
a graph with vertex set S such that S, T ∈ S are adjacent if and only if S ∩ T 6= ∅. Let H be a
(multi-) graph. We say that G is an H-graph if there are a subdivision H ′ of H and a family of
subsetsM ..= {Mv}v∈V (G) (called an H-representation) of V (H ′) where H ′[Mv] is connected for all
v ∈ V (G), such that G is isomorphic to the intersection graph of M.

Fomin et al. [16] showed that H-graphs have linear mim-width at most 2 · ||H|| [16, Thm. 2]
and that Independent Set is W[1]-hard parameterized by k+ ||H||, where k denotes the solution
size [16, Thm. 17]. This implies that Independent Set is W[1]-hard for the combined parameter
solution size plus linear mim-width [16, Cor. 19]. We will modify their reduction to show that Max-
imum Induced Forest parameterized by the mim-width of a given linear branch decomposition
plus the solution size remains W[1]-hard.

The reduction is from Multicolored Clique where given a graph G and a partition V1, . . . , Vk
of V (G), the question is whether G contains a clique of size k using precisely one vertex from each
Vi (i ∈ {1, . . . , k}). This problem is known to be W[1]-complete parameterized by k [13, 30].

Theorem 22. Maximum Induced Forest on H-graphs is W[1]-hard parameterized by k+ ||H||,
where k denotes the solution size, and the hardness holds even when an H-representation of the
input graph is given.

Proof. Let (G,V1, . . . , Vk) be an instance of Multicolored Clique. We can assume that k ≥ 2
and that |Vi| = p for i ∈ [k]. If the second assumption does not hold, let p ..= maxi∈[k]|Vi| and add
p− |Vi| isolated vertices to Vi, for each i ∈ [k]; we denote by vi1, . . . , v

i
p the vertices of Vi.

We obtain an H-graph G′ from an adapted version of the construction due to Fomin et al. [16,
Proof of Thm. 17]. The graph H is obtained as follows, see Figure 4 for an illustration.6

1. Construct k nodes u1, . . . , uk.

2. For every 1 ≤ i < j ≤ k, construct a node wi,j and two pairs of parallel edges uiwi,j and
ujwi,j .

6We would like to stress that the reduction given here is closely inspired by the one due to Fomin, Golovach
and Raymond [16]. The main difference in the construction of H and the resulting H-graph G′ revolves around
introducing the new vertices to H in Steps 3 and 4 below which are key to fit the reduction for Maximum Induced
Forest. Note also that the subdivisions described below are the same as in [16].
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Figure 5: A part of the subdivision H ′ of H, where 1 ≤ i < j ≤ k.

3. For each i ∈ [k], add to H two neighbors πxi and πyi of ui.

4. For each 1 ≤ i < j ≤ k, add to H two neighbors πx(i,j) and πy(i,j) of w(i,j).

We let Π ..=
⋃
i∈[k]{πxi , π

y
i } ∪

⋃
1≤i<j≤k{πx(i,j), π

y
(i,j)}. Note that |H| = (3/2)k(k + 1) and

||H|| = k(3k − 1). (1)

We obtain a subdivision H ′ of H by subdividing each edge in E(G − Π) p times. We denote the
subdivision nodes obtained from subdividing the edges added in Step 2 as follows. Let 1 ≤ i < j ≤ k
and consider the pair of edges between ui and wi,j . We denote the subdivision nodes corresponding

to the first edge in that pair by x
(i,j)
1 , . . . , x

(i,j)
p , and the subdivision nodes corresponding to the

second edge in that pair by y
(i,j)
1 , . . . , y

(i,j)
p . Similarly, for the pair of edges between uj and wi,j , we

denote the subdivision nodes corresponding to the first edge in that pair by x
(j,i)
1 , . . . , x

(j,i)
p , and

the subdivision nodes corresponding to the second edge in that pair by y
(j,i)
1 , . . . , y

(j,i)
p . To simplify

notation, we assume that ui = x
(i,j)
0 = y

(i,j)
0 , uj = x

(j,i)
0 = y

(j,i)
0 and wi,j = x

(i,j)
p+1 = y

(i,j)
p+1 = x

(j,i)
p+1 =

y
(j,i)
p+1 . We illustrate this subdivision process in Figure 5.

