
Computational Geometry 29 (2004) 23–46
o

lding
odels of

ich lead
crease
t-foldable

riants
thm for
kly)
se
rns without

u
u

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
www.elsevier.com/locate/comge

When can you fold a map?

Esther M. Arkina, Michael A. Benderb, Erik D. Demainec,∗, Martin L. Demainec,
Joseph S.B. Mitchella, Saurabh Sethiab, Steven S. Skienad

a Department of Applied Mathematics and Statistics, SUNY, Stony Brook, NY 11794-3600, USA
b Department of Computer Science, SUNY, Stony Brook, NY 11794-4400, USA

c MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA
d Computer Science, Oregon State University, 102 Dearborn Hall, Corvallis, OR97331-3202, USA

Available online 18 May 2004

Communicated by I. Streinu

Abstract

We explore the following problem: given a collection of creases on a piece of paper, each assigned a fo
direction of mountain or valley, is there a flat folding by a sequence of simple folds? There are several m
simple folds; the simplestone-layer simple foldrotates a portion of paper about a crease in the paper by±180◦. We
first consider the analogous questions in one dimension lower—bending a segment into a flat object—wh
to interesting problems on strings. We develop efficient algorithms for the recognition of simply foldable 1D
patterns, and reconstruction of a sequence of simple folds. Indeed, we prove that a 1D crease pattern is fla
by any means precisely if it is by a sequence of one-layer simple folds.

Next we explore simple foldability in two dimensions, and find a surprising contrast: “map” folding and va
are polynomial, but slight generalizations are NP-complete. Specifically, we develop a linear-time algori
deciding foldability of an orthogonal crease pattern on a rectangular piece of paper, and prove that it is (wea
NP-complete to decide foldability of(1) an orthogonal crease pattern on a orthogonal piece of paper, (2) a crea
pattern of axis-parallel and diagonal (45-degree) creases on a square piece of paper, and (3) crease patte
a mountain/valley assignment.
 2004 Elsevier B.V. All rights reserved.

Keywords:Computational origami; Folding; Crease patterns; Sheet-metal bending; String matching; NP-hardness

* Corresponding author.
E-mail addresses:estie@ams.sunysb.edu (E.M. Arkin), bender@cs.sunysb.edu (M.A. Bender), edemaine@mit.ed

(E.D. Demaine), mdemaine@mit.edu (M.L. Demaine), jsbm@ams.sunysb.edu (J.S.B. Mitchell), saurabh@cs.orst.ed
(S. Sethia), skiena@cs.sunysb.edu (S.S. Skiena).

0925-7721/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.03.012

https://core.ac.uk/display/82765758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


24 E.M. Arkin et al. / Computational Geometry 29 (2004) 23–46

1. Introduction

The easiest way to refold a road map is differently.
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Perhaps the best-studied problem in origami mathematics is the characterization of flat-foldable
patterns. A crease pattern is a straight-edge embedding of a graph on a polygonal piece of pap
folding must fold along all of the edges of the graph, but no more. For example, two crease patte
shown in Fig. 1. The first one folds flat into a classic origami crane, whereas the second one ca
folded flat (unless the paper is allowed to pass through itself), even though every vertex can be “
flat folded.

The algorithmic version of this problem is to determine whether a given crease pattern is flat-fo
The crease pattern may also have a direction of “mountain” or “valley” assigned to each crease
restricts the way in which the crease can be folded. (Our figures adhere to the standard origami co
that valleys are drawn as dashed lines and mountains are drawn as dot-dashed lines.)

It is known that the general problem of deciding flat foldability of a crease pattern is NP-hard
this paper, we consider the important and very natural case of recognizing crease patterns tha
the result of flat foldings usingsimple foldings. In this model, a flat folding is made by a sequence
simple folds, each of which folds one or more layers of paper along a single line segment. Fig. 2 sh
example of a simple folding. As we define in Section 2, there are different types of simple folds (t
“one-layer”, “some-layers” and “all-layers”), depending on how many layers of paper are requi
allowed to be folded along a crease.

Unsurprisingly, not every flat folding can be achieved by a simple folding. For example, the cr
Fig. 1 (top) cannot be made by a simple folding. In particular, there is no uniformly mountain or
segment that could serve as the first simple fold. Also, the hardness gadgets of [2] require no
folds which allow the paper to curve during folding [6]. Thus, the complexity of general flat folda
has no direct connection to simple foldability.

Fig. 1. Sample crease patterns. Left: the classic crane. Right: pattern of Hull [13], which cannot be folded flat,
mountain-valley assignment.

Fig. 2. Folding a 2× 4 map via a sequence of 3 simple folds.
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The problem we study in this paper is that of determining whether a given crease pattern (usually with
specified mountain and valley assignments) can be folded flat by a sequence of simple folds, and if so, to
construct such a sequence of folds.
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Several of our results are based on the special case in which the creases in the piece of p
all parallel to one another. This case is equivalent to aone-dimensionalfolding problem of folding a
line segment (“paper”) according to a set of prescribed crease points (possibly labeled “mount
“valley”). We will therefore refer to this special case, which has a rich structure of its own, as the
case to distinguish it from the general 2D problem. In contrast to the 2D problem, we show that
foldability is equivalent to 1D simple foldability.

Motivation. In addition to its inherent interest in the mathematics of origami, our study is motiv
by applications in sheet metal and paper product manufacturing, where one is interested in de
ing whether a given structure can be manufactured using a given machine. (See references cite
While origamists can develop particular skill in performing nonsimple folds to make beautiful art
practical problems of manufacturing with sheet goods require simple and constrained folding ope
Our goal is to develop a first suite of results that may be helpful towards a fuller algorithmic under
ing of the several manufacturing problems that arise, e.g., in making three-dimensional cardbo
sheet-metal structures.

Related work. Our problems are related to the classic combinatorics questions ofmap folding[10,21].
These questions ask for thenumberof different flat foldings of a particular crease pattern, namely
m×n rectangular grid, either by a sequence of simple folds or by a general flat folding. Two foldin
usually considered “different” in this context if they differ in the total order of the faces in the fold
These questions have been studied extensively [10,21], particularly in the one-dimensional (1× n) case
[7,17,20,27], but remain largely unsolved. In contrast with these combinatorial questions, we stu
algorithmic complexity of the decision problems, and for more general crease patterns.

