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The Combinatorics of the Foldings of RNA

Katrina Teunis
Advisor Dr. Lauren Keough

Abstract

RNA, much like DNA, is made up of four building blocks called nucleotides, Ade-
nine, Guanine, Cytosine, and Uracil. These nucleotides form words that like to fold
in on itself and bond together, each type of nucleotide bonding with only one other
type of nucleotide. Therefore, order and number of nucleotides present will determine
how many times the strand of RNA can fold. Using these guidelines, we considered
what happens when we have only one bonding pair. Expanding on what was proven
in ”k-Foldability of Words” (2017), we were able to expand on the number of ways a
word can fold by adding to the list of ways any word of length 2n can fold. We also
approached the problem from a different view by looking at how words with the same
length and foldability compare to each other and defining operations between these
words.

1 Introduction

Ribonucleic acid or RNA is a chain of nucleotides, much like deoxyribonucleic acid or DNA,
that aid in the coding and decoding of genes. Similar to DNA, RNA has four nucleotides,
specifically uracil (instead of DNA’s Thymine), cytosine, adenine, and guanine. We represent
each nucleotide with its first letter, U , C, A, and G respectively. Unlike DNA’s typical
double stranded helix formation, RNA is most often found as a single strand folded in on
itself. Because the RNA nucleotides do not have a second strand to bond with, they are
inherently less stable, causing it to fold and bond with itself; A bonds with U and C bonds
with G. We call letters that bond with each other complementary pairs.

Consider words of letters A, U , C, and G like AUCGAUAC. How many ways such a
word of RNA can fold is determined by the order in which the nucleotides are arranged. For
example, the word AUAU can fold two ways, as shown in Figure 1.

Figure 1: The two ways of folding the word AUAU.
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We represent the ways a word can fold in Figure 1 by “wrapping” the word around a
graph theoretic tree. Here, each nucleotide is a side of an edge so a “complementary pair”
(or a pair of bounded nucleotides) sit on opposite sides of the same edge.

Another way to represent this bonding is through “non-crossing matchings”. In Figure
2 are the non-crossing matchings associated to the two ways that AUAU can be folded, as
shown in Figure 1.

Figure 2: The non-crossing matchings of the two foldings of AUAU.

In the non-crossing matching representations, we show the bonded pairs by drawing an
arc connecting the two letters that are bonded (or are on two sides of the same edge of
a tree). From this representation we note that the edges cannot cross because this would
not be a proper folding around a tree, and is not possible in real RNA. The non-crossing
matching representation helps us see that not all words with the same number of letters fold
in the same number of ways. For example, the word AAUU can only fold one way because
the bonds cannot cross each other (see Figure 3).

Figure 3: To the left is an illegal non-crossing matching
and on the right is a legal non-crossing matching.

While this project is inspired by the foldings of RNA we generalized this ideas to apply
to a broader collection of concepts. This idea was first introduced by Black, Drellich, and
Tymoczko in 2015 ([3]). They generalized to account for any length of word with any number
of different complementary pairs. So, instead of four nucleotides A, U , C, G we have n
complementary pairs A1, B1, A2, B2, . . . An, Bn, where Ai and Bi are complementary pairs.
In 2017 a research group, submitted [2] a related paper exploring the number of ways various
words can fold. The authors proved results about the number of ways words with only one
letter A and complement Ā can fold. Similarly, we explored the properties of words with
only one letter and complement, calling them A and B.

The overall interest in this area of combinatorics has been on how many ways a word of
a certain length can fold. In the past a folding has been defined as the number of different
trees a word can be wrapped around, however here we will define is as follows.

Definition. A word folds if there is a legal non-crossing matching of all of the letters and
complements.

Black, Drellich, and Tymoczko [3] established an upper bound by proving that the great-
est number of ways a word of length 2n can fold is then nth Catalan number, Cn, and the
next greatest is Cn−1. To this knowledge the research group added in [2] that a word of
length 2n could also fold 0, 1, 2, ...n ways. However, we found that if the word is specified to
have an equal number of letters and complements it cannot fold zero ways.
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Definition. Define adjacent pair as one A and one B that are next to each other in the
word.

Definition. Define length as ` = 2n where n is the number of As in the word.

Proposition 1.1. If a word has length ` ≥ 2, is made of only one letter and its complement,
and there is an equal number of each, then the word will be foldable.