We now construct the H-graph G′ by defining its H-representation M = {Mv}v∈V (G′) where
each Mv is a connected subset of V (H ′). (Recall that G denotes the graph of the Multicolored
Clique instance.)

1. For each i ∈ [k] and s ∈ [p], we add a vertex zis (representing vertex vis from G) whose model
is

Mzis
..= {πxi , π

y
i } ∪

⋃
j∈[k],j 6=i

({
x
(i,j)
0 , . . . , x

(i,j)
s−1

}
∪
{
y
(i,j)
0 , . . . , y

(i,j)
p−s

})
.

2. For each i ∈ [k], construct vertices αxi with model Mαx
i

..= {πxi } and αyi with model Mαy
i

..=

{πyi }.

3. For each edge visv
j
t ∈ E(G) for s, t ∈ [p] and 1 ≤ i < j ≤ k, construct a vertex r

(i,j)
s,t with
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Figure 6: Illustration of a part of G′, where 1 ≤ i < j ≤ k. Bold edges imply that all possible edges
between the corresponding (sets of) vertices are present. Non-bold edges mean that some of the
edges between the two sets of vertices are present, depending on the construction.

model

M
r
(i,j)
s,t

..= {πxi , π
y
i } ∪

{
x(i,j)s , . . . , x

(i,j)
p+1

}
∪
{
y
(i,j)
p−s+1, . . . , y

(i,j)
p+1

}
∪
{
x
(j,i)
t , . . . , x

(j,i)
p+1

}
∪
{
y
(j,i)
p−t+1, . . . , y

(j,i)
p+1

}
.

4. For each 1 ≤ i < j ≤ k, construct vertices α
(i,j)
x with model M

α
(i,j)
x

..= {πx(i,j)} and α
(i,j)
y with

model M
α
(i,j)
y

..= {πy(i,j)}.

5. Construct a vertex β with model Mβ
..= V (H) \Π.

Throughout the following, for i ∈ [k] and 1 ≤ i < j ≤ k, respectively, we use the notation

Z(i) ..=
⋃

s∈[p]

{
zis
}

and R(i, j) ..=
⋃

visv
j
t∈E(G),
s,t∈[p]

{
r
(i,j)
s,t

}
and we let Z+α(i) ..= Z(i)∪{αix, αiy} and R+α(i, j) ..= R(i, j)∪{α(i,j)

x , α
(i,j)
y }. We furthermore define

A ..=
⋃

i∈[k]

{
αix, α

i
y

}
∪
⋃

1≤i<j≤k

{
α(i,j)
x , α(i,j)

y

}
.

We continue with some observations about the global structure of G′.

Observation 22.1. Let 1 ≤ i < j ≤ k (wherever required).

1. N(αix) = Z(i) = N(αiy), N(α
(i,j)
x ) = R(i, j) = N(α

(i,j)
y ), and N(β) = V (G′) \A.

2. Z(i) induces a clique in G′ and R(i, j) induces a clique in G′.

3. A is an independent set in G′ of size 2k + 2 ·
(
k
2

)
.

By Observation 22.1, the structure of the graph G′ can be illustrated as shown in Figure 6. The
following observation about edges between Z(i) (respectively, Z(j)) and R(i, j) (for 1 ≤ i < j ≤ k)
is crucial for this reduction.
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Observation 22.2 (Claim 18 in [16]). For every 1 ≤ i < j ≤ k, a vertex zih ∈ V (G′) (a vertex

zjh ∈ V (G′)) is not adjacent to a vertex r
(i,j)
s,t corresponding to the edge visv

j
t ∈ E(G) if and only if

h = s (h = t, respectively).

We are now ready to prove the correctness of the reduction. In particular we will show that G has
a multicolored clique if and only if G′ has an induced forest of size k′ ..= 3k + 3

(
k
2

)
+ 1.

