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Abstract

We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type
are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter’s
ruler) can be straightened, a problem that was open for several years and has only recently been solved in the
affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite
different results. In particular, we study the variant of the carpenter’s ruler problem in which there is a restriction
that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent
results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time.
However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can
be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most
once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in
wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one
or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.
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1. Introduction

The following is an algorithmic problem that arises in the study of the manufacturability of sheet
metal partsGiven a flat piece, F, of sheet metal (or cardboard, or other bendable stiff sheet material ),
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Fig. 1. Examples of paperclips: (a) and (b) are standard versions, which are readily straightened. (c) is a “butterfly” paperclip,
which is not a planar structure and is not among the wire structures considered in our two-dimensional model. (d) shows a 5-link
paperclip that cannot be straightened using complete bends in the plane. (e) shows a 6-link structure that can be straightened
e.g., using the bend sequence animated below it for the bend seqguenck 5, 4, 3, 2).

can a desired final polyhedral part, P, be made from it? The 2-dimensional version is the wire-
bending (“paperclip”) problenGiven a straight piece, F, of wire, can a desired simple polygonal chain,
P, be made from it? This problem also arises in the fabrication of hydraulic tubes, e.g., in airplane
manufacturing. In both versions of the problem, we require that any intermediate configuration during
the manufacture of the part be feasible, meaning that it should not be self-intersecting. In particular, the
paperclips that we manufacture are not allowed to be “pretzels”—we assume that the wire must stay
within the plane, and not cross over itself. See Fig. 1 for an illustration. We acknowledge that some real
paperclips are designed to cross over themselves, such as the butterfly style of clip shown in the figure.
Our problem is one of automated process planning: Determine a sequence (if one exists) for
performing the bend operations in sheet metal manufacturing. We take a somewhat idealized approact
in this paper, in that we do not attempt to model here the important aspects of tool setup, grasp positions,
robot motion plans, or specific sheet metal material properties which may affect the process. Instead, we
focus on the precise algorithmic problem of determining a sequence for bend operations, on a given sheet

1 We thank Karel Zikan for introducing to us the hydraulic tube bending problem at Boeing's factory.
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of material with given bend lines, assuming that the only constraint to performing a bend along a given
bend line is whether or not the structure intersects itself at any time during the bend operation.

Note that the problem of determining if a bend sequence exists that allows a structunfel tbis
equivalent to that of determining if a bend sequence exists that allows ¢old toflat (or straight) input
into the desired final structure: the bending operations can simply be reversed. For the remainder of the
paper, we will speak only of unfolding or straightening.

1.1. Motivation and related work

Our foldability problem is motivated from process planning in manufacturing of structures from
wire, tubing, sheet metal and cardboard. The CAD/CAM scientific community has studied extensively
the problem of manufacturability of sheet metal structures; see the thesis of Wang [34] for a survey.
Systems have been built (e.g., PART-S [12] and BendCad [17]) to do computer-aided process planning
in the context of sheet metal manufacturing; see also [3,10,19,35,36]. See [24] for a motion planning
approach to the problem of computing folding sequences for folding three-dimensional cardboard
cartons. Considerable effort has gone into the design of good heuristics for determining a bend sequence
however, the known algorithms are based on heuristic search (&)gin Aarge state spaces; they are
known to be worst-case exponential. (Wang [34] cites the known complexityrd2'Q)

Our work is also motivated by the mathematical study of origami, which has received considerable
attention in recent years. In mathematics of origami, Bern and Hayes [5] have studied the algorithmic
complexity of deciding if a given crease pattern can be folded flat; they give an NP-hardness proof.
Lang [20,21] gives algorithms for computing crease patterns in order to achieve desired shapes in three
dimensions. Other work on computational origami includes [1,14,15,18,27,28,31]. A closely related
problem is that of flat foldings of polyhedra. It is a classic open question whether or not every convex
polytope in three dimensions can be cut open along its edges so that it unfolds flat, without overlaps.
Other variants and special cases have been studied; see [2,4,9,25,26].

Finally, we are motivated by the study of linkage problems; in fact, in the time since this paper was
first drafted, the carpenter’s ruler conjecture has been resolved by Connelly, Demaine and Rote [11]
and Streinu [32]: Any (strongly) simple polygonkhkage with fixed length links and hinged joints,
can be straightened while maintaining strong simplicity (i.e., without the linkage crossing or touching
itself). (They also show related facts about linkage systems, e.g., that any simple polygonal linkage can
be convexified.) In fact, Streinu [32] gives an algorithmic solution that bounds the complexity of the
unfolding and is somewhat more general than the slightly earlier results of [11]. These results imply
that any (strongly simple) paperclip can be manufactured if one has a machine that can perform a
sufficiently rich set of bending operations. For a recent overview of folding and unfolding, see the thesis
of Demaine [13]. Earlier and related work on linkages includes [7,8,22,23,29,30,33]. Our hardness results
are particularly interesting and relevant in light of these new developments, since we show that even
slight changes in the assumptions about the model or the allowed input results in linkages that cannot be
straightened, and it is NP-hard to decide if they can be straightened.

1.2. Summary of results

(1) We show that it is (weakly) NP-complete to determine if a given rectilinear polygonal linkage can be
straightened, under the restriction that only one joint at a time is altered and each joint can be altered
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only once (so the joint must be straightened in a single bend operation). A consequence is that the
more general sheet metal bending problem is hard as well, even in the case of parallel bend lines and
an orthohedral structurg.

(2) We prove that it is (weakly) NP-hard to determine if a given polygonal linkage can be straightened
if there is avertex degeneracy, in which two vertices coincide. Here we again assume that only one
joint can be altered at a time, but we do not assume that a joint is altered only once, so we may make
any number of bends at any particular joint.