The mathematical and algorithmic problems arising in the study of flat origami have been exa
by several researchers, e.g., Hull [13], Justin [14], Kawasaki [16] and Lang [18]. Of particular rele
to our work is the paper by Bern and Hayes [2], which shows that the general problem of de
flat foldability of a crease pattern is strongly NP-hard. Demaine et al. [5] used computational ge
techniques to show that any polygonal (connected) silhouette can be obtained by simple folds
rectangular piece of paper.

Our model of simple folding is also closely related to “pureland origami”, a restriction introduce
Smith [24,25]. Pureland folds include simple folds, but they also allow paper to be “tucked” into po
as well as “opened up” into three dimensions provided that no creases are made during the proc

There has been quite a bit of work on the related problems of manufacturability of sheet meta
(see e.g. [28]) and folding cartons (see e.g. [19]). Existing CAD/CAM techniques (including Ben
and PART-S) rely on worst-case exponential-time state space searches (using the A∗ algorithm). In
general, the problem of bend sequence generation is a challenging (and provably hard [1]) coo
motion planning problem. For example, Lu and Akella [19] utilize a novel configuration-s
formulation of the folding sequence problem for folding cartons using fixtures; their search, ho
is still worst-case exponential time. Our work differs from the prior work on sheet metal and card
bending in that the structures we are folding are ultimately “flat” in their folded states (all
angles in the input crease pattern are±180◦, according to a mountain-valley assignment that is
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Table 1
Summary of the complexities of deciding flat foldability by various models of simple folds, and by general flat foldings. The
symbols≡ and /≡ denote equivalences and nonequivalences between certain models. The abbreviations “rand.” and “det.”
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Dim Paper Creases Model of folding

All-layers
simple folds

Some-layers
simple folds

One-layer
simple folds

General
flat folding

1D O(n) rand. /≡ O(n) ≡ O(n) ≡ O(n)

O(n lgn′) det.
2D Rect Ortho O(n) rand. /≡ O(n) /≡ O(n) /≡ Open [8]

O(n lgn′) det.
2D Ortho Ortho Weakly Weakly Weakly Open
or Square Ortho+ 45◦ NP-complete NP-complete NP-complete
2D Square General Strongly

NP-hard [2]

of the input crease pattern). Also, we are concerned only with the feasibility of the motion
(stiff) material that is being folded—does it collide with itself during the folding motion? We are
addressing here the issues of reachability by the tools that perform the folding. As we show, ev
the restrictions that come with the problems we study, there is a rich mathematical and algorithmic
of foldability.

Summary of our results.We develop a variety of new algorithmic results (see Table 1):

(1) We analyze the 1D one-layer and some-layers cases, giving a full characterization of flat-fold
and an O(n) algorithm for deciding foldability and producing a folding sequence, if one exists.

(2) We analyze the 1D all-layers case as a “string folding” problem. In addition to a simple O(n2) algo-
rithm, we give an algorithm utilizing suffix trees that requires time linear in the bit complexity o
input, and a randomized algorithm with expected O(n) running time.

(3) We give an algorithm for deciding simple foldability of orthogonal crease patterns on a recta
piece of paper1 (the “map folding problem”), in the one-, some- and all-layers cases, based o
with the same running times as our 1D results.

(4) We prove that it is (weakly) NP-complete to decide simple foldability of an orthogonal crease p
on a piece of paper that is more general than a rectangle: a simple orthogonal polygon.

(5) We also prove that it is (weakly) NP-complete to decide simple foldability of a square piece
per with a crease pattern that includesdiagonalcreases (angled at 45◦), in addition to axis-paralle
creases.

(6) We show that it is (weakly) NP-complete to decide simple foldability of an orthogonal piece of
having a crease pattern for which no mountain-valley assignment is given.

Note that our hardness results do not strengthen those of [2], because deciding simple folda
different from deciding flat foldability.

1 Throughout this paper, the notions of “orthogonal” and “rectangular” implicitly require axis-parallelism with a common
set of axes.
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2. Definitions

We are concerned with foldings in one and two dimensions, although several of our definitions and
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results extend to higher dimensions. A one-dimensional piece of paper is a (line)segmentin R
1. A two-

dimensional piece of paper is a (connected)polygonin R
2, possibly with holes. In both cases, the pape

folded through one dimension higher than the object; thus, segments are folded throughR
2 and polygons

are folded throughR3. Creaseshave one less dimension; thus, a crease is a point on a segment and
segment on a polygon.

A crease patternis a collection of creases on the piece of paper, no two of which intersect e
at a common endpoint. Afolding of a crease pattern is an isometric embedding of the piece of p
bent along every crease in the crease pattern (and not bent along any segment that is not a c
particular, each facet of paper must be mapped to a congruent copy, the connectivity between fac
be preserved, and the paper cannot cross itself, although multiple layers of paper may touch. Se

A flat foldinghas the additional property that it lies in the same space as the unfolded piece of
That is, a flat folding of a segment lies inR1, and a flat folding of a polygon lies inR2. In reality, there
can be multiple layers of paper at a point, so the folding really occupies a finite number of infinites
close copies ofR1 or R

2. See Fig. 4. More formally, a flat folding can be specified by a function map
the vertices to their folded positions, together with a partial order of the facets of paper that specifi

Fig. 3. Sample nonflat foldings in one and two dimensions.

Fig. 4. Sample flat foldings in one and two dimensions. Mountains and valleys are denoted by M’s and V’s, respect
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Fig. 5. Illustration of a simple fold in 1D, which is specified by a crease location, a notion of the “top side”, how many of
layers are folded (here ranging from 1 to 3), whether the fold is mountain or valley, and whether the left or right side is

overlap order [2,13,18]. For each pair of facets of the crease pattern that fold to overlapping po
this partial order must specify which facet is layered above the other.

If we orient the piece of paper to have a top and bottom side, we can talk about thedirection of a
crease in a flat folding. Amountainbrings together the bottom sides of the two adjacent facets of p
and avalley brings together the top sides. Amountain-valley assignmentis a function from the crease
in a crease pattern to{M,V }. This is the labeling shown in Fig. 4. Together, a crease pattern a
mountain-valley assignment form amountain-valley pattern.

This paper is concerned with the following general question:

Problem: Simple Folding. Given a mountain-valley pattern, is there a simple folding satisfying
specified mountains and valleys? If so, construct such a simple folding.

