
Computational Geometry 25 (2003) 117–138
www.elsevier.com/locate/comgeo

An algorithmic study of manufacturing paperclips
and other folded structures

Esther M. Arkina, Sándor P. Feketeb,∗, Joseph S.B. Mitchella

a Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794-3600, USA
b Department of Mathematical Optimization, TU Braunschweig, Pockelsstr. 14, D-38106 Braunschweig, Germany

Received 20 June 2001; received in revised form 14 March 2002; accepted 30 July 2002

Communicated by H. Alt

Abstract

We study algorithmic aspects of bending wires and sheet metal into a specified structure. Problems of this type
are closely related to the question of deciding whether a simple non-self-intersecting wire structure (a carpenter’s
ruler) can be straightened, a problem that was open for several years and has only recently been solved in the
affirmative. If we impose some of the constraints that are imposed by the manufacturing process, we obtain quite
different results. In particular, we study the variant of the carpenter’s ruler problem in which there is a restriction
that only one joint can be modified at a time. For a linkage that does not self-intersect or self-touch, the recent
results of Connelly et al. and Streinu imply that it can always be straightened, modifying one joint at a time.
However, we show that for a linkage with even a single vertex degeneracy, it becomes NP-hard to decide if it can
be straightened while altering only one joint at a time. If we add the restriction that each joint can be altered at most
once, we show that the problem is NP-complete even without vertex degeneracies. In the special case, arising in
wire forming manufacturing, that each joint can be altered at most once, and must be done sequentially from one
or both ends of the linkage, we give an efficient algorithm to determine if a linkage can be straightened.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Linkages; Folding; Polygons; Manufacturing; Wire bending; NP-complete; NP-hard; Process planning

1. Introduction

The following is an algorithmic problem that arises in the study of the manufacturability of sheet
metal parts:Given a flat piece, F , of sheet metal (or cardboard, or other bendable stiff sheet material),

* Corresponding author.
E-mail addresses: estie@ams.sunysb.edu (E.M. Arkin), sandor.fekete@tu-bs.de (S.P. Fekete), jsbm@ams.sunysb.edu

(J.S.B. Mitchell).

0925-7721/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0925-7721(02)00133-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82197091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

118 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Fig. 1. Examples of paperclips: (a) and (b) are standard versions, which are readily straightened. (c) is a “butterfly” paperclip,
which is not a planar structure and is not among the wire structures considered in our two-dimensional model. (d) shows a 5-link
paperclip that cannot be straightened using complete bends in the plane. (e) shows a 6-link structure that can be straightened,
e.g., using the bend sequence animated below it for the bend sequenceσ = (1,5,4,3,2).

can a desired final polyhedral part, P , be made from it? The 2-dimensional version is the wire-
bending (“paperclip”) problem:Given a straight piece, F , of wire, can a desired simple polygonal chain,
P , be made from it? This problem also arises in the fabrication of hydraulic tubes, e.g., in airplane
manufacturing.1 In both versions of the problem, we require that any intermediate configuration during
the manufacture of the part be feasible, meaning that it should not be self-intersecting. In particular, the
paperclips that we manufacture are not allowed to be “pretzels”—we assume that the wire must stay
within the plane, and not cross over itself. See Fig. 1 for an illustration. We acknowledge that some real
paperclips are designed to cross over themselves, such as the butterfly style of clip shown in the figure.

Our problem is one of automated process planning: Determine a sequence (if one exists) for
performing the bend operations in sheet metal manufacturing. We take a somewhat idealized approach
in this paper, in that we do not attempt to model here the important aspects of tool setup, grasp positions,
robot motion plans, or specific sheet metal material properties which may affect the process. Instead, we
focus on the precise algorithmic problem of determining a sequence for bend operations, on a given sheet

1 We thank Karel Zikan for introducing to us the hydraulic tube bending problem at Boeing’s factory.

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 119

of material with given bend lines, assuming that the only constraint to performing a bend along a given
bend line is whether or not the structure intersects itself at any time during the bend operation.

Note that the problem of determining if a bend sequence exists that allows a structure tounfold is
equivalent to that of determining if a bend sequence exists that allows one tofold a flat (or straight) input
into the desired final structure: the bending operations can simply be reversed. For the remainder of the
paper, we will speak only of unfolding or straightening.