(3) We give efficient algorithms for determining if a given bend sequence is feasible, assuming only one
joint is altered at a time, and for determining if certain special classes of bend sequences are feasible.
In particular, we give an efficient (@log?n)) algorithm for determining if a polygonal linkage
can be straightened usingsequential strategy, in which the joints are completely straightened, one
by one, in order along the linkage. We also give efficient polynomial-time algorithms for deciding
whether there is a feasible bend sequence that straightens joints in an order “inwards” from both ends
or “outwards” towards both ends. (Such constrained bend sequences may be required for automatec
wire-bending machines.) These results will be made more precise in Section 4.

2. Preiminaries

The input to our problem is a simple polygonal chain (linkag®), with vertex sequence
(bo, b1, b2, ..., b,y1). The pointshy andb, 1 are theendpoints of the chain, and the verticesbq, ..., b,
are thebends (or joints). The line segments; b; .1 are theedges (or links) of P. The edgeb;b;,; is a
closed line segment; i.e., it includes its endpoints. We consider the ¢h&nbe oriented fronb, to
b,+1, and we consider each edgeto have deft and aright side. Each bend; has an associatdsnd
angle 6; € (0, 2], measured between the right sides of the two edges incident on

The chainp is strongly simple if any two edgesb;b; 11 andb;b;.1, of P that are not adjacent £ j)
are disjoint and any two adjacent edges share only their one common endpoint. We gaysthatple
if it is not self-crossing but it possibly is self-touching, with a joint falling exactly on a non-incident edge
or another joint; i.e. P is simple if it is strongly simple or an infinitesimal perturbation of it is strongly
simple.

We consider the chai® to be a structure consisting of rigid rods as edges, whose lengths cannot
change, connected by hinged joints. Wheread operation is performed at joinb;, the bend anglé; is
changed. Throughout this paper, we assume that the only bend operations allogregefeint bends,
in which only one bend angle is altered at a time. We establish the convention that when a bend operation
occurs atb;, the subchain containing the endpoint remains fixed in the plane, while the subchain
containingb, ., rotates about the joirli;. This convention allows us to have a unique embedding of a
partially or fully straightened chain in the plane.

A bend operation isomplete if, at the end of the operation, the bend angle jave then say that the
joint has beerstraightened. A bend operation that is not complete is calledaatial bend. A sequence
of bend operations is said to Imonotonic if no bend operation increases the absolute deviation from
straightness|6; — «|, for a joint b;. If all joints of P have been straightened, the resulting chain is a
straight line segment;, of length) ""_, |b;b;11|, Where|b;b; 1| denotes the Euclidean length of segment
b;b;11. By our bend operation convention, one endpointFofs by, and F contains the segmeibbb,
(which never moves during bend operations).
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For S C B, we let P(S) denote the partially straightened polygonal chain having each of the bends
b; € S straightened (to bend angtg), while each of the other bends, ¢ S, is at its original bend angle
;. Thus, in this notationP(B) = F and P (@) = P. We let P(S;i,60), for 1 <i < n with i ¢ S, denote
the chain in which each berig € S is at bend angler, bendb; is at angled, and all other bends; ¢ S
are at their original bend anglés. We say that chai® (S) or P(S; i, 0) isfeasibleif it is a simple chain.

We say that bena; is foldable (or is afeasible fold) for P(S) if P(S;i,0) is feasible for alld in
the range between and6; (more precisely, for alb; <0 < x, if 6; <m, or for all = <0 <6, if
0; > m). If b; is foldable, then it is possible to make a complete berig,aheaning that the joint can be
straightened in a single operation without causing the chain to self-intersect. We say that a permutation
o = (i1, i, ...,i,) Of theindiceq1, 2, ..., n} isfoldablefor P if, for j =1,2,...,n, joint b;, is foldable
for P({bi,, ..., bi;_,}), i.e., if P can be unfolded into the straight segménusing the bend sequence
o (so that, by reversing the operation3,can be manufactured frofi using the reverse of the bend
sequence).

The WIRE BEND SEQUENCING problem can be formally stated d3etermine a foldable permutation
o, if one exists, for a given chain P.

This paper studies the We BEND SEQUENCING problem for polygonal chains in the plane. We note,
however, that our results have some immediate implications fortiE= SMETAL BEND SEQUENCING
problem, which is defined analogously for a polyhedral surfBchaving a patternB of bend lines
(creases), each of which must be straightened in order to fl&tero a flat polygonF. Specifically,
the hardness of theHEET METAL BEND SEQUENCING follows from the hardness of the ME BEND
SEQUENCING, which can be seen as a special case of the sheet metal problem inAvisiehrectangle
and the bend lines are all segments parallel to two of the sidegiadind extending all the way acrogs

We give an example in Fig. 1 of some common paperclip shapes, (a)—(c). We also show an example,
(d), of a 5-link paperclip that cannot be straightened using complete bends, for any permatafion
the bends. Finally, we show an example of a 6-link paperclip for which the foldable permutations are
{(1,5,4,3,2),(1,5,4, 2,3)}; we show the sequence of bends, with the intermediate structures, for the
permutations = (1,5, 4, 3, 2).

3. Hardnessresults
3.1. Complete bends

Ouir first result shows that if we require bends to be complete, as in our specification offEEBAND
SEQUENCING problem, the problem of deciding if there is a feasible bend sequence is NP-complete.

Theorem 1. WIRE BEND SEQUENCINGis (weakly) NP-complete, even if P isrectilinear.