There are three natural versions of this problem, depending on the type of “simple folds” al
In general, asimple foldingis a sequence of simple folds. Each simple fold takes a flat-folded pie
paper, and folds it into another flat folding using additional creases. We distinguish three types of
folds: one-layer, all-layers, and some-layers. Refer to Fig. 5.

We begin by defining in 1D the most general type of simple fold, the some-layers simple fold. Asome-
layers simple foldis specified by (1) an orientation of the folded piece of paper to specify atop side, (2) an
externally visible crease (point) on the top side of the folded piece of paper, (3) the number� of layers to
be folded, and (4) the orientation of the fold, mountain or valley, relative to which side is the top. S
fold newly creases the piece of paper at� points: at the specified crease on the topmost layer and a
�−1 creases (points) immediately below. If we locally color the piece of paper near the new creas
to the left of the creases and red to the right of the creases, and propagate this coloring, we shou
a partition of the piece of paper into two (not necessarily connected) components. If we find a c
that some paper should be colored simultaneously red and blue, the simple fold is not valid. Oth
the execution of the simple fold corresponds to continuously rotating the blue portion of paper b◦
around the crease point, either clockwise or counterclockwise according to whether the fold is
or mountain. During this rotation, both the red and blue portions of the paper remain rigid. If the
self-intersects during this rotation, the simple fold is invalid.

Some-layers simple folds are most general in the sense that any number� of layers can be folded a
once. Aone-layer simple foldis the special case in which� = 1. An all-layers simple foldis the specia
case in which� is the entire number of layers coinciding at the specified crease point.
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Fig. 6. Illustration of a simple fold in 2D (starting from Fig. 4, right), where we must specify the number of folded laye
each portion of the crease, because this number can vary along a single fold.

Fig. 7. Crease patterns illustrating the unique power of each model of simple folding, and the limitations compared to gene
flat folding.

In 2D, the situation is more complicated because the number of layers folded can vary along the
segment. See Fig. 6 for an example. Thus, a some-layers simple fold must specify the desired nu
layers for each portion of the crease, for a specified subdivision of the crease segment into porti
construct the new creases that result from this fold by copying each portion of the crease to the s
number of layers below the topmost layer. Then, as before, we color the piece of paper, verify t
coloring is consistent (in particular, verifying that the assignment of layers was valid), and rotate th
portion of paper, barring self-intersection.

In this more general setting, a one-layer simple fold is the special case of folding only one laye
the entire crease. An all-layers simple fold is the special case of folding all layers for each por
the crease. The simple fold in Fig. 6 is an example that cannot be made a one-layer simple fo
indeed, cannot be modified to use any smaller number of layers at any point. This fact can be ver
attempting to fold such a piece of paper in practice, or by checking that the resulting red-blue colo
invalid.

Fig. 7 further illustrates the differences among the three models of simple folding, and their limit
with respect to general flat folding, by giving examples of crease patterns that can be folded w
model but not the others. Of course, flat foldability by one-layer simple folds or by all-layers simple
implies flat foldability by some-layers simple folds, which in turn implies flat foldability in general.
examples in the figure prove that no other general implications hold.
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Fig. 8. The two local operations for one-dimensional one-layer folds.

3. 1D: one-layer and some-layers

This section is concerned with the 1D one-layer simple-fold problem. We will prove the surp
result that we only need to search for one of two local operations to perform. The two operatio
calledcrimpsandend folds, and are shown in Fig. 8.

More formally, letc1, . . . , cn denote the creases on the segment, oriented so thatci is left of cj for
i < j . Let c0 [cn+1] denote the left [right] end of the segment. Despite the “c” notation (which is used fo
convenience),c0 andcn+1 are not consideredcreases; instead they are called theends.

First, a pair(ci, ci+1) of consecutive creases iscrimpableif ci andci+1 have opposite directions and

|ci−1 − ci | � |ci − ci+1| � |ci+1 − ci+2|.
Crimpingsuch a pair corresponds to foldingci and then foldingci+1, using one-layer simple folds.

Second,c0 is a foldable endif |c0 − c1| � |c1 − c2|, and cn+1 is a foldable endif |cn−1 − cn| �
|cn − cn+1|. Folding such an end corresponds to performing a one-layer simple fold at the nearest
(creasec1 for endc0, and creasecn for endcn+1).

We claim that one of the two local operations exists in any flat-foldable 1D mountain-valley pa
We claim further that an operation exists for any pattern satisfying a certain “mingling prop
Specifically, a 1D mountain-valley pattern is calledmingling if for every sequenceci, ci+1, . . . , cj of
consecutive creases with the same direction, either

1. |ci−1 − ci | � |ci − ci+1|; or
2. |cj−1 − cj | � |cj − cj+1|.

We call this the mingling property because, for maximal sequences of consecutive creases with t
direction, it says that there are folds of the opposite direction nearby. In this sense, the mountai
pattern is “crowded” and the mountains and valleys must “mingle” together.

First we show that mingling mountain-valley patterns include flat-foldable patterns:

Lemma 3.1. Every flat-foldable 1D mountain-valley pattern is mingling.

Proof. Consider a flat folding of a mountain-valley pattern, and letci, . . . , cj be consecutive creases w
the same direction. The portionci−1, . . . , cj+1 of the segment can be in one of three configurations
Fig. 9):
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Fig. 9. The innermost edge of a spiral cannot be longer than the adjacent edge, in contrast to the outermost edge wh
arbitrarily long.

1. The portion forms a “spiral” with(ci−1, ci) being the outermost edge of the spiral, and(cj , cj+1)

being the innermost; or
2. The portion forms a “spiral” with(cj , cj+1) being the outermost edge of the spiral, and(ci−1, cj )

being the innermost; or
3. The portion forms two “spirals” connected by a common outermost edge and with(ci−1, ci) and

(cj , cj+1) being the two innermost edge.

Now if |ci−1 − ci | > |ci − ci+1|, then (ci−1, ci) cannot be the innermost edge of a spiral, or e
(ci−1, ci) would penetrate throughci+1. Similarly, if |cj−1 − cj | > |cj − cj+1|, then (cj−1, cj ) cannot
be the innermost edge of the spiral. Because in all three configurations above we must have at l
of (ci−1, ci) and(cj , cj+1) as innermost, we cannot have both inequalities true.�

Next we show that having the mingling property suffices to imply the existence of a single crim
pair or foldable end.