Claim 22.3. If G has a multicolored clique on vertex set
{
v1h1 , . . . , v

k
hk

}
, then G′ has an induced

forest of size k′ = 3k + 3 ·
(
k
2

)
+ 1.

Proof. Using Observation 22.2, one can easily verify that the set

I ..=
{
z1h1 , . . . , z

k
hk

}
∪
{
r
(i,j)
hi,hj

| 1 ≤ i < j ≤ k
}

(2)

is an independent set in G′. By Observation 22.1(3) and the construction given above, we can
conclude that F ..= I ∪A∪{β} induces a forest in G′: I and A are both independent sets and A∪ I
induces a disjoint union of paths on three vertices, the middle vertices of which are contained in
I. The only additional edges that are introduced are between β and vertices in I, so F induces a
tree. Clearly, |F | = |I|+ |A|+ |{β}| = k +

(
k
2

)
+ 2k + 2 ·

(
k
2

)
+ 1 = k′, proving the claim. �

We now prove the backward direction of the correctness of the reduction. This will be done by a
series of claims and observations narrowing down the shape of any induced forest on k′ vertices in
G′. Eventually, we will be able conclude that any such induced forest contains an independent set
of size k +

(
k
2

)
of the shape (2). We can then conclude that G contains a multicolored clique by

Observation 22.2.
The following is a direct consequence of Observation 22.1(2).

Observation 22.4. Let F be an induced forest in G′. Then, V (F ) contains

1. at most 2 vertices from Z(i), where i ∈ [k] and

2. at most 2 vertices from R(i, j), where 1 ≤ i < j ≤ k.

Next, we investigate the interaction of any induced forest with the sets Z+α(i) and R+α(i, j).

Claim 22.5. Let F be an induced forest in G′. If V (F ) contains two vertices from Z(i), where
i ∈ [k] (from R(i, j), where 1 ≤ i < j ≤ k), then V (F ) cannot contain a vertex from {αix, αiy} (from

{α(i,j)
x , α

(i,j)
y }, respectively).

Proof. Suppose V (F ) contains two vertices a, b ∈ Z(i). We prove the claim for αix and note that
the same holds for αiy. By Observation 22.1(2), a and b are adjacent and αix is adjacent to both a
and b by Observation 22.1(1). Hence, {αix, a, b} induces a 3-cycle in G′.

An analogous argument can be given for the second statement. �

In the light of Observation 22.4 and Claim 22.5, we make

Observation 22.6. Let F be an induced forest in G′. If V (F ) contains three vertices from Z+α(i)
for some i ∈ [k] (three vertices from R+α(i, j), respectively), then this set of three vertices must

include αix and αiy (resp., α
(i,j)
x and α

(i,j)
y ).
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The previous observation implies that in G′, any induced forest on k′ = 3k+ 3 ·
(
k
2

)
+ 1 has the

following form.

(I). For each i ∈ [k], V (F ) ∩ Z+α(i) = {αix, αiy, zis}, for some s ∈ [p].

(II). For each 1 ≤ i < j ≤ k, V (F ) ∩R+α(i, j) = {α(i,j)
x , α

(i,j)
y , r

(i,j)
t,t′ }, for some t, t′ ∈ [p].

(III). β ∈ V (F ).

To conclude the proof, we argue that any such induced forest F includes an independent set of size
k+

(
k
2

)
of the form (2). In particular, we use the following claim to establish the correctness of the

reduction.

Claim 22.7. Let F be an induced forest in G′ on k′ vertices, 1 ≤ i < j ≤ k and si, sj , ti, tj ∈ [p]. If

zisi , r
(i,j)
ti,tj

, zjsj ∈ V (F ), then si = ti and sj = tj.