Proof. We prove NP-completeness, even in the case that we are restricted to a special class of bend
sequences, namely, those that can be written as the concatenation of up to four monotone subsequence
of the index setl, ..., n}. Below, we refer to each subsequence of bendsrasratone pass over the
chain, going from one end to the other, performing a specified subset of complete bends.

Our reduction is from RRTITION: Given a sefS of n integersg;, which sumtoA = ) . g;, determine
if there exists a partition of the set into two subsets each of which sumgzo
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Fig. 2. Proving hardness of the & BEND SEQUENCINGproblem for rectilinear chains: frame and key.

The key idea of our construction uses two components, as shown in Fig. 2: One is a rigid “frame”
that can only be unfolded if one end of the chain can be removed from within this frame. The other
component is a “key” that encodes the partition instance. Collapsing the key is possible if and only if
there is a partition of the integers into two sets of equal sum. The total number of segments will be
£ =26+4+4n; wewriteb; (i =0,1,...,26+ 4n) for the vertices, and, = (b;_1, b;) for the segments. For
any point in time, we refer to the position of a joihtby its coordinatesx;, y;). When discussing some
of the relative distances, we ugg (b;, b;) = max{|x; — x;|, |yi — y;l}.

More precisely, the frame consist of 13 segmentss (bo, b1), ..., s13 = (b12, b13), as shown in the
figure. Segment lengths are chosen such that the size of the fra@@ js with minimal coordinate
differencesd. (bo, b13), doo (b1, b12), doo (b2, b11), doo (b3, b10), oo (ba, bg), doo (bs, bg), d (bs, b7) being
O(e), wheree = 1/(n°L?). The “key” consists of 13+ 4n segmentssis = (b3, b1a), ..., So61an =
(b25+4n, b25+4n). Fori =0,...,4n+2, the “auxiliary” segment515+4i, S16+44is S17+4i have Iength:, while
the “partition” segmentsig.4; have lengthu;. The long “positioning” segments 4, s1s, $2514, S2614n
have lengthd., L/3, L/3 andL — 3ne, respectively; they guarantee that the partition segments must
have a particular relative position when removing the key. We choose the scale to be sughithad,
for technical reasons that will become clear later in the proof. As indicated in the figure, the initial
position of each key segmenyt i = 14, ..., 26+ 4n hasx-coordinatex;s or x13 + ¢, with a horizontal
distance ofx; — x4 = ¢ or x; — x4 = 2¢ from s4. Moreover,b14 is positioned at a vertical distance of
V14— Y4 = I’l28 = 1/(I’lL2) aboveb4.

The purpose of the auxiliary segments is as follows. As shown in Fig. 2, we have two types of joints in
the figure: the “ordinary” ones (indicated by solid black dots) form the frame and can only be accessed
once. The “quadruple” ones (indicated by hollow dots in Fig. 2) consist of the four simple joints at three
consecutive auxiliary segments; they are found along the key as described. These quadruple joints make
it possible to simulate opening and closing such a joint a limited number of times.

Now assume that there is a partitish= 3 U Sz, such that) ;s @ = > _;c5, @ In order to see
that the key can be removed from the frame we first convert it into the “stair” configuration shown in
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Fig. 3. Turning the key into a stair. (a) An intermediate stage of the monotone pass. (b) The stair configuration at the end of the
monotone pass, with details of the state of quadruple joints.

Fig. 3: We make one monotone pass over the chain towards the key end, and straighten one ordinary
joint per quadruple joint whenever this joint separates two segments from diffgrenius, segments
corresponding to numbers i§y will be horizontal, while those for numbers iy will be vertical. In
order to keep the number of monotone passes limited to four, during this first pass we also straighten two
ordinary joints per quadruple joint separating two segments from the Sgrag shown in Fig. 3(b).

Making a similar monotone pass, we can convert the stair into a “flat harmonica”, as shown in
Fig. 4, with segments fron§, pointing “down”, i.e.y; < y;_1, and segments fron§; pointing “up”,
i.e. y; > y;_1. By assumption about the partition, the positions of endpabagsand b1g,4, Satisfy
doo(b1g, b1814n) < 3ne and 1/3 — 3 < V13 — Y18 < 2L/3 + 3¢, i.e., bothbig and big. 4, are roughly
2L /3 belowb,3. Altogether, the position of the last segmesy. 4, of length L in the chain will differ by
at most Qne) from the vertical position of segmery,, with all other segments strictly in-between. This
collapsed structure can be rotated akgygtwithout colliding with any frame segments. Then itis easy to
open up the remaining frame (by straightening, b11, b1o, bs, b7, be, bs, ba, bz, bo, by asS one monotone
pass, skippingg). Finally, the resulting monotone chain can be straightened in one last monotone pass.

Conversely, assume now that the chain can be straightened. See Fig. 5. It is cléag thast be
straightened before any other joint in the §&t ..., b1o}. In order to avoid hitting vertek, during this
motion, any part of the key to the right and beldys must be strictly within the circleC of radius
r=+/(L+1/(nL?)2+ 2 < L 4 2/(nL?) aroundby3, wherer is the distance betweens andb, (see
Fig. 4). The following technical arguments show that at this time, segmgng, has to be in a vertical
position that basically coincides withs, which is only possible in case of a feasible partition.
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Fig. 4. Turning the stair into a harmonica of small width and lengtifThe horizontal width is not drawn to scale in order to
show details.)

b1

critical segment S >g44n

b by

by b

Fig. 5. When straightening joiit 3, the key must be fully contained in the shaded circle of ragdivs. + 2/(nL2). This forces
a particular position of segmestg, 4;,.