Lemma 3.2. Any mingling 1D mountain-valley pattern has either a crimpable pair or a foldable en

Proof. Let i be maximum such thatc1, . . . , ci all have the same direction. By the mingling prope
either |c0 − c1| � |c1 − c2| or |ci−1 − ci| � |ci − ci+1|. In the former case,c0 is a foldable end, so w
have the desired result. A generalization of the latter case is that we haveci, . . . , cj all with the same
orientation, and|cj−1 − cj | � |cj − cj+1|. If j = n, thencn+1 is a foldable end, so we have the desi
result. Otherwise, letk be maximum such thatcj+1, . . . , ck all have the same direction. By the minglin
property, either|cj − cj+1| � |cj+1 − cj+2| or |ck−1 − ck| � |ck − ck+1|. In the former case,(cj , cj+1) is
a crimpable pair, so we have the desired result. In the latter case, induction applies.�

Ideally, we could show at this point that performing either of the two local operations pres
the mingling property, and hence a mountain-valley pattern is mingling precisely if it is flat-fold
Unfortunately this is false, as illustrated in Fig. 10. Instead, we must prove that flat foldability is pre
by each of the two local operations; in other words, if we treat the folded object from a single crim
new segment, it is flat-foldable.

Lemma 3.3. Folding a foldable end preserves flat foldability.
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Fig. 10. A mingling mountain-valley pattern that when crimped is no longer mingling and hence not flat-foldable. Inde
original mountain-valley pattern is not flat-foldable.

Fig. 11. Moving layers of paper out of the zig-zag formed by a crimp(ci , ci+1), highlighted in bold.

Proof. This is obvious because folding a foldable end is equivalent to chopping off a portion
segment. Thus, if we take a flat folding of the original pattern, remove that portion of the segme
double up the number of layers for the adjacent portion of the segment, we have a flat folding of t
object. �
Lemma 3.4. Crimping a crimpable pair preserves flat foldability.

Proof. Let (ci, ci+1) be a crimpable pair, and assume by symmetry thatci is a mountain andci+1 is a
valley. Consider a flat foldingF of the original segment, such as the one in Fig. 11 (left). We or
our view to regard the segment(ci, ci+1) as flipping over during the folding, so that the remainder
the (unfolded) segment keeps the same orientation. Thus,(ci−1, ci) is above(ci, ci+1) which is above
(ci+1, ci+2). Now suppose thatF places some layers of paper in between(ci, ci+1) and(ci+1, ci+2). Then
these layers of paper can be moved to immediately above(ci−1, ci), because(ci−1, ci) is at least as long
as (ci, ci+1), and hence there are no barriers closer thanci . See Fig. 11. Similarly, we move materi
between(ci, ci+1) and(ci−1, ci) to immediately below(ci+1, ci+2). In the end, we have a flat folding o
the object obtained from making the crimp(ci, ci+1). �

Combining all of the previous results, we have the following:

Theorem 3.5. Any flat-foldable 1D mountain-valley pattern can be folded by a sequence of crimp
end folds.

Proof. By Lemma 3.1, the pattern is mingling, and hence by Lemma 3.2 we can find a crimpab
or a foldable end. Making this fold preserves flat foldability by Lemmas 3.3 and 3.4, so by inducti
result holds. �
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A particularly interesting consequence of this theorem is the following connection to general flat
foldability:
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Corollary 3.6. The following are equivalent for a 1D mountain-valley patternP :

1. P has a flat folding.
2. P has a some-layers simple folding.
3. P has a one-layer simple folding.

One-dimensional flat foldability has been studied extensively in the combinatorial context [7,
27], but primarily for the simple crease pattern in which the distances between consecutive cre
identical. A structure similar to ours, in particular highlighting the importance of crimps, is hinted
Justin [14, Section 6.1], though it is not followed through algorithmically.

Finally, we show that Theorem 3.5 leads to a simple linear-time algorithm:

Theorem 3.7. The 1D one-layer and some-layers simple-fold problems can be solved inO(n) worst-case
time on a machine supporting arithmetic on the input lengths.

Proof. First note that it is trivial to check in constant time whether a pair of consecutive folds fo
crimp or whether an end is foldable. We begin by testing all such folds, and hence in linear time
linked list of all possible folds at this time. We also maintain reverse pointers from each symbol
string to the closest relevant possible fold. Now when we make a crimp or an end fold, only a co
number of previously possible folds can no longer be possible, and a constant number of pre
impossible folds can be newly possible. These folds can be discovered by examining a const
neighborhood of the performed fold. We remove the old folds from the list of possible folds, and a
new folds to the list. Then we perform the first fold on the list, and repeat the process. By Theore
if the list ever becomes empty, it is because the mountain-valley pattern is not flat-foldable.�

4. 1D: all-layers simple folds

The 1D all-layers simple-fold problem can be cast as an interesting “string folding” problem.
folding problem is not to be confused with the well-known protein/string folding problem in biology
The input mountain-valley pattern can be thought of as a string of lengths interspersed with moun
valley creases. Specifically, we will assume that the input lengths are specified as integers or equ
rational numbers. (Irrational numbers can be replaced by close rational approximations, provi
sorted order of the lengths is preserved.)

Thus, an input string is of the form�0 d1 �1 d2 · · ·dn−1 �n−1 dn �n, where eachdi ∈ {M,V } specifies
the direction of theith creaseci , and each�i is a positive rational number specifying the distance betw
adjacent creasesci andci+1. We call eachdi and�i asymbolof the string. It will be helpful to introduce
some more uniform notation for symbols. For a stringS of lengthN = 2n + 1, we denote theith symbol
by S[i], where 1� i � N .

When we make an all-layers simple fold, we cannot “cover up” a crease except with a matching
(which when unfolded is in fact the other direction), because otherwise this crease will be impos
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fold later. To formalize this condition, we define thecomplementof symbols in the string: comp(�i) = �i,
comp(M) = V and comp(V ) = M . For each even indexi, at whichS[i] = di/2 ∈ {M,V }, we define
the fold at positioni to be the all-layers simple fold of the corresponding creaseci/2. We call this fold
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allowableif S[i −x] = comp(S[i +x]) for all 1� x � min(i −1,N − i), except thatS[1] andS[N] (the
end lengths) are allowed to be shorter than their complements.