Proof. Suppose not and assume wlog. that si 6= ti. Recall that by ((III)), we can assume that
β ∈ V (F ), and by construction, β is adjacent to all vertices in Z(i) and R(i, j), so in particular

β is adjacent to zisi and r
(i,j)
ti,tj

. However, by Observation 22.2 and the assumption that si 6= ti, we

have that zisir
(i,j)
ti,tj
∈ E(G′), hence

{
β, zisi , r

(i,j)
ti,tj

}
induces a cycle in F , a contradiction. �

Since by ((I)) and ((II)), any induced forest on k′ vertices contains precisely one vertex from
each Z(i) (for i ∈ [k]) and R(i, j) (for 1 ≤ i < j ≤ k), we can conclude together with Claim 22.7
that V (F ) contains an independent set{

z1s1 , . . . , z
k
sk

}
∪
{
r(i,j)si,sj | 1 ≤ i < j ≤ k

}
which by Observation 22.2 implies that G has a clique on vertex set

{
v1s1 , . . . , v

k
sk

}
which proves

the correctness of the reduction.
Finally, since the size of G′ is polynomial in the size of G, k′ = 3k + 3 ·

(
k
2

)
+ 1, and ||H|| =

k(3k−1) (see Eq. 1), we can conclude that Maximum Induced Forest on H-graphs is W[1]-hard
parameterized by k + ||H||. �

As in both directions of the correctness proof in the above reduction, the solution to Maximum
Induced Forest is connected, it shows hardness for the Maximum Induced Tree problem in
the same parameterization as well. Furthermore, since a graph on n vertices has an induced forest
of size k if and only if it has a feedback vertex set of size n− k, we have the following consequence
of Theorem 22.

Corollary 23. Maximum Induced Tree on H-graphs is W[1]-hard parameterized by k + ||H||,
where k denotes the solution size, and Feedback Vertex Set on H-graphs is W[1]-hard parame-
terized by ||H||, and in both cases the hardness holds even if an H-representation of the input graph
is given.

By [16, Thm. 2] we know that the linear mim-width of an H-graph is at most 2 · ||H|| and
a linear branch decomposition achieving this bound can be computed in polynomial time from a
given H-representation of the graph in question. Theorem 22 and Corollary 23 therefore imply the
following.
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Corollary 24. Maximum Induced Forest and Maximum Induced Tree are W[1]-hard pa-
rameterized by k + w, and Feedback Vertex Set is W[1]-hard parameterized by w, where k
denotes the solution size and w the linear mim-width of the input graph. In both cases, the hard-
ness holds even if a linear branch decomposition of mim-width w is given.

6 Conclusion

We have shown that (Weighted) Feedback Vertex Set admits an nO(w)-time algorithm when
given a branch decomposition of mim-width w. This provides a unified polynomial-time algo-
rithm for Feedback Vertex Set on known classes of bounded mim-width, and gives the first
polynomial-time algorithms for Circular Permutation and Circular k-Trapezoid graphs for
fixed k.

We note that some of the above mentioned graph classes of bounded mim-width also have
bounded asteroidal number, and a polynomial-time algorithm for Feedback Vertex Set on
graphs of bounded asteroidal number was previously known due to Kratsch et al. [27]. However,
our algorithm improves this result. For instance, k-Polygon graphs have mim-width at most
2k [1] and asteroidal number k [33]. The algorithm of Kratsch et al. [27] implies that Feedback
Vertex Set on k-Polygon graphs can be solved in time nO(k

2) while our result improves this
bound to nO(k) time. It is not difficult to see that in general, mim-width and asteroidal number
are incomparable.

We conclude with mentioning an open problem regarding a generalization of the Feedback
Vertex Set problem, the Subset Feedback Vertex Set problem which was introduced by
Even et al. [12]. Here, we are given a graph G, a subset S of its vertices and an integer k and
the question is whether there is a set of at most k vertices that intersects all cycles containing a
vertex from S. It would be interesting to see whether Subset Feedback Vertex Set is XP-time
solvable parameterized by mim-width, possibly by extending the approach given in this paper.

Open Question. Is there an XP-time algorithm that solves Subset Feedback Vertex Set
parameterized by the mim-width of a given branch decomposition of the input graph?

This question was also posed recently by Papadopoulos and Tzimas who gave an XP-time algorithm
for Subset Feedback Vertex Set parameterized by the size of an independent set in the input
graph [29]. Moreover, they also showed in earlier work that Subset Feedback Vertex Set
is polynomial-time solvable on Permutation and Interval graphs [28], both classes of linear
mim-width 1.
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