When starting the rotation abouis, sosi4, IS an axis-parallel segment of length— 3ne > L —
1/(nL?). The rigid frame and the closenesshef andb, ensure that segmesys, 4, cannot lie to the left
of s14, IMplying thats,es.4, can only lie within the quarter circle of radiusbelow and to the right ob;3
whenb 3 is straightened.
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Let bmin be one of the two points ifbos.4,, bosra,} that is not further fromb,3 than the other, and
let bmax be the other point. If the vertical distangg; — ymin is greater than/7/(nL), it follows that the
Euclidean distance betweépa.y, andbyz is at least

! + | L 1Y L+ 2 2+ 1 3 L+ 2
— -——) = — - > — >
nL nlL? nlL? nL n2L4 nlL?

a contradiction to the assumption thag, 4, is fully contained inC. Now, using our assumption that
L/4 > A, we know thatb,s, 4, andby4 are connected by a polygonal chain of length strictly less than
L/3+ L/4+ L/3=11L/12, implying thatb,s,4, has Euclidean distance at ledst12 from b3, SO
boean = bmin aNdbos. 4, = bmax. AS bogya, 1S Within /7/(nL) of by3, it follows thatb,e. 4, has Euclidean
distance at least — /7/(nL) from by4. If s06.4, Were horizontal, then the Euclidean distance between
bos. 4, andby4 would be at least

\/(L —J7/@nL))? + (L — 1/(nL?)* > 111./12,
a contradiction. Hencepg, 4, must be vertical. Just as we derived for the vertical distance betigen
andbe.4,, it follows for the horizontal distance thagg, 4, — x13 < /7/(nL) <« 1.

Now observe that when starting the rotation akiayt all partition segments must be strictly between
s14 and the narrow strip betweet, ands,s,4,, Meaning that they are all vertical. L&t be the set of
“upwards” partition segments with y; > y;_;, andS, be the set of “downwards” partition segmests
With y; < yi_1. AS |yoaran — y15| = O (ne) and |yss,4, — y14| = ®(n’e), we conclude that the integral
total length of upwards segments equals the integral total length of downwards segments.

This means tha} _, s a; =, ., a;, and we have a feasible partition. This completes the proof.

3.2. Partial bends

Now we consider the case in which each joint may be changed an arbitrary number of times during
the straightening operations, while still making single-joint bends (bending only one joint at a time).
This version of the problem is closely related to the carpenter’s ruler problem studied by [11,32]. In
the context of our study on folding, there may be the additional requirement of using only monotonic
bend operations, e.g., to avoid work-hardening the wire, possibly causing it to break. We begin with the
following observation about the sufficiency of monotonic single-joint bends; see also the discussion on
p. 9 of Demaine’s thesis [13].

Theorem 2. Any strongly simple polygonal chain P can be straightened using a finite number of
monotonic single-joint bends.

Proof. Consider the sef of points inn-dimensional joint-angle space that correspond to strongly simple
embeddings of the linkage. A single-joint bend corresponds to axis-parallel motion in joint-angle space.
If self-touching is prohibitedsS is an open set; note too thé&tis bounded. By Streinu’s result [32], there

is an opening motion of the chain that consists of a finite number of individual monotonic moves. Such an
opening motion corresponds to a pafth, in S, comprised of a finite number of arcs, each corresponding

to a monotonic move. Let be the Euclidean distance between pathand the boundary of; since

S is open, we know that > 0. Then we can replace each arc of the p&tlwith a finite sequence of
axis-parallel moves of size/2, yielding a straightening that uses single-joint bends.
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We will refer to a sequence of small individual moves that mimics an overall large-scale motion of
several joints as “wiggly”, since the overall motion may be achieved through back-and-forth motions of
individual segments that gradually change individual angles.

The following results show that allowing even a single point of self-incidence along the linkage
changes the overall situation quite drastically.

Lemma 3. There are polygonal chains P with a single vertex-to-vertex incidence that cannot be
straightened using partial single-joint bends.

Proof. See Fig. 6. The chain has eight joints (labelgd..., b;) and seven segments (of the form
s; = (bj_1, b;)). The endpointbg coincides with jointbs. It is easily checked that none of the joints
b1, ..., by can be changed without causing a self-intersection: Assume that there is a feasible motion of
a joint b; with 0 < i < 5. Then the point$, and b5 would move away from each other along a circle
aroundb; . Without loss of generality, assume tldgtremains in place, whilég is moving. Now consider
the first such rotation that starts with andbs coinciding, and that avoids a crossingsefwith both ss
andse. If bg moves clockwise arountd, it is easy to see that the angle betwe&kh b;) andss must be at
leastrr /2 when starting the motion, or elsg andss intersect. Ifbg moves counterclockwise aroutd
the same follows for the angle betwe@n, b;) andsg. Therefore, the center of rotation must lie within
the shaded region shown in the figure. (The cone to the Iéf§ &f feasible for clockwise rotation, while
the cone to the right dfs is feasible for counterclockwise roation.) However, none of the ja@ints. ., by
lies inside of this feasible region. It follows thag, . .., bs form a rigid frame, as long as the anglebat
stays smaller tham /2.

possible locations for
centers of feasible rotations

Fig. 6. A polygonal chain that cannot be opened with single-joint moves.
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On the other hand, it is easy to see thatannot be removed from the pocket formedbhyb, andb;
if only the two remaining “free” joint$s andbg can be changed. The claim followsO

If bg andbs have some positive distance, then the frame can be opened along the lines of the approach
in [11] or [32] by gradually straightenings, bg, b1, b, andbg, so that the “zig-zagging” part betweég
andbs pushes left, whilég swings arounds.

Using the frame as a gadget, we can show the following:

Theorem 4. It is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence can
be straightened by arbitrary partial single-joint bends.