Lemma 4.1. A mountain-valley pattern can be folded by a sequence of all-layers simple folds pre
if there is an allowable fold, and the result after performing that fold has an allowable fold, and s
until all creases of the segment have been folded.

Proof. Performing an all-layers simple fold that is not allowable forbids us from all-layers si
folding certain creases, and hence the resulting segment cannot be completely folded after th
Therefore, only allowable folds can be in the sequence. It remains to show that performing an all
fold preserves foldability by a sequence of all-layers simple folds. But performing an allowable
equivalent to removing the smaller portion of paper to one side of the fold. Hence, it can only mak
(allowable) folds possible, so the mountain-valley pattern remains foldable.�

By Lemma 4.1, the problem of testing foldability reduces to repeatedly finding allowable folds
string. Testing whether a fold at positioni is allowable can clearly be done in O(1+ min(i − 1,N − i))

time, by testing the boundary conditions and whetherS[i − x] = comp(S[i + x]) for 1 � x � min(i −
1,N − i). Explicitly testing all creases in this manner would yield an O(n2)-time algorithm for finding
an allowable fold (if one exists). Repeating this O(n) times results in a naive O(n3) algorithm for testing
foldability.

This cubic bound can be improved by being a bit more careful. In O(n2) time, we can determine fo
each creaseS[i] the largest value ofk for which S[i − x] = comp(S[i + x]) for all 1 � x � k. Using
this information it is easy to test whether the fold at positioni is allowable. After making one of thes
allowable folds, we can in O(n) time update the value ofx for each crease, and hence maintain
collection of allowable folds in linear time. This gives an overall O(n2) bound, which we now proceed
improve further.

We present two efficient algorithms for folding strings. The algorithm in Section 4.1 is based on
trees and runs in time linear in the bit complexity of the input. In Section 4.2, we use randomiza
obtain a simpler algorithm that runs in O(n) time.

4.1. Suffix-tree algorithm

In this section, we prove the following:

Theorem 4.2. A string S of lengthN can be tested for all-layers simple foldability, in time that
dominated by that to construct a suffix tree onS.

The difficulty with the time bound is that sorting the alphabet seems to be required. Other th
time to sort the alphabet, it is possible to construct a suffix tree in O(n) time [9]. To sort the alphabe
in the comparison model, O(n logn′) time suffices, wheren′ is the number of distinct input lengths.
particular, if the input lengths are encoded in binary, then the algorithm is linear in this bit complexi
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a RAM, the current state-of-the-art deterministic algorithm for integer sorting [26] uses O(n(log logn)2)

time and linear space.
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Proof. Let SC be the complement string ofS (i.e., the complement of each letter ofS), and letSR be
the reverse string ofS. The fold at positioni of S is allowable precisely if the first min(i − 2,N − i + 1)

characters of the suffix ofSR starting in the(N − i + 2)nd position are identical to the suffix ofSC

starting in the(i + 1)st position, and the single endpoint ofS (S[1] if i − 1 < N − i, S[N] if N − i < i)
has length less than or equal to its complement.

We build a single suffix tree containing all suffixes ofSC andSR in O(n) time. Further, we augmen
this tree with the capability to perform least-common ancestor (LCA) queries in constant time afte
preprocessing time [12,23]. This LCA data structure enables us to return the length of the longes
match of two given suffixes in constant time.

To find the end-most possible fold, we can search for the longest prefix match ofSC[i + 1] and
SR[N − i + 2], where thej th fold attempt takes place ati = (j − 1)/2 if j is odd, andi = N + 1− j/2
if j is even. Thus the attempted folds alternate in from the left and right ends. A fold can occuri if
S[i] equalsM or V , and the length of the longest prefix match betweenSC[i + 1] andSR[N − i + 2] is
min(i − 1,N − i), or if the boundary condition above is satisfied. We then perform this first legal
thus reducing the length ofS. We can continue our scan for the next fold by appropriately reducing
length of the necessary longest prefix match to reflect the new end of the string. Note that the su
remains unchanged, and hence once one is computed, the folding process takes O(n) time. �
4.2. Randomized algorithm

In this section we describe a simple randomized algorithm that solves the 1D all-layers simp
problem in O(n) time. There are two parts to the algorithm:

1. assigning labels to the input lengths so that two lengths are equal precisely if they have th
label; and

2. finding and making allowable folds.

The first part is essentially element uniqueness, and can be solved in linear expected tim
hashing. For example, the dynamic hashing method described by Motwani and Raghavan [22] s
insertions and existence queries in O(1) expected time. We can use this data structure as follows
each input length, check whether it is already in the hash table. If it is not, we assign it a new
identifier, and add it to the hash table. If it is, we use the existing unique identifier for that value (
in the hash table). Letn′ denote the number of distinct labels found in this process (or 2, whichev
larger).

For the second part, we will show that each performed fold can be found in O(1+ r) time, wherer is
the number of creases removed by the discovered fold (in other words, the minimum length to an
the segment to be folded). However, it is possible that the algorithm makes a mistake, and that
the reported folds are not actually possible. Fortunately, mistakes can be detected quickly, and af(1)

expected iterations the pattern will be folded. (Unless of course the pattern is not flat-foldable, in
case the algorithm reports this fact correctly.)
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The algorithm proceeds simultaneously from both ends of the segment, so that it will find an allowable
fold in time proportional to the minimum length from either end. At any point, the algorithm has a
fingerprintof the string traversed before reaching that point, as well as a fingerprint of the corresponding
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string immediately after that point (reversed and complemented). These fingerprints are mainta
O(1) time per step along the segment. If the fingerprints match, then with high probability the unde
vectors also match, and we have an allowable fold. When we find such a fold (which takes O(1 + r)

time), the creases on the short side are discarded and the two searches are restarted starting
ends of the segment. This process is repeated until no allowable folds are found, in which cas
the folding is complete (there are no creases left to perform) or the crease pattern is not foldab
sequence of all-layers simple folds (creases remain). In the former case, the folding sequence
double checked (again using O(1+ r) time per fold), and if it is incorrect, the entire process is repea
with a new randomly chosen “basis” for fingerprints.

