433 research outputs found

    The Combinatorics of the Foldings of RNA

    Get PDF
    RNA, much like DNA, is made up of four building blocks called nucleotides, Adenine, Guanine, Cytosine, and Uracil. These nucleotides form words that like to fold in on itself and bond together, each type of nucleotide bonding with only one other type of nucleotide. Therefore, order and number of nucleotides present will determine how many times the strand of RNA can fold. Using these guidelines, we considered what happens when we have only one bonding pair. Expanding on what was proven in k-Foldability of Words” (2017), we were able to expand on the number of ways a word can fold by adding to the list of ways any word of length 2n can fold. We also approached the problem from a different view by looking at how words with the same length and foldability compare to each other and defining operations between these words

    When Can You Fold a Map?

    Get PDF
    We explore the following problem: given a collection of creases on a piece of paper, each assigned a folding direction of mountain or valley, is there a flat folding by a sequence of simple folds? There are several models of simple folds; the simplest one-layer simple fold rotates a portion of paper about a crease in the paper by +-180 degrees. We first consider the analogous questions in one dimension lower -- bending a segment into a flat object -- which lead to interesting problems on strings. We develop efficient algorithms for the recognition of simply foldable 1D crease patterns, and reconstruction of a sequence of simple folds. Indeed, we prove that a 1D crease pattern is flat-foldable by any means precisely if it is by a sequence of one-layer simple folds. Next we explore simple foldability in two dimensions, and find a surprising contrast: ``map'' folding and variants are polynomial, but slight generalizations are NP-complete. Specifically, we develop a linear-time algorithm for deciding foldability of an orthogonal crease pattern on a rectangular piece of paper, and prove that it is (weakly) NP-complete to decide foldability of (1) an orthogonal crease pattern on a orthogonal piece of paper, (2) a crease pattern of axis-parallel and diagonal (45-degree) creases on a square piece of paper, and (3) crease patterns without a mountain/valley assignment.Comment: 24 pages, 19 figures. Version 3 includes several improvements thanks to referees, including formal definitions of simple folds, more figures, table summarizing results, new open problems, and additional reference

    Emergence of stable and fast folding protein structures

    Full text link
    The number of protein structures is far less than the number of sequences. By imposing simple generic features of proteins (low energy and compaction) on all possible sequences we show that the structure space is sparse compared to the sequence space. Even though the sequence space grows exponentially with N (the number of amino acids) we conjecture that the number of low energy compact structures only scales as ln N. This implies that many sequences must map onto countable number of basins in the structure space. The number of sequences for which a given fold emerges as a native structure is further reduced by the dual requirements of stability and kinetic accessibility. The factor that determines the dual requirement is related to the sequence dependent temperatures, T_\theta (collapse transition temperature) and T_F (folding transition temperature). Sequences, for which \sigma =(T_\theta-T_F)/T_\theta is small, typically fold fast by generically collapsing to the native-like structures and then rapidly assembling to the native state. Such sequences satisfy the dual requirements over a wide temperature range. We also suggest that the functional requirement may further reduce the number of sequences that are biologically competent. The scheme developed here for thinning of the sequence space that leads to foldable structures arises naturally using simple physical characteristics of proteins. The reduction in sequence space leading to the emergence of foldable structures is demonstrated using lattice models of proteins.Comment: latex, 18 pages, 8 figures, to be published in the conference proceedings "Stochastic Dynamics and Pattern Formation in Biological Systems

    Dynamical chaos and power spectra in toy models of heteropolymers and proteins

    Full text link
    The dynamical chaos in Lennard-Jones toy models of heteropolymers is studied by molecular dynamics simulations. It is shown that two nearby trajectories quickly diverge from each other if the heteropolymer corresponds to a random sequence. For good folders, on the other hand, two nearby trajectories may initially move apart but eventually they come together. Thus good folders are intrinsically non-chaotic. A choice of a distance of the initial conformation from the native state affects the way in which a separation between the twin trajectories behaves in time. This observation allows one to determine the size of a folding funnel in good folders. We study the energy landscapes of the toy models by determining the power spectra and fractal characteristics of the dependence of the potential energy on time. For good folders, folding and unfolding trajectories have distinctly different correlated behaviors at low frequencies.Comment: 8 pages, 9 EPS figures, Phys. Rev. E (in press

    Rigid Origami Vertices: Conditions and Forcing Sets

    Full text link
    We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    An Algorithmic Study of Manufacturing Paperclips and Other Folded Structures

    Get PDF
    We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter's ruler) can be straightened, a problem that was open for several years and has only recently been solved in the affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite different results. In particular, we study the variant of the carpenter's ruler problem in which there is a restriction that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time. However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.Comment: 28 pages, 14 figures, Latex, to appear in Computational Geometry - Theory and Application
    • …
    corecore