Proof. The basic idea is similar to the one in Theorem 1 and also establishes a reductimTofiEN.

(Refer to Fig. 7 for an overview.) As before, we witgfor the joints, and; = (b;_1, b;) for the segments.

We use the idea of the construction from Lemma 3 to construct a rigid frame, with the key corresponding
to the free end of that chain. The frame has one ggiaf the polygonal chain wedged into the corhey,

which has angle « /2. Because of the degeneracy g, none of the joint4, ..., b1, can be moved
individually without causing a self-intersection betwdgnand the chain in the neighborhood iofs:

\

(vertical size )

-
(segments of length J
(L/2 cosV) + ©(g))

g

angle V. b,

/
b

Fig. 7. lllustration of the proof of Theorem 4. Note that lengths are not drawn to scale, in order to show sufficient details; in
particular, the dimensions of the bottleneck are much smaller than the edges encoding the partition instance.
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Just like in the proof of Lemma 3, none of the joits . . ., b1, lies in the area of possible locations of
feasible rotations. This continues to be the case whileyr < r, i.e., while the sum of angles a3 and
at b17 does not change significantly.

Again, the “key” contains thea segmentsq, ..., s191, Of integral lengthsy,, ..., a, that encode an
instance of RRTITION. As before, letS denote the set of integers for thedITION instance. We also
use “long” auxiliary segments of lengtlis'2 andL, whereL >> > . a; = A. Here segments g andszo,,
have lengthl. /2, while sp1,,, has lengthl..

The critical dimensions of the frame are chosen such that the key can just be removed from the frame
if and only if it can be collapsed to a length 6f Removing the key consists in pulling it through the
narrow bottleneck formed by the segmerisand sy by extending the “spring” formed by 4 ands;s,
while moving the “keyholder’;s down by a distance aof + ¢. This is possible if and only if there is a
feasible patrtition.

More precisely, let the angle &t; bey < 7. Lete = O(1/nL). We assume that the dimensions
of the frame are chosen sufficiently large to guarantee that mavipglown by a vertical distance
of L + ¢ increases its distance froms by L cosy + ©(e), i.e., the angles ab;7 and atb;3 do not
change much. The segmentg ands;s forming the spring have length/2 cosyr + ©(¢g), so extending
the spring will just suffice to move the keyholderg down by L + ¢, but not more. The vertical
“height” of the bottleneck, i.e., the length of the segmegtandsg, is /3, while the horizontal “width”

Xg — X3 = X9 — x» = &* is significantly smaller. (As we will discuss below, this forces the keyholder to be
roughly vertical throughout the motion.) For the initial position of the key inside of the frame, we assume
L <yig—y3s<L+e¢e/3andL < yyo., —y3 < L+¢/3. Finally,ys — y; = L + ©(¢) andxe — x5 = O (A),

so the dimensions of the rectangle formedbaybs, bg, b7 are not large enough to change the basically
vertical orientation of the location segments, s19., andsso.,.

Now assume that there is a feasible partitish= S1 U S, such that) ;s @ = > .5, ai- By
performing a (finite) “wiggly” sequence of moves, we can move the partition segments such that (1)
any segment;q,; representing; € Sy satisfiesy; — y,_1 = a; + O(¢®) and|x; — x;_1| = O(¢®), so that
s19+; IS pointing up; (2) any segmentg,; representings; € S, satisfiesy,_1 — y; = a; + O(¢®) and
|x; — x;_1] = O(e®), so thatsyq,; is pointing down; and (3) we end up placibgy,, within Euclidean
distance @s*) from b1g and placingb,y,, at distances/3 + O(e°) from bz andbg. Thus, extending the
spring by an appropriate wiggly motion moves the key through the bottleneck. Now it is easy to open the
joint b13, and unfold the whole chain.

Conversely, assume that the chain can be unfolded. As discussed above, the sum of anghasdat
at b17 has to change significantly before the frame ceases to be rigid. Now note that the dimensions of
the bottleneck force the keyholder segment to be roughly vertical, i.e., to have slope withis®O
of vertical. (See Fig. 8.) Furthermore, we noted above that any feasible vertical mothepddes not
change the angle &t; by a significant amount; it is clear that this also prevents the andig;dtom
changing much. Therefore, the frame remains rigid until the key has been removed from the lock.

Now consider the positions of segments ands»1,, whenb,y,,, crosses the horizontal ling= y,.

By the dimensions of the bottleneck,; ., must have a slope withi (1/¢%) of vertical. Furthermore,
by construction of the rectanglebsbeb7, we are assured thatg — yoor, < O(e), i.€., 520, Cannot be
significantly belows;g. On the other handh,g, 4, must be below the horizontal ling = y; whenbig
has been moved down by a vertical distancd.of . Since no segment within the key can change its
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$214n
(entering
bottleneck)

keyholder 54 Soten

(leaving
bottleneck)

Fig. 8. All segments have to be inside of the shaded region when moving through the bottleneck, i.e., must be close to being
vertical. (Horizontal scale and size of the bottleneck are vastly exaggerated to allow sufficient resolution. In scale, the shaded
region is basically a vertical line.)

vertical slope significantly while,1,, is within the bottleneck (they must all remain wedged betwggn
ands;1,, and be strictly contained in the shaded region in Fig. 8), we concludedhat— y15 < O(e)
upon leaving the bottleneck, i.ey,, cannot be significantly aboues.

Therefore, thesetS,={icl,....,n|y; > y,_1andS,={i€l,...,n |y < y;_1} upon entering the
bottleneck from above and leaving it from below must sat@;ésl a; =Y .. ai +0(e). Sinces K« 1,
this implies that there is a feasible partitiond

ieSy

For the case of monotonic bend operations, the above proof can be easily modified:

Corollary 5. It is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence can
be straightened by monotonic partial single-joint bends.