1.1. Motivation and related work

Our foldability problem is motivated from process planning in manufacturing of structures from
wire, tubing, sheet metal and cardboard. The CAD/CAM scientific community has studied extensively
the problem of manufacturability of sheet metal structures; see the thesis of Wang [34] for a survey.
Systems have been built (e.g., PART-S [12] and BendCad [17]) to do computer-aided process planning
in the context of sheet metal manufacturing; see also [3,10,19,35,36]. See [24] for a motion planning
approach to the problem of computing folding sequences for folding three-dimensional cardboard
cartons. Considerable effort has gone into the design of good heuristics for determining a bend sequence;
however, the known algorithms are based on heuristic search (e.g., A∗) in large state spaces; they are
known to be worst-case exponential. (Wang [34] cites the known complexity as O(n!2n).)

Our work is also motivated by the mathematical study of origami, which has received considerable
attention in recent years. In mathematics of origami, Bern and Hayes [5] have studied the algorithmic
complexity of deciding if a given crease pattern can be folded flat; they give an NP-hardness proof.
Lang [20,21] gives algorithms for computing crease patterns in order to achieve desired shapes in three
dimensions. Other work on computational origami includes [1,14,15,18,27,28,31]. A closely related
problem is that of flat foldings of polyhedra. It is a classic open question whether or not every convex
polytope in three dimensions can be cut open along its edges so that it unfolds flat, without overlaps.
Other variants and special cases have been studied; see [2,4,9,25,26].

Finally, we are motivated by the study of linkage problems; in fact, in the time since this paper was
first drafted, the carpenter’s ruler conjecture has been resolved by Connelly, Demaine and Rote [11]
and Streinu [32]: Any (strongly) simple polygonallinkage with fixed length links and hinged joints,
can be straightened while maintaining strong simplicity (i.e., without the linkage crossing or touching
itself). (They also show related facts about linkage systems, e.g., that any simple polygonal linkage can
be convexified.) In fact, Streinu [32] gives an algorithmic solution that bounds the complexity of the
unfolding and is somewhat more general than the slightly earlier results of [11]. These results imply
that any (strongly simple) paperclip can be manufactured if one has a machine that can perform a
sufficiently rich set of bending operations. For a recent overview of folding and unfolding, see the thesis
of Demaine [13]. Earlier and related work on linkages includes [7,8,22,23,29,30,33]. Our hardness results
are particularly interesting and relevant in light of these new developments, since we show that even
slight changes in the assumptions about the model or the allowed input results in linkages that cannot be
straightened, and it is NP-hard to decide if they can be straightened.

1.2. Summary of results

(1) We show that it is (weakly) NP-complete to determine if a given rectilinear polygonal linkage can be
straightened, under the restriction that only one joint at a time is altered and each joint can be altered

120 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

only once (so the joint must be straightened in a single bend operation). A consequence is that the
more general sheet metal bending problem is hard as well, even in the case of parallel bend lines and
an orthohedral structureP .

(2) We prove that it is (weakly) NP-hard to determine if a given polygonal linkage can be straightened
if there is avertex degeneracy, in which two vertices coincide. Here we again assume that only one
joint can be altered at a time, but we do not assume that a joint is altered only once, so we may make
any number of bends at any particular joint.

(3) We give efficient algorithms for determining if a given bend sequence is feasible, assuming only one
joint is altered at a time, and for determining if certain special classes of bend sequences are feasible.
In particular, we give an efficient (O(n log2n)) algorithm for determining if a polygonal linkage
can be straightened using asequential strategy, in which the joints are completely straightened, one
by one, in order along the linkage. We also give efficient polynomial-time algorithms for deciding
whether there is a feasible bend sequence that straightens joints in an order “inwards” from both ends
or “outwards” towards both ends. (Such constrained bend sequences may be required for automated
wire-bending machines.) These results will be made more precise in Section 4.

2. Preliminaries

The input to our problem is a simple polygonal chain (linkage),P , with vertex sequence
(b0, b1, b2, . . . , bn+1). The pointsb0 andbn+1 are theendpoints of the chain, and then verticesb1, . . . , bn
are thebends (or joints). The line segmentsbibi+1 are theedges (or links) of P . The edgebibi+1 is a
closed line segment; i.e., it includes its endpoints. We consider the chainP to be oriented fromb0 to
bn+1, and we consider each edge ofP to have aleft and aright side. Each bendbi has an associatedbend
angle θi ∈ (0,2π], measured between the right sides of the two edges incident onbi .