The fingerprints are based on Karp and Rabin’s randomized string matching algorithm [15]. W
a substring as the base-n′ representation of an integer, where we use 0, . . . , n′ − 1 to denote one of th
lengths, and 0 or 1 to denote a fold direction. Then the fingerprint of a substring is simply this i
modulop for a randomly chosen primep. This fingerprint can be updated easily in constant time
add a symbol to the end of the string, we multiply the current fingerprint byn′, and add on the new
symbol. To add a symbol to the beginning of the string (which is necessary for the reverse comp
substring), we add on the new symbol times(n′)k wherek is the current length of the string (we mainta
(n′)k modp throughout the computation).

Because an exact match is not required on the last length for a fold to be allowable, both finge
on either side exclude the last symbol, and we make a separate check that the length at the en
than or equal to the length onto which it folds. Thus, given the appropriate fingerprints, we can
whether a fold is allowable in O(1) time.

By choosing the primep randomly from the range 2, . . . , n3, the probability that this algorithm make
a mistake after at mostn folds is O((logn)/n); see [15]. More generally, if we choosep from the
range 2, . . . , nc, then the probability of failure is O(c(logn)/nc−2). Thus, with high probability, the
algorithm gives a correct positive answer (it always gives correct negative answers). To obtain gua
correctness, we simply check the answer and repeat the entire process upon failure.

In conclusion, the algorithm we have presented proves the following result:

Theorem 4.3. The 1D all-layers simple-fold problem can be solved inO(n) time, both in expectation an
with high probability, on a machine supporting random numbers and hashing of the input lengths

5. Orthogonal simple folds in 2D

In this section, we generalize our results for 1D simple folds toorthogonal2D crease patterns, whic
consist only of horizontal and vertical folds on a rectangular piece of paper, where horizontal and
are defined by the sides of the rectangular paper. In such a pattern, the creases must go all the wa
the paper, because every vertex of a flat-foldable crease pattern has degree at least four [2,13]. H
crease pattern is a grid of creases (amap), although the space between grid lines may vary. Edmond
observed that orthogonal 2D mountain-valley patterns may be flat-foldable but not by simple fol
Fig. 12 for two examples. Recall from Section 3 that the opposite holds in 1D: one-layer and some
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Fig. 12. Two maps that cannot be folded by simple folds, but can be folded flat. (These are challenging puzzles.) The n
indicates the overlap order of faces.

folds are equivalent to general flat-foldability. In this section we simultaneously handle some-laye
all-layers simple folds; with one-layer simple folds, only 1D maps are foldable.

To know what time bounds we desire, we must first discuss encoding the input. A natural enco
maps specifies the height of each row and the width of each column, thereby usingn1 + n2 space for an
n1 × n2 grid. The mountain-valley assignment, however, requires�(n1n2) space to specify the directio
for each edge of the grid. Hence, our goal of linear time amounts to being linear inn = n1n2.

In a simply foldable mountain-valley pattern, there must be at least one crease line, all the way
the paper, that is entirely valley or mountain; otherwise, the pattern would not permit any simple
Furthermore, all such crease lines must be parallel; otherwise, the vertex of intersection betwe
crossing crease lines would not be locally flat-foldable. Without loss of generality, assume tha
crease lines are horizontal, and letH denote the set of them.

We claim that all crease lines inH must be folded before any other crease. This is so bec
(1) folding along any vertical crease linev will lead to a mismatch of creases at the intersection ov

with any unfolded elements ofH and (2) horizontal crease lines not inH are not entirely mountain o
valley and hence cannot be folded before some vertical fold is made. Thus we have a correspon
problem (with some- or all-layers folds) to solve with the added necessary condition that the non-H folds
must match up appropriately after all the folds inH are made. (The time spent checking this neces
condition can be attributed to the non-H folds that vanish after every fold.) BecauseH contains at leas
one fold, performing theH folds (strictly) reduces the size of the problem, and we continue. The
case consists of just horizontal or vertical folds, which corresponds to a 1D problem. In summ
have:

Lemma 5.1. If a crease pattern is foldable, it remains foldable after the folds inH have been made i
any feasible way consideringH to be a 1D problem and ignoring other creases.

To findH quickly we maintain the number of mountain and valley creases for each row and c
of creases. We maintain these numbers as we make folds inH. To do this we traverse all the creases t
will vanish after a fold and decrement the corresponding numbers. The cost of this traversal is at
to the vanishing creases. Every time the number of mountain or valley creases hits zero in a colu
row, we add the row or column to a list to be used as the newH in the next step. Thus, we obtain



38 E.M. Arkin et al. / Computational Geometry 29 (2004) 23–46

Theorem 5.2. Some-layers simple folding of an orthogonal crease pattern on a rectangular piece of
paper can be solved in deterministic linear time. All-layers simple folding in the same situation can be
solved in randomized linear time, or deterministic linear time plus the time required to sort the edge
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This theorem easily generalizes to higher dimensions, with a running time linear inn = n1n2 · · ·nd

plus possibly the time required to sort the edge lengths.

6. Hardness of simple folds in 2D

In this section we prove that the problem of deciding whether a 2D axis-parallel mountain-
pattern can be simply folded is (weakly) NP-hard, if we allow the initial paper to be an arb
orthogonal polygon. We also show that it is (weakly) NP-hard to decide whether a mountain
pattern on a square piece of paper can be folded by some-layers simple folds, if the creases are
to be axis-parallelplusat a 45-degree angle.

Both hardness proofs are based on a reduction from an instance ofPARTITION, which is (weakly)
NP-hard [11]: given a setX of n integersa1, a2, . . . , an whose sum isA, does there exist a setS ⊂ X

such that
∑

a∈S a = A/2? For convenience we define the setS̄ = X \ S. Also, without loss of generality
we assume thata1 ∈ S.

We transform an instance of thePARTITION problem into an orthogonal 2D crease pattern o
orthogonal polygon, as shown in Fig. 13. All creases are valleys. There is a staircase of widthε, where
0 < ε < 2/3, with one step of lengthai corresponding to each elementai in X. In addition, there are two
final steps of lengthL and 2L, whereL is chosen greater thanA/2. The total widthW1 of the staircase
is chosen to be less then the widthW2 of the frame attached to the staircase.

The main mechanism in the reduction is formed by the vertical creasesv0 andv1. Basically, the first
time we fold one of these two creases, the staircase must fit within the frame, or else the second
two creases is blocked. Then when we fold the other of these two creases, the staircase exits th
enabling us to fold the remaining creases in the staircase.