Proof. The joints in the construction shown in Fig. 7 that may not be changed monotonically are

bia, ..., by, the ones that are not part of the frame. By using small quadruple joint gadgets as in
the construction for Theorem 1, we get a chain that can be opened with monotonic moves, if and only if
it can be opened. O
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4. Algorithms

In this section, we turn our attention to positive algorithmic results, giving efficient algorithms for
deciding if particular bend sequences are feasible. We consider here only the case of complete bends.

Consider an arbitrary permutatiom,= (i, ..., i,), of the bends along a wire. In order forto be a
foldable sequence, it is necessary and sufficient that for gach, ..., n the bencb,-j is foldable Recall
that in our notationP ({iy, ..., i;-1}) denotes the partially bent chain after the bends,at. ., b;,_, have
been straightened. The poilt splits P({iy,...,i;-1}) into two subchains; lef, (respectlverPn+1)
denote the subchain containing the endpa({respectivelyb,1). Now, b;; is foldable if the joint at
b;; can be straightened without causing a collision to occur betwigemd P,,+1 at any time during the
rotatlon abouty;,. We can assume, without loss of generality, tRatis fixed and thatP, ,; is pivoted
aboutb;; . Durlng this bend operation @, each pointu, on P,.; moves along a circular arey,,
subtendlng an angl,, centered om;, . Iti |s clear that in order for the bend to be feasible, none of these
arcsA, may cross the chaiRy, for aII choices of points on P, 1.

If the perpendicular projection df;, onto the line containing an edgeof P, lies on the edge, let
w, € e denote the projection point. (Each edgeRyf , has at most one projection point.) Létdenote
the union of the set of vertices @f,,; and the set of projection points on edges/f;. In the lemma
below, we observe that, in order to test feasibility of straightening the bgnd suffices to consider
only the feasibility of the final position of the chaif, ;1 and to testP, for intersection with the discrete
setA={A,: ueU}. See Fig. 9.

Lemma 6. Joint b;, is foldable if and only if (1) no arc of A intersects Po, and (2) after the bend, no
segment of P, intersects a segment of Pg.

Fig. 9. Foldability of the jointb;: The subchainP, 1 is shown with thicker lines (two dashed copies show it after different
stages of rotation abowt ). Each vertex and each projection point (shown as black diskB).pf moves along a circular arc,
shown using a thin dashed arc. In this example, the rotation shomot feasible, as it fails both conditions (1) and (2) of the
lemma.
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Proof. If joint b;, is foldable, then, by definition, there can be no intersectioR,@f with Py during its
rotation aboub;, . This implies conditions (1) and (2).

If conditions (1) and (2) hold, then we claim that there can be no intersectidy, @fwith Py during
the rotation. Consider a subsegmentf P,,1; whose endpoints are consecutive pointé/ofNote that
at least one endpoint af must be a vertex oP,,1.) During the rotation, it sweeps a regid that is
bounded by two circular arcs centeredat corresponding to the trajectories of its endpoints during the
rotation, and two line segments, corresponding to the positionsbefore and after the rotation. Here,
we are using the fact that the distance frbnto a pointg € s monotonically changes as a function of
the position ofy ons. (The projection points were introduced in order to assure this property.) Our claim
follows from the fact tha#, is a simple, connected chain: It cannot interseat some intermediate stage
of the rotation unless it intersects the boundary of the re@arSuch an intersection is exactly what is
being checked with conditions (1) and (2)0

Lemma?.Forany S C B,andany b; ¢ S, one can decidein O(n logn) timeif joint b; isfoldable for the
chain P(S).

Proof. Using standard plane sweep methods for segment intersections, adapted to include circular arcs,
we can check in Oz logn) time both conditions ((1) and (2)) of Lemma 6. Events in the sweep algorithm
correspond to joints and to vertical points of tangency of circular arcs, assuming we use a vertical sweep
line. During the sweep, we keep track of the vertical ordering of the segments and arcs that cross the
sweep line; we check for intersection between any two objects that become adjacent in this ordering,
stopping if a crossing is detected. Since we procegs) ®vents, each at a cost of(logn), the time

bound follows. O

Remark 8. Condition (2) can be tested in linear time, by Chazelle’s triangulation algorithm. We
suspect that condition (1) can also be tested in linear time. Condition (1) involves testing for rotational
separability of twosimple chains about a fixed center poirdt ), which is essentially a polar coordinate
variant of translational separability (which is easily tested for simple chains using linear-time visibility
(lower envelope) calculation). The issue that must be addressed for our problem, though, is the “wrap-
around” effect of the rotation; we believe that this can be resolved and that this idea should lead to a
reduction in running time of a factor of log

Corollary 9. The foldability of a permutation o can be tested in O(n?logn) time.