The chainP is strongly simple if any two edges,bibi+1 andbjbj+1, of P that are not adjacent (i �= j)
are disjoint and any two adjacent edges share only their one common endpoint. We say thatP is simple
if it is not self-crossing but it possibly is self-touching, with a joint falling exactly on a non-incident edge
or another joint; i.e.,P is simple if it is strongly simple or an infinitesimal perturbation of it is strongly
simple.

We consider the chainP to be a structure consisting of rigid rods as edges, whose lengths cannot
change, connected by hinged joints. When abend operation is performed at jointbi , the bend angleθi is
changed. Throughout this paper, we assume that the only bend operations allowed aresingle-joint bends,
in which only one bend angle is altered at a time. We establish the convention that when a bend operation
occurs atbi , the subchain containing the endpointb0 remains fixed in the plane, while the subchain
containingbn+1 rotates about the jointbi . This convention allows us to have a unique embedding of a
partially or fully straightened chain in the plane.

A bend operation iscomplete if, at the end of the operation, the bend angle isπ ; we then say that the
joint has beenstraightened. A bend operation that is not complete is called apartial bend. A sequence
of bend operations is said to bemonotonic if no bend operation increases the absolute deviation from
straightness,|θi − π |, for a joint bi . If all joints of P have been straightened, the resulting chain is a
straight line segment,F , of length

∑n
i=0 |bibi+1|, where|bibi+1| denotes the Euclidean length of segment

bibi+1. By our bend operation convention, one endpoint ofF is b0, andF contains the segmentb0b1

(which never moves during bend operations).

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 121

For S ⊆ B, we letP(S) denote the partially straightened polygonal chain having each of the bends
bi ∈ S straightened (to bend angleπ), while each of the other bends,bi /∈ S, is at its original bend angle
θi . Thus, in this notationP(B) = F andP(∅) = P . We letP(S; i, θ), for 1� i � n with i /∈ S, denote
the chain in which each bendbj ∈ S is at bend angleπ , bendbi is at angleθ , and all other bendsbj /∈ S

are at their original bend anglesθj . We say that chainP(S) orP(S; i, θ) is feasible if it is a simple chain.
We say that bendbi is foldable (or is a feasible fold) for P(S) if P(S; i, θ) is feasible for allθ in

the range betweenπ and θi (more precisely, for allθi � θ � π , if θi < π , or for all π � θ � θi , if
θi > π). If bi is foldable, then it is possible to make a complete bend atbi , meaning that the joint can be
straightened in a single operation without causing the chain to self-intersect. We say that a permutation
σ = (i1, i2, . . . , in) of the indices{1,2, . . . , n} is foldable for P if, for j = 1,2, . . . , n, joint bij is foldable
for P({bi1, . . . , bij−1}), i.e., if P can be unfolded into the straight segmentF using the bend sequence
σ (so that, by reversing the operations,P can be manufactured fromF using the reverse of the bend
sequence).

The WIRE BEND SEQUENCINGproblem can be formally stated as:Determine a foldable permutation
σ , if one exists, for a given chain P .

This paper studies the WIRE BEND SEQUENCINGproblem for polygonal chains in the plane. We note,
however, that our results have some immediate implications for the SHEET METAL BEND SEQUENCING

problem, which is defined analogously for a polyhedral surfaceP having a patternB of bend lines
(creases), each of which must be straightened in order to flattenP into a flat polygonF . Specifically,
the hardness of the SHEET METAL BEND SEQUENCING follows from the hardness of the WIRE BEND

SEQUENCING, which can be seen as a special case of the sheet metal problem in whichF is a rectangle
and the bend linesB are all segments parallel to two of the sides ofF and extending all the way acrossF .

We give an example in Fig. 1 of some common paperclip shapes, (a)–(c). We also show an example,
(d), of a 5-link paperclip that cannot be straightened using complete bends, for any permutationσ of
the bends. Finally, we show an example of a 6-link paperclip for which the foldable permutations are
{(1,5,4,3,2), (1,5,4,2,3)}; we show the sequence of bends, with the intermediate structures, for the
permutationσ = (1