Proof. Given a word with length ` = 2n that is made of n letters, A, and n of its complement
B. To prove that something is foldable we must prove that it can be grouped into pairs of
one A and one B. To do this we will use strong induction.

We will begin with our base step n = 1. This there is only one word that has n = 1 and
that is AB. Since this word only has one A and one B, it is already paired and we are done.

Next we will do our inductive step. We will assume as our inductive hypothesis that
cases n = 1, 2, 3...k can be paired and we will show that case n = k+1 can be paired. Let W
be a word with n = k+1. Because there are both As and Bs in this word, there has to be at
least one adjacent pair. Pair these together and remove them from the word, we can do this
because, since there are next to each other, removing them won’t effect the foldability of the
word. After this adjacent pair is removed the length of this word is now ` = 2(k + 1)− 2 or
l = 2k, this means that n = k and we know from our inductive hypothesis that any word
with n = k can be paired.

Therefore, by the principle of mathematical induction, any word with length ` ≥ 2 with
equal As and Bs can be paired into groups of one A and one B, and therefore can be
folded.

Along the lines of our goal to find all the possible foldings, examining the structures
of general cases will reveal possible foldings. It turns out that the word (A)n(B)n, which
consists of n As and n Bs, folds only one way.

Proposition 1.2. For all integers n > 0, k((A)n(B)n) = 1

Proof. We know that in order for two letters to bond their bond must reach over exactly the
same number of As and Bs, otherwise the rest of the word cannot fold. So given the word
(A)n(B)n, because of the way all of the As are adjacent and all of the Bs are adjacent, each
A can only bond with the B that has the same number of Bs before it as the A has after
it. Since there is only one possible B fitting the criteria for every A, (A)n(B)n can only fold
once.

2 Combining Words

Continuing in the search for ways a word of length 2n can fold, we specifically focused on
proving (or disproving) the existence of words of length 2n that fold n+ 1 times. To do that
we started by showing that certain words with known foldability can be combined to from
bigger words with a predictable foldability.

Definition. Define buffer letters as the As and Bs added to the beginning and end of a
word meant to increase the length without increasing the foldability.
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Proposition 2.1. Any word of the following forms, with ` > j, s > t, and z ≥ 0, will be
hy−foldable where h is the foldability of the first subword in brackets and y is the foldability
of the second subword in brackets.

• Az[ABA`BjAjB`]Bz[BsAtBtAsBA]

• Az[AjB`ABA`Bj]Bz[BsAtBtAsBA]

• Az[AjB`ABA`Bj]Bz[BsAtBABtAs]

Proof. Let k be the number of times the word W = AzQBzR folds, letting Q be a word with
length x and is y− foldable and R be a word with length s and is h− foldable. Because we
are not altering the order of these smaller words by concatenating them, we know that W
will at least have the foldability of the product of the smaller words, or k ≥ yh.

Now let Q and R be of the form ABA`B`AjB` with ` > j or AjB`ABA`Bj with j > `,
because no new adjacent pairs will be formed by the joining of these subwords, the only way
to get more than yt foldings is if a letter in one word and a complement in the other have
an equal number of As and Bs between them. We will now show that this is not the case
for any of these words. To do this we will look specifically at if the Bs in the first word can
bond with any As in the second word or in the buffer letters. If this cannot happen, then
neither word can bond with the other. This is because if the Bs in the first word cannot
bond but the As can, then there will be Bs left unpaired, which is not possible for a valid
folding.

Let `, j, t, s, z be integers where z ≥ 0, ` > j and s > t, also let b be the number of Bs
and a be the number of As. We will look at each of the cases listed in the proposition. We
will distinguish each group of As and Bs by including their exponent.

• Case 1: Az[ABA`BjAjB`]Bz[BsAtBtAsBA].

So, B in the first word has between it and At in the second word, a ≤ ` + j + t − 1 and
b ≥ j+ `+s, remember that any buffer letters added will only increase b. So, b ≥ j+ `+s >
` + j + t− 1 ≥ a meaning b > a.

Between B and As, a ≤ `+ j+ t+s−1 and b ≥ j+ `+ t+s, and since b ≥ j+ `+ t+s >
` + j + t + s− 1 ≥ a, b > a.