We obtain improved time bounds for testing the feasibility of a particularly important folding
sequence: the identity permutation. Many real tube-bending and wire-bending machines operate in this
way, making bends sequentially along the wire/tube. (Such is the case for the hydraulic tube-bending
machines at Boeing’s factory, where this problem was first suggested to us.) Of course, there are
chains P that can be straightened using an appropriate folding sequence but cannot be straightened
using an identity permutation folding sequence; see Fig. 1(e). However, for this special case of identity
permutations, we obtain an algorithm for determining feasibility that runs in nearly linear time:

Theorem 10. In time O(nlog?n) one can verify if the identity permutation (o = (1,2,...,n)) is a
foldable permutation for P.
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Proof. For notational convenience, we consider the equivalent problem of verifying if it is feasible, in
the orderby, by, .. ., b,, to bend the jointsh; from joint angler to final angles;, thereby transforming a
straight wireinto the final shapeP, rather than our convention until now of considering the problem of
performing bend operations to straighten the chain O

Thus, consider performing the bends in the order given by the identity permutatiand consider
the moment when we are testing the foldabilityppf The subchairP,, ,, from b; to b, 1, is a single line
segmentp; b, .1, since the jointd; .1, ..., b, are straight at the moment. Thus, verifying the foldability
of bendb; amounts to testing if the segmehh, .1 can be rotated about; by the desired amount,
without colliding with any other parts of the subchaf of P, from by to b;. In other words, we must
do awedge emptiness query with respect toP,, defined byb;, segmenb; b, 1 and the angl®;. Since
Py is connected, emptiness can be tested by verifying that the boundary of the wedge does not intersect
Py. (See Fig. 10.) Thus, we can perform this query by using (straight) ray shooting and circular-arc ray
shooting inPp; the important issue is thadt, is dynamically changing as we proceed with more bends.
However, in order to avoid the development of potentially complex dynamic circular-arc ray shooting
data structures, we devise a simple and efficient method that “walks” along portidhs tefsting for
intersection with the circular arg,, from b, 1 to b, ,, whereb, _, is the location ob, ; after the bend
atb; has been performed.

In particular, we keep track of a “painted” portion Bf, which corresponds to the subsetRfthat has
been “walked over”. We consider the chdtyto be a degenerate simple polygon, having sides which
form a counterclockwise loop arour). We consider the case in which the bendais a rotation of
the segmenk; b, ;1 clockwise to the segment; b, . ,; the case of a counterclockwise bendais handled
similarly. When we perform a bend &t, we walk (counterclockwise) along thmpainted portions of
Py, between two pointsy anda’, on the boundary oPy, wherea anda’ are defined according to cases
that depend on the outcomes of two ray-shooting queries:

Fig. 10. Testing the foldability of the joiri;. This example is intended to illustrate a generic step in the algorithm; for this
particular chain, note that it is not feasible to make the bénds. ., b; _1 to get to the state shown.
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Fig. 12. Case (b): Both of the raygb,, ;1 andb,-b:1+l hit Py. The walk extends froma to a’ over the highlighted portion of

P, painting any previously unpainted portion of it.

(a) If both of the rayD;b,11 andb; b, , miss Py (and go off to infinity), then there is nothing more to
check: the rotation at; can be done without interference wikh, sinceP; is a (connected) polygonal
chain lying in the complement of the wedge definedbpy, ;1 andb; b, , ,. See Fig. 11.

(b) If both of the raysh;b,,1 andb;b) ,, hit Py, then we letz anda’ (respectively) be the points on the

boundary ofPy where they first hitPy. See Fig. 12.
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Fig. 13. Case (c): Exactly one of the ra$,, 41 andb,-b”Hl hits Pg: b; by, +1 hits Py (left) or b,-b;Hrl hits Pg (right). The walk

extends fromz to a’ over the highlighted portion aPg, painting any previously unpainted portion of it.

(c) Ifexactly one of the rays; b,,.1 andb; b, , hits P, while the other missek, (and goes off to infinity),
then we define: anda’ as follows. Assume that the rdyb, 1 hits Py (and the ray; b, , misses
Py); the other case is handled similarly (see Fig. 13, right). Then, we defiade the point on the
boundary ofPy where the ray; b, 1 hits Py, and we define’ to be the point on the boundary &
where a ray from infinity in the directiob,_ 1b; (towardsb;) hits Py. See Fig. 13, left.

During the walk froma to a’ along the boundary oP,, we test each segment for intersection with
the circular arcy in time O(1). Whenever we reach a portion of the boundary that is already painted,
we skip over that portion, going immediately to its end. Already painted portions have endpoints that
were determined by rays in previous steps of the painting procedure. Since there are only a total of O
rays (one per edge a?), this implies only @n) endpoints of painted portions. As we walk, we mark
the corresponding portions over which we walk as “painted”. Since, by continuity, it is easy to see that
the painted portion of any one segmentRgfis connected, we know that we must encounter at least one
vertex of Py between the time that the walk leaves a painted portion and the time that the walk enters
the next painted portion. Thus, during a walk, we charge the tests that we do for intersectignaffith
to the vertices that are being painted. The remainder of the justification of the algorithm is based on two
simple claims:

Claim 11. Thereis no need to walk back over a painted portion in order to check for intersections with
an arc y at some later stage.

Proof. The fact that we need not walk over a painted portion testing again for intersectiong with
follows from the fact that with each bend in the sequence, the length of the sefhgntthat we are
rotating goeslown by the length of the last link. Thus, if the motion of the tp, 1, sweeps an arg that
does not reach a portiqm of the boundary ofPy when the linkb; b, . 1 is straight, it cannot later be that a
link b;b,.1 (j > i) can permit the tig,, to reach the same portign when pivoting is done about;;

this is a consequence of the triangle inequalityl
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Claim 12. Intesting for intersection with y, we check enough of the chain Py: if any part of it intersects
y, then it must lie on the portion between a and «’ over which we walk.

Proof. In case (a), there is nothing to check. In case (b), the closed Jordan curvé;ftom (along

a straight segment), then along the boundary of the simple polygdo «’, then back ta; (along a
straight segment) forms the boundary of a region whose only intersectionPyithalong the shared
boundary fromu to a’; thus, if y lies within this region (i.e., does not intersect the boundarygfrom

a to a’), theny does not intersect any other portion ®4. In case (c) we argue similarly, but we use the
Jordan region defined by the segment frbnto a, the boundary ofPy from a to o', the ray froma’ to
infinity (in the direction ofb;b,, 1), then the reverse of the rayb, ,, back tob;. O

The total time for walking along the chaify can be charged off to the vertices Bf resulting in time
O(n) for tests of intersection with arcs, exclusive of the ray shooting time. The final time bound is
then dominated by the time to perfomrstraight ray shooting queries in a dynamic data structure for the
changing polygonal chaifty; these ray shooting queries are utilized both in testing for intersection with
the segmem; b, , and in determining the pointsanda’ that define the walk. These ray-shooting queries
and updates are done in timgl@y? n) each, using existing techniques [16], leading to the claimed overalll
time bound.

Next, we turn to two other important classes of permutations. Again, for notational convenience, we
consider the problem of verifying if it is feasible, in the order given by the permutatidoentbthe joints
b; fromjoint angler to final angles;, thereby transforming a straight wingto the final shape?. We say
that a permutation is asutwards folding sequence (respectivelyjnwards folding sequence) if at any stage
of the folding, the set of bends that have been completed, and therefaret ateaight, is a subinterval,
bi,bit1, ..., b; (respectively, a pair of intervals, by, ..., b; andb;, b1, ..., b,); thus, the next bend to
be performed is either;,_; or b; 1 (respectivelyp; 1 or b;_,). Inwards and outwards folding sequences
are a subclass of permutations that model a constraint imposed by some forming machines. See Fig. 14
The identity permutation is a folding sequence that is a special case of both an inwards and an outwards
folding sequence.

Fig. 14. An intermediate statg, j) in the bending of an outwards (left) and an inwards (right) folding sequence. For the
outwards folding sequence on the left, the next bend is elther or b, 1; the new positions of the chain are shown dashed.
For the inwards folding sequence on the right, the next bend is ithgror5; 1.
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We show that one can efficiently search for a folding sequence that is inwards or outwards. Our
algorithms are based on dynamic programming.

First, consider the case of outwards folding sequences. We keep track stétéhas the pair, ;)
representing the interval of bends (b1, ..., b;) already completed. We construct a graphwhose
O(n?) nodes are the statés j) (with 1 <i < j < n) and whose edges link states that correspond to the
action of completing a bend &t_; or b, (if the starting state i$i, j)). Thus, each node has constant
degree. Our goal is to determine if there is a path in this graph from gsame fori € {1,2,...,n}
to (1, n). We augment this graph with a special nagelinked to each nodéi, i). Then, our problem
is readily solved in @?) time once we have the graph constructed, since it is simply searching for a
path from nodey to node(1, n). (Alternatively, we can construct the graph as we search the graph for
a path.) In order to construct the graph, we need to test whetheripendr b;,, can be performed
without intersecting the folded chai®/, linking b;_1 to b; 1. This is done in a manner very similar to
that we described above for the case of identity permutations: we perform ray-shooting queries in time
O(log?n) and then use a “painting” procedure to keep track of the states-of2'walks” that determine
circular-arc ray shooting queries. In particular, there is a separate painting procedure corresponding to
each of then — 1 choices of and to each of the — 1 choices ofj. For example, for a fixed choice of
i, the painting procedure will consider each of the possible bénds..., b, in order, allowing us to
amortize the cost of checking for intersections with the circularaassociated with each bend. In total,
the cost of the walks is @2), while there may also be @?) ray shooting queries (in a dynamically
changing polygon). Thus, the total cost is dominated by the ray shooting queries, giving an overall time
bound of Qn?logn).

For the case of an inwards folding sequence, we build a similar state graph and search it. However,
the cost of testing if a bend is feasible is somewhat higher, as we do not have an especially efficient
procedure for testing the foldability of a polygonal chain. (Our painting procedures exploit the fact that
the link being folded is straight.) Thus, we apply the relatively naive method of testing feasibility given
in Lemma 7, at a cost of @ logn) per test (which potentially improves to(® time, if our conjecture
mentioned in the remark after the Lemma is true). Thus, the overall cost of the algorithm is dominated
by the Qn?) feasibility tests, at a total cost of(@*logn). In summary, we have:

Theorem 13. In time O(n2log? ) one can determine if there is an outwards folding sequence; in time
O(n3logn) one can determine if there is an inwards folding sequence.

5. Conclusion

We conclude with some open problems that are suggested by our work:

(1) Is the bend sequencing problem for wire foldisggongly NP-complete, or is there a pseudo-
polynomial-time algorithm? If not in wire bending, is it strongly NP-complete for the 3-dimensional
sheet metal folding problem?

(2) Is it NP-hard to decide if a polygonal chain in three dimensions can be straightened? In [6] simple
examples of locked chains in three dimensions are shown; can these be extended to a hardness proc
for the decision problem?
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(3) In practice, in order to make a bend using a punch and die on a press brake, it is necessary to conside
accessibility constraints. For each bend operation, the die is placed on one side of the material, while
the punch is placed on the other side. The bend is formed by pushing the punch into the die (which
has a matching shape), with the material in between. (See Wang [34].) In the simplest model of this
operation on a wire, we can consider the punch and the die to be oppositely directed rays that form a
bend by coming together (from opposite sides of the wire) so that their apices meet at the bend point.
The accessibility constraint in this simple model is that the rays representing the punch and die must
be disjoint from the wire structure both at the initial placement of these “tools” and during the bend
operation itself.

(4) Can the foldability of a permutation be decided in subquadratic time for wire bending? This would
be possible if one had a dynamic data structure that will permit efficient (sublinear) queries for the
foldability of a vertex.
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