Lemma 6.1. If the PARTITION instance has a solution, then the crease pattern in Fig.13 is simply
foldable.

Proof. For 2� i � n, valley fold vi if exactly one ofai−1 andai is in S. After these folds, as we trave
along the steps corresponding toa1, . . . , an, we travel in the−y direction for elements that belong
S and in the+y direction for elements that belong tōS. Because the sums of elements of bothS and
S̄ areA/2, the pointP5 has the samey-coordinate as the pointP4 after these folds. BecauseL > A/2,
the steps corresponding toai ’s are confined to remain in between they coordinates of pointsP1 andP2.
BecauseP5 has the samey-coordinate asP4 and because the vertical distance betweenP5 andP6 is L,
point P6 will have the samey-coordinate as eitherP1 or P2.

Now valley foldvn+2. Because the vertical distance betweenP6 andP7 is 2L, they-coordinate ofP7

will be same as that ofP1 or P2 and the step betweenP6 andP7 will lie exactly between they-coordinates
of P1 andP2. This situation is illustrated in Fig. 14.
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Fig. 13. Hardness reduction fromPARTITION problem.

Now valley fold v1. BecauseW2 > W1, the partly folded staircase, which currently lies between
y-coordinates ofP1 andP2, fits within the rectangleP0P1P2P3. Now valley foldv0. We now have the
semi-folded stairs on the right and the rectangular frameP0P1P2P3 on the left. Finally, valley fold all of
the remaining unfolded creases in the staircase. This can be done because the rectangular fram
on the left ofP4 and all steps of the staircase are on the right ofP4. �
Lemma 6.2. If the crease pattern in Fig.13 is simply foldable, there is a solution to thePARTITION

instance.

Proof. If either v0 or v1 is folded without having the staircase confined between they-coordinates ofP1

andP2, the rectangular frameP0P1P2P3 would intersect with the staircase and would make the othe
v0 andv1 impossible to fold. Hence the staircase must be brought between they-coordinates ofP1 and
P2 before folding eitherv0 or v1. Because the last and the second-last steps of the staircase are
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Fig. 14. Semi-folded staircase confined betweeny coordinates ofP1 andP2. The top side of the paper is drawn white and
other side is drawn gray.

2L andL, respectively, pointP5 must have the same coordinate as the pointP4 when the staircase i
confined between they-coordinates ofP1 andP2.

As we travel fromP4 to P5 along the staircase, we travel equally in positive and negativey directions
along the steps corresponding to the elements ofX. Hence the sum of elements along whose s
we travel in negativey direction is same as the sum of elements along whose steps we travel
+y direction. Thus there is a solution to thePARTITION instance, if the crease pattern in Fig. 13
foldable. �

Lemmas 6.1 and 6.2 imply the following theorem.

Theorem 6.3. The problem of deciding simple foldability of an orthogonal piece of paper with
orthogonal mountain-valley pattern is(weakly) NP-complete, for all-layers, some-layers, and one-la
simple folds.

Even on a rectangular piece of paper it is hard to decide foldability if, besides axis-parallel, th
creases in diagonal directions (45 degrees with respect to the axes):

Theorem 6.4. It is (weakly) NP-complete to decide the simple foldability of an(axis-parallel) square
sheet of paper with a mountain-valley pattern having axis-parallel creases and creases at the d
angles of45 degrees with respect to the axes, for both all-layers and some-layers simple folds.

Proof. We transform an instance of thePARTITION problem to a 2D crease pattern on an axis-para
square having all creases either orthogonal (axis-parallel) or at 45 degrees to the axes.

First, we establish a set of horizontal folds, evenly spaced and alternating mountain and valley
result in the paper becoming a long thin rectangle (“strip”); these initial folds will be calledI-folds.

Now, a rectangular strip can be turned by 90 degrees by making a single fold as shown in Fig.
making several such turns we can get the strip into the shape of the initial paper as in Fig. 13, exc
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Fig. 15. Turning a strip.

Fig. 16. Illustration of first few DR-folds used in construction.

the corners at each turn are “shaved” by 45-degree chamfers. (A strip can readily be folded in o
avoid these chamfers; however, it is easier to describe our construction with the simpler single
each bend.) Call these foldsd1, d2, d3, . . . . Immediately after eachdi we make a fold parallel to the stri
to reduce its width. See Fig. 16. Call these foldsr1, r2, r3, . . . respectively. Thus we make these folds
the following order:d1, r1, d2, r2, . . . . We refer to thedi folds as theD-folds, theri folds as theR-folds,
and both kinds together asDR-folds.

Finally, we create valley folds, as shown in Fig. 13. We refer to these valleys asF-folds. After making
the F-folds, we can unfold the paper to get the desired crease pattern.

It is easy to see that if a solution to thePARTITION problem exists, the above crease pattern ca
folded by first making the I-folds, followed by the DR-folds in the order in which they were cre
followed by the F-folds (as done in Fig. 13). We now prove the other direction: if the crease patte
be flat folded, then thePARTITION problem has a solution.

Each D-fold intersects all I-folds. And each R-fold intersects at least one D-fold. Hence none
DR-folds can be made before all of the (initial) I-folds are made.

Becauser1 intersectsd1 and was created after foldingd1, there is a precedence constraint that in
valid folding d1 occurs beforer1. Similarly r1 occurs befored2 and so on. Thus the DR-folds must occ
in the orderd1, r1, d2, r2, . . . .
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Also none of the F-folds can be made before the corresponding R-folds which it intersects are made.
Thus it is guaranteed that after I-foldsd1, r1, d2, r2, r3 would be made in that order before any other folds.
This puts our rectangular frameP0,P1,P2,P3 in place as in Fig. 13.
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Just as in proof of Lemma 6.2, to enable foldsv0 andv1 to be made, the strip followingd3 must be
folded so that it is confined between they-coordinates ofP1 andP2. For this proof, there is an addition
constraint that no point on the strip followingd3 should have anx-coordinate differing from that ofP0

by more thanW2. We can chooseW2 as small as we want, by reducing the width of the strip that I-fo
create. In particular we can chooseW2 to be smaller than allai ’s. Thus to meet the above constrain
all the lengths of the strip which correspond toai ’s will have to be vertical. And just as in proof o
Lemma 6.2, there must exist a solution toPARTITION problem, if all these vertical strips have to
between they-coordinates ofP1 andP2. �

The problem is open for the one-layer case.