Between B in the first word and A in the second we have a ≤ ` + j + t + s and b ≥
j + ` + t + s + 1, and since b ≥ j + ` + t + s + 1 > ` + j + t + s ≥ a, b > a.

Next, we will look Bj. So between Bj and At, a ≤ j + t− 1 and b ≥ ` + s, this gives us
b ≥ ` + s > j + t− 1 ≥ a or b > a.

Between Bj and As, a ≤ j+t+s−1 and b ≥ `+t+s, and since b ≥ `+t+s > j+t+s−1 ≥ a,
b > a.

Between Bj and A in the last word, a ≤ j + t + s and b ≥ ` + t + s + 1, and since
b ≥ ` + t + s + 1 > j + t + s ≥ a, b > a.

Finally between B` and At, a ≤ t− 1 and b ≥ s, and since b ≥ s > t− 1 ≥ a, b > a.
Between B` and As, a ≤ t + s − 1 and b ≥ s + t, and since b ≥ s + t > t + s − 1 ≥ a,

b > a.
Last of all between B` and A, a ≤ t+s and b ≥ t+s+1, and since b ≥ t+s+1 > t+s ≥ a,

b > a.
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Therefore, because every interval between the two words had more Bs than As, no B in
the first word can bond with an A in the second word. The last thing we need to check is
can any of the Bs in ABA`BjAjB` bond with the buffer As than could come before it, or
can any of the As in BsAtBtAsBA bond with the buffer Bs that come before it. In a similar
fashion as above, we can see that at no point in the word ABA`BjAjB` does a B have more
Bs before it than As, so adding more As will not give us an equal number of each. Also
there is no point in the word BsAtBtAsBA than an A has more As before it than Bs, so
adding more Bs will not give us an equal number of each. Therefore, there is no way to gain
a new folding by concatenating these two words together.

• Case 2: Az[AjB`ABA`Bj]Bz[BsAtBtAsBA].

Beginning with between B` and At, we have a ≤ ` + t and b ≥ 1 + j + s, and since
b ≥ 1 + j + s > ` + t ≥ a, b > a.

Between B` and As we have a ≤ `+t+s and b ≥ 1+j+s+t, and since b ≥ 1+j+s+t >
` + t + s ≥ a, b > a.

Between B` and A we have a ≤ ` + t + s + 1 and b ≥ 2 + j + s + t, and since b ≥
2 + j + s + t > ` + t + s + 1 ≥ a, b > a.

Next between B and At we have a ≤ ` + t − 1 and b ≥ j + s, and since b ≥ j + s >
` + t− 1 ≥ a, b > a.

Between B and As we have a ≤ `+ t+ s− 1 and b ≥ j + s+ t, and since b ≥ j + s+ t >
` + t + s− 1 ≥ a, b > a.

Between B and A we have a ≤ `+ t+s and b ≥ j+s+ t+1, and since b ≥ j+s+ t+1 >
` + t + s ≥ a, b > a.

Finally between Bj and At, a ≤ t− 1 and b ≥ s, and since b ≥ s > t− 1 ≥ a, b > a.
Between Bj and As, a ≤ t + s − 1 and b ≥ s + t, and since b ≥ s + t > t + s − 1 ≥ a,

b > a.
Between Bj and A, a ≤ t+ s and b ≥ s+ t+ 1, and since b ≥ s+ t+ 1 > t+ s ≥ a, b > a.
Therefore, because every interval between the two words had more Bs than As , no B in

the first word can bond with an A in the second word. The last thing we need to check is if
any of the Bs in AjB`ABA`Bj bond with the buffer As than could come before it, or can
any of the As in BsAtBtAsBA bond with the buffer Bs that come before it. In a similar
fashion as above, we can see that at no point in the word AjB`ABA`Bj does a B have more
Bs before it than As, so adding more As will not give us an equal number of each. Also
there is no point in the word BsAtBtAsBA than an A has more As before it than Bs, so
adding more Bs will not give us an equal number of each. Therefore, there is no way to gain
a new folding by concatenating these two words together.

• Case 3: Az[AjB`ABA`Bj]Bz[BsAtBABtAs].

Between B` and At, a ≤ ` + t and b ≥ j + s + 1, and since b ≥ j + s + 1 > ` + t ≥ a, b > a.
Between B` and A, a ≤ `+ t+1 and b ≥ j+s+2, and since b ≥ j+s+2 > `+ t+1 ≥ a,

b > a.
Between B` and As, a ≤ `+ t+ s+ 1 and b ≥ j + s+ t+ 2, and since b ≥ j + s+ t+ 2 >

` + t + s + 1 ≥ a, b > a.
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Between B and At, a ≤ `+ t−1 and b ≥ j + s, and since b ≥ j + s > `+ t−1 ≥ a, b > a.
Between B and A, a ≤ `+ t and b ≥ j + s+ 1, and since b ≥ j + s+ 1 > `+ t ≥ a, b > a.
Between B and As, a ≤ `+t+s and b ≥ j+t+s+1, and since b ≥ j+t+s+1 > `+t+s ≥ a,

b > a.
Finally between Bj and At, a ≤ t− 1 and b ≥ s, and since b ≥ s > t− 1 ≥ a, b > a.
Between Bj and A, a ≤ t and b ≥ s + 1, and since b ≥ s + 1 > t ≥ a, b > a.
Between Bj and As, a ≤ t+s−1 and b ≥ s+ t+1, and since b ≥ s+ t+1 > t+s−1 ≥ a,

b > a.
Therefore, because every interval between the two words had more Bs than As, no B in

the first word can bond with an A in the second word. The last thing we need to check is
can any of the Bs in AjB`ABA`Bj bond with the buffer As than could come before it, or
can any of the As in BsAtBABtAs bond with the buffer Bs that come before it. In a similar
fashion as above, we can see that at no point in the word AjB`ABA`Bj does a B have more
Bs before it than As before it, so adding more As will not give us an equal number of each.
Also there is no point in the word BsAtBtAsBA than an A has more As before it than Bs,
so adding more Bs will not give us an equal number of each. Therefore, there is no way to
gain a new folding by concatenating these two words together.

Therefore, the words Az[ABA`BjAjB`]Bz[BsAtBtAsBA], Az[AjB`ABA`Bj]Bz[BsAtBtAsBA],
and Az[AjB`ABA`Bj]Bz[BsAtBABtAs] can be concatenated without gaining any new fold-
ings, meaning k = hy, where h is the foldability if the first bracketed subword and y is the
foldability of the second bracketed subword.

Proposition 2.2. Any word of the following forms, with i > 0, j > `, and s > t, have
foldability xy where x is the foldability of the first bracketed word and y is the foldability of
the second bracketed word.

• Az[(AB)i]Bz[(BA)j]

• Az[ABA`BjAjB`]Bz[(BA)i]

• Az[AjB`ABA`Bj]Bz[(BA)j]

Proof. Use the same `, j, a, b as in the proof of Proposition 2.1 and having i > 0. Since there
will be no new adjacent pairs created by concatenating these smaller words, the only way for
W to have a larger foldability than xy, is if there is an equal number of As and Bs between
any As in Q and Bs not in Q. Now, because the word (BA)i has alternating As and Bs, we
know there will not be a point where a letter can bond with any buffer letters before or after
it. Also because of its alternating pattern, we only need to check if there is a single A in
either AjB`ABA`Bj or ABA`BjAjB` that has a = b+1 in the letters after it or b = a+1 in
the letters before it, with or without buffer letters. We will look at each word individually.

• Case 1: AjB`ABA`Bj

So, taking the word AjB`ABA`Bj, distinguishing the As by their powers, and noting that
all buffer letters added are Bs, we can see that Aj has a ≤ ` + j b ≥ ` + 1 + j after it,
meaning b ≥ ` + 1 + j > ` + j ≥ a, or b > a and that a 6= b + 1.
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Next A has a ≤ ` b ≥ 1 + j after it, meaning b ≥ 1 + j > ` ≥ a, or b > a and a 6= b + 1.
Finally, A` has a ≤ `− 1 and b ≥ j, meaning n ≥ j > `− 1 ≥ a, or b > a and a 6= b + 1.
Now, taking the same word we will look at the number of Bs before an A, noting that

all the buffer letters added here are As, we can see that Aj has a ≥ 0 and b = 0 before it
meaning b 6= a + 1.

Next A has a ≥ j and b = ` before it, meaning a ≥ j > ` = b, or a > b and b 6= a + 1.
Finally A` has a ≥ j + 1 and b = ` + 1, meaning a ≥ j + 1 > ` + 1 = b, or a > b and

b 6= a + 1.
Therefore words of the form Az[AjB`ABA`Bj]Bz[(BA)j] will have foldability xy where

x is the foldability of AjB`ABA`Bj and y is the foldability of (BA)j.

• Case 2: ABA`BjAjB`

So taking the word ABA`BjAjB`, noting that the only buffer letters are Bs, we can see that
A has a ≤ ` + j and b ≥ ` + j + 1 after it, and since b ≥ ` + j + 1 > ` + j ≥ a, b > a and
a 6= b + 1.

Next A` has a ≤ ` + j − 1 and b ≥ j + ` after it, and since b ≥ j + ` > ` + j − 1 ≥ a,
b > a and a 6= b + 1.

Finally Aj has a ≤ j − 1 and b ≥ ` after it, and since b ≥ ` > j − 1 ≥ a, b > a and
a 6= b + 1.

Now we need to look at the number of Bs before any of the As, noting that the buffer
letters added here are As. We can see that A has a ≥ 0 and B = 0 before it, meaning a ≥ b
and b 6= a + 1.

Next A` has a ≥ ` and b = 1 before it, and since ell > 0, b 6= a + 1
Finally, Aj has a ≥ ` + 1 and b = j + 1 before it, and since a ≥ ` + 1 > j + 1 = b,

b 6= a = 1.
Therefore words of the form Az[ABA`BjAjB`]Bz[(BA)z] will have foldability xy where

x is the foldability of ABA`BjAjB` and y is the foldability of (BA)z.

• Case 3: (AB)j

The words we need to look at are words of the form (AB)j. Because this also has the
alternating pattern, it will always have a = b before it and b > a after it. Neither of these
situations fit our conditions described above.

Therefore words of the form Az(AB)jBz(BA)i will have foldability xy where x is the
foldability of (AB)j and y is the foldability of (BA)i.

Therefore the results in Proposition 2.1 can be extended to include Q and R of the form
(AB)i.

Proposition 2.3. In W = AzQBzR, either one or both of Q and R can be of the form
AABBAABB maintaining k(W ) = hy where h is the foldability of Q word and y is the
foldability of R.

Proof. We will be using the same a, b, j, `, h, y as before. Because the word AABBAABB is
very similar to words of the form (AB)i, we can use the results from Proposition 2.2 to show
that the first A in each group cannot bond with AjB`ABA`Bj, ABA`BjAjB`, or (AB)j
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for the same reason they cannot bond with (AB)i. Using similar reasoning we can see that
the second A in each group also cannot bond with AjB`ABA`Bj, ABA`BjAjB`, or (AB)j

because it needs a = b+2 any A in these words needs after it a = b+2. However, as we have
shown in Proposition 2.2 in every case b > a, meaning a 6= b + 2. Therefore AABBAABB
cannot bond with AjB`ABA`Bj, ABA`BjAjB`, or (AB)j.

We can also see that AABBAABB cannot bond with itself for the same reason (AB)i

cannot bond with itself. The alternating pattern causes there to always be more Bs between
any A in the first word and B in the second.

Therefore, because concatenating AABBAABB with AjB`ABA`Bj, ABA`BjAjB`, or
(AB)j does not form any new bondings Proposition 2.1 can be expanded to allow either one
or both of Q and R to be AABBAABB and k(W ) = hy.

Example. (Proposition 2.1) The word ABAAABBAABBB has n = 6 and k = 6 and the
word ABAABABB has n = 4 and k = 4. So if z = 13, then the word

AAAAAAAAAAAAA[ABAAABBAABBB]BBBBBBBBBBBBB[BBABAABA]

has n = 23 and k = 24. This fits because 6 + 4 + 13 = 23 and 4 · 6 = 24.

Example. (Proposition 2.2) The word ABAABABB has n = 4 and k = 4, and the word
ABAB has n = 2 and k = 2. So if z = 1, then the word A[ABAABABB]B[BABA] has
n = 7 and k = 8. This fits because 4 + 2 + 1 = 7 and 4 · 2 = 8

Example. (Proposition 2.2) The word ABAAABBAABBB has n = 6 and k = 6, and the
word ABAB n = 2 and k = 2. So if z = 3 then the word AAA[ABAAABBAABBB]BBB[BABA]
has n = 11 and k = 12. This fits because 6 + 2 + 3 = 11 and 6 · 2 = 12.

Example. (Proposition 2.3) The word AABBAABB has n = 4 and k = 3. So, if z = 0 the
word [AABBAABB][BBAABBAA] has n = 8 and has k = 9. This fits because 4 + 4 = 8
and 3 · 3 = 9

Example. (Proposition 2.3) The word ABAABABB has n = 4 and k = 4, and the word
AABBAABB has n = 4 and k = 3. So if z = 3, then the word AAA[ABAABABB]BBB[BBAABBAA]
has n = 11 and k = 12. This fits because 4 + 4 + 3 = 11 and 4 · 3 = 12

Now that we have shown it is possible to combine smaller words with known foldability
to get bigger words with predictable foldability, we are ready to use that to find a word of
length 2n with foldability n + 1.

Definition. Define Sk(n, 1) to be all the words of length 2n that fold k times.

Theorem 2.4. For all integers n > 3 where n 6= p− 1 for any prime number p. The set of
words Sn+1(n, 1) is nonempty.

Proof. Let n > 3 and z > 0 be integers. Now take the word w = AzQBR where n(W ) is
one half the length of W and k(W ) is the foldability of W . Now let Q with n(Q) = x and
k(Q) = s and R with n(R) = y and k(R) = t. Both being of the form ABAlBjAjBl with
l > j or AjBlABAlBj with j > l. By Proposition 2.1 we know we can concatenate Q and
R in W and get n(W ) = x + y + z and k(W ) = st. By Proposition 4.10 in [3] we know that
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Q and R have values for l and j such that n(Q) = k(Q) and n(R) = k(R) for all n > 3. So,
let n(Q) = k(Q) = x and n(R) = k(R) = y. This gives us n(W ) = x+ y + z and k(W ) = xy
for x > 3 and y > 3. Now let z = x(y − 1)− y − 1, making

n(W ) = x + y + z

= x + y + [x(y − 1)− y − 1]

= x + y + xy − x− y − 1

= xy − 1.

Therefore, k(W ) = xy and n(W ) = xy − 1, or for all n = xy − 1 with x > 3 and y > 3 the
set words Sn+1(n, 1) is nonempty.

However, this only works for x, y > 3. We can expand this idea by remembering that the
word ABAB has n = 2 and k = 2 and even though there is no word with n = k = 3 we do
have AABBAABB which has n = 4 and k = 3. So, we will look at the cases where n(Q) > 3
k(Q) > 3 and n(R) = k(R) = 2, n(Q) = 4 k(Q) = 3 and n(R) = 4 k(R) = 3, and x > 3 and
n(R) = 4 k(R) = 3. Note: we will not be looking at x = 2 and y = 2 because 2 · 2 = 4 and
2 + 2 = 4. We will also not be looking at n(Q) = 4 k(Q) = 3 and n(R) = k(R) = 2 because
2 · 3 = 6 and 2 + 4 = 6. Neither of these results are in the set Sn+1(n, 1).

We will first look at the case where Q is the same as defined above and R = ABAB,
meaning n(Q) > 3 k(Q) > 3 and n(R) = k(R) = 2. Because ABAB is of the form (AB)i we
know from Proposition 2.2 that we can use the equations k(W ) = xy and n(W ) = xy − 1
letting y = 2. This gives us k(W ) = 2x and n(W ) = 2x − 1 with z = x − 3. So, for all
n(W ) = 2x− 1 with x > 3, the set words Sn+1(n, 1) is nonempty.

Next we will look at the case where Q = R = AABBAABB. This means n(Q) = 4
k(Q) = 3 and n(R) = 4 k(R) = 3. We know from Proposition 2.3 that we can concatenate
AABBAABB with itself giving us k(W ) = 9. Now let z = 0 this gives us n(W ) = 8 which
is in the set Sn+1(n, 1).

Finally, we will look at the case where Q is the same as defined above and R =
AABBAABB. By Proposition 2.3 know k(W ) = 3x and n(W ) = x + z + 4. Now let
z = 2x− 5, making n(W ) = 3x− 1 which is in our set Sn+1(n, 1).

Therefore the set of words Sn+1(n, 1) is nonempty for all n = xy − 1 with

• y > 3 and x > 3

• y = 2 and x > 3

• y = 3 and x > 2

So, we can now show that there exists an n(W ) that is one less than k(W ) for k(W ) 6= p
for all prime numbers p and k(W ) ≥ 6. This result comes from the fact that k(W ) = xy
for the values of x and y above. By the Fundamental Theorem of Arithmetic, we know that
every integer is either prime or a product of primes. So, since neither x nor y can be 1, k(W )
cannot be prime. However, we have shown that y can be any value greater than 1, meaning
k(W ) can be any of the non-prime numbers if x > 1. So, since x has some restriction we can
see that k(W ) cannot be 4, 5, 6 or 7, meaning that k(W ) exists for all k(W ) > 7.

Therefore, since n(W ) = k(W )−1, we know that the set of words Sn+1(n, 1) is nonempty
for all n ≥ 7 as long as n 6= p− 1 for all prime numbers p.

9



In may seem odd that n cannot be one less than a prime number, or that the words
cannot fold a prime number of ways. It is not impossible for a word to fold a prime number
of ways; [2] showed that there are words that fold a number of ways that is found by adding
consecutive Catalan numbers, for example C2 = 2, C3 = 5, and 2+5 = 7 which is prime. The
method, however, which we used to build our words that folded n+1 ways used multiplication
and therefore cut out any prime possibilities. Other than the addition of consecutive Catalan
numbers, how else could a string have a prime foldability? So far we have seen that a large
part of the foldability of a word is based on the Catalan numbers, either the number itself
or by multiplying and adding them. If we are multiplying, then we automatically cannot
produce primes by their very definition. Addition we have only seen work with consecutive
Catalan numbers, so far, giving us very few primes. Finally there are the Catalan numbers
themselves. However, L. T. Peabody in answering the question “Can it be shown that there
are finitely many (or infinitely many) such Catalan numbers?” [1] showed that the largest
prime Catalan number is C3 = 5. His proof for this has been revised and simplified.

Theorem 2.5. If n > 3, then Cn is not prime.

Proof. We know that Cn = (2n)!
n!(n+1)!

, or n!(n + 1)!Cn = (2n)!. We also know that either
Cn > 2n, Cn = 2n, or Cn < 2n. If Cn > 2n then it must be some multiplicative combination
of integers less than 2n and by definition is not prime. Similarly if Cn = 2n then Cn is not
prime. So, if Cn > 2n − 1 then Cn is prime. However, since Cn = (2n)!

n!(n+1)!
, Cn is prime if

(2n)!
n!(n+1)!

> 2n−1 or 2(2n−2)! > (n−1)!(n+1)!. This means 2(2n−2)!− (n+1)!(n−1)! > 0.

Now, as long as (2n− 2) > (n + 1) or (n > 3), we can factor out 2(n + 1)! to get

2(n + 1)![(2n− 2)(2n− 3)...(n + 2)− (n− 1)(n− 2)...3 · 1].

So, if (2n−2) > (n−1) and (n+2) > 3, (2n−2)(2n−3)...(n+2)−(n−1)(n−2)...3 ·1 will be
positive. Both of these are the case when n > 3. So, when n > 3, 2(2n−2)! > (n+1)!(n−1)!
and Cn is not prime. Therefore C3 = 5 is the largest prime Catalan number.

3 Transforming Words

In this section we will look at operations that relate words to each other, specifically words
with the same foldability. The operations we found are as follows.

Definition. A cyclic shift on a word W with length 2n is a word W ′ such that, for all i,
W ′[i] = W [(i + j) mod 2n] for any integer j.

Example. A cyclic shift of the word ABAABB with j = 1 is BAABBA.

Figure 4: The cyclic shift of the word ABAABB with j = 1

Proposition 3.1. Given a word W , any cyclic shift of W have the same foldability as W .
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Proof. Given a word of length 2n, by definition of their position, the first letter has no letters
before it and the last letter has no letter after it. Therefore, any connection between them
crosses over all of the other letters and therefore does not affect their foldability. This is the
same effect as if the connection crossed over none of the other letters, which happens only
when the letters are right next to each other. Therefore the first and last letters of a word
can be thought of as adjacent and moved together. This will cause the word to form a circle
that can be split and reshaped into a line between any two letters as shown in figure 4.

Therefore, the letter in the ith position can be moved to the (i + j) mod 2nth position,
or a cyclic shift, does not change the foldability of a word.

Definition. A reversal is an operation on a word W of length 2n such that W [i] = W [2n−
i + 1].

Example. The reversal of the word ABBABAAB is BAABABBA.

Proposition 3.2. Any word will have the same foldability as its reversal.

Proof. The foldability of a word is determined by the order in which the letters are positioned.
This can be easily seen because an B is between two As it will fold differently than if it is
between two Bs. Note that it does not matter where in the word this letter is, because
the starting letter can be changed without a change in foldability. So since when a word is
reversed there is no change to the neighbors of each letter, the property that causes foldability
is not altered, and the foldability does not change. Therefore, a word and its reversal will
have the same foldability.

Definition. A transformation on a word is the changing of the order of letters in a word
without changing the foldability.

Definition. The inverse of a word is a word that has As where the original has Bs and vice
versa.

Example. The inverse of the word AABABBBABA is BBABAAABAB.

Proposition 3.3. The inverse of a word is a transformation on that word.

Proof. In order to show that the inverse of a word is a transformation, we need to show that
taking the inverse does not effect the foldability.

So, we know that the foldability of a word is determined by the length of the word and
the order of the letters and complements. However, because there is no real distinction
between which is the letter and which is the complement. So as long as all of the letters
are switched with all of the complements the order is not changed. Also since we are not
adding or taking away letters or complements, the length is not changed either. Therefore
by taking the inverse of a word, the foldability is not effected and the new word will have
the same foldability.

Definition. A reversible pair is an adjacent pair that can be reversed without changing the
foldability of the word.
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Example. Given the word AAABB(AB)B the adjacent pair can be reversed to form the
word AAABB(BA)B without changing the foldability.

Proposition 3.4. For every word made up of one letter and complement, given subwords
Q and R (possibly empty words), k(QAABAR) = k(QABAAR) if B can only bond with its
neighbors, and k(QBABBR) = k(QBBABR) if A can only bond with its neighbors.

Proof. Let Q and R be subwords (possibly the empty word) of W and H. First let W =
QAABAR and H = QABAAR. We are given that for both W and H, the only possible
bondings for B form adjacent pairs, because of that whatever bond B forms will not affect
the rest of the word and we can think of it as being removed. So, take W , regardless of B
bonds to the left or the right, removing that bond will leave us with QAAR. Now note that
we receive the same result in H regardless of if B bonds to the left or the right. This means
k(W ) = 2 · k(QAAR) = k(H), or k(W ) = k(H).

Now let W = QBABBR and H = QBBABR. Similar to above, we are given that in
both W and H that A can only bond to its neighbors, and since this forms an adjacent pair
we can think of it as being removed. Also similar to above, regardless of if A bonds to the
left or the right in both W and H, by removing this bond we are left with QBBR. This
means k(W ) = 2 · k(QBBR) = k(H), or k(w) = k(H).

Therefore, given subwords Q and R (possibly empty words), k(QAABAR) = k(QABAAR)
if B can only bond with its neighbors, and k(QBABBR) = k(QBBABR) if A can only bond
with its neighbors.

From these operations, we were able to take the list of all the possible words of length 2,
4, 6, and 8 and summarize them with representative words.

Definition. A representative word is a word that is used to represent all of the words that
can be related to it by an operation.

Our findings are summarized in the chart below.

Length Number of Possible words Representative Words
2 2 AB

4 6 AABB, ABAB

6 20 AAABBB, AABABB, ABABAB

8 70 AAAABBBB, AAABBABB, AABBAABB,
ABABBABA, ABAABBAB, ABABABAB

Each of the words above have unique foldability and represent all of the possible ways for
words of those lengths to fold. This can be used in the future to study the possible structures
for words with unique foldabilities.
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4 Conclusion and Future Work

In conclusion we found that certain words can be concatenated to form larger words with
predictable foldability. We then used that to show that there exists a word of length 2n,
where n is not one less than a prime number, can fold n+ 1 times. We also found operations
that relate words with the same foldability and summarized all the words of length 2, 4, 6,
and 8 with their representative words.

Future work that can be done in this area would be to continue finding operations that
can be performed on a word without changing the foldability of the word. One could also
look at the structures of the representative words and look for patterns that correlate to
foldability. Another question to look at is finding another way to build words of length 2n
that fold n + 1 ways in an attempt to fill in the holes with the prime numbers.
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