7. No mountain-valley assignments

An interesting case to consider is when the creases do not have mountain-valley assignm
crease can be folded in either direction. Even with this flexibility, we are able to show that the pr
is hard:

Theorem 7.1. The problem of deciding the simple foldability of an orthogonal piece of paper w
crease pattern(without a mountain-valley assignment) is (weakly) NP-complete, for both all-layers an
some-layers simple folds.

Proof. For the all-layers case, the proof of Theorem 6.3 works without mountain-valley assignme
well. This is so because the staircase must be confined as before to make both turnsv1 andv2 in either
direction. If the staircase is not confined before either ofv1 or v2 is made in either direction, it wil
overlap with the frame, and, in the all-layers case, as soon as two layers of paper overlap they are
together.

For the some-layers case the proof of Theorem 6.3 does not work, as the foldsv0 andv1 can be made in
opposite directions, and so a folding exists whether or not a partition exists. We modify the const
to ensure thatv0 andv1 must be folded in the same direction. See Fig. 17, and the more detailed F
There are only two differences between this construction and the one in Fig. 13. First is the extr
of paper (flap) attached at the top of the staircase. Second is the addition of the fold of the flap, an
“crimps” shown in Fig. 18. When creating the crease pattern, these new folds are made before thev0

andv1. Each crimp consists of two folds very close to each other, changing the shape of our cons
only infinitesimally.

It is easy to argue that if there is a solution to thePARTITION problem, then our construction can
folded. This can be done by first folding the flap, followed by crimpc0, followed by crimpsc1, c2 and
then following the algorithm described in proof of Lemma 6.1.

We now prove the other direction; that is, if our construction is foldable, then there is a solut
the PARTITION problem. We start by noting the following: Given a crease pattern in which two
intersect at an angle other than 90 degrees, it is easy to tell which of the two folds must be fold
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Fig. 17. Hardness reduction when no mountain-valley assignment is given.

in any legal folding. This is because the second fold must be a mirror image through the first fold
angle of intersection is not 90 degrees, then the second fold does not form a straight line in the
pattern, but rather is two line segments reflected around the first fold. (If two creases meet at a 90
angle, and no mountain-valley assignment is given, then there are two possible orders of folding
creases.) As a consequence, while constructing a crease pattern, if a crimp or a foldcy is folded after
another crimp or foldcx and ifcy intersectscx at any angle other than 90 degrees, thencx must be folded
beforecy can be folded in any legal folding of this crease pattern.

Fig. 19 illustrates two crimps intersecting at 45 degrees and the crease pattern they create.
In our construction, from the above discussion, the flap must be folded before crimpc0 can be folded,

which in turn needs to be folded before crimpsc1 andc2 can be folded. Further, crimpsc1 andc2 need
to be folded before foldsv0 andv1 can respectively be folded. Thus, before eitherv0 or v1 can be folded,
the flap must be folded. Once the flap is folded in either direction,v0 andv1 are forced to fold in the sam
direction. With this constraint, the rest of the proof is the same as that of Lemma 6.2.�



44 E.M. Arkin et al. / Computational Geometry 29 (2004) 23–46

ontal
number
quences
rnates

only in
ing
ch one-
-
er of

ere is an
Fig. 18. Interesting part of construction for hardness reduction.

Fig. 19. Crimps intersecting at an angle other than 90 degrees cannot be folded out of order.

The problem is open for the one-layer case.

8. Conclusion

We have presented efficient algorithms for deciding flat foldability of a map (rectangle with horiz
and vertical creases) via a sequence of simple folds, for any of three different restrictions on the
of layers that can be folded at once. In the all-layers model, there may be several solution se
of simple folds, and they can vary significantly in length; for example, in a 1D pattern that alte
mountain and valley, there is a sequence with roughly logn folds and a sequence with roughlyn folds.
(In contrast, the shape of the final folded state is independent of the folding process, depending
the crease pattern.) Jeff Erickson2 observed that there is also a polynomial-time algorithm for minimiz
the length of the simple-fold sequence: the one-dimensional subproblems are forced, and in ea
dimensional subproblem, we can use dynamic programming on the O(n2) substrings of the mountain
valley pattern. This optimization problem is of course trivial for one-layer simple folds (the numb
folds equals the number of creases), but it remains open for some-layers simple folds, where th
interesting interplay between the efficiency of all-layers folds and the power of one-layer folds.

2 Personal communication, March 2001.
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On the complexity side, we have shown that slight generalizations of the basic map-folding problem
are (weakly) NP-complete. However, there still remains a gap. For example, what is the complexity of
deciding simple foldability of an orthogonal crease pattern on an orthogonally convex piece of paper?
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Even more simply, what is the complexity of deciding simple foldability of an orthogonal crease p
on a convex piece of paper, or even a non-axis-aligned rectangle? These variations possess th
difficulty that making one fold may produce a piece of paper that is no longer a subset of the o
piece of paper; thus, it is not clear that making a fold always makes progress. Another direc
consider is nonrectangular maps, for example, a triangular map whose faces are unit equilateral
(polyiamonds). We conjecture that deciding simple foldability is again (weakly) NP-complete i
context. Also, for the problems that we show to be weakly NP-hard, it remains open whether th
pseudopolynomial-time algorithms for solving simple foldability, or whether the problems are str
NP-complete.

Our study of special cases of crease patterns may also be interesting in the context of gen
foldings. Here the goal would be to strengthen Bern and Hayes’s NP-hardness result [2] to
crease patterns, or perhaps more interesting, to find special cases in which flat foldability is polyn
testable. One special case of particular interest, posed by Edmonds [8], is anm × n grid with a prescribed
mountain-valley assignment. Along these lines, Justin [14] observed that even 2× n maps in which
every 2× 2 submap is flat-foldable may not be totally flat-foldable. Di Francesco [7] suggests
useful algebraic structure in 1× n map folding may generalize. However, we do not even know whe
testing general flat foldability is NP-hard for the cases in which testing simple foldability is NP-
orthogonal polygons with orthogonal creases, and rectangles with orthogonal and 45◦ creases. Ou
hardness reductions rely on the restriction to simple folds.

Addendum

We recently learned that Calinescu, Karloff and Thorup [3] independently discovered linea
algorithms for some-layers simple foldability in the 1D and 2D orthogonal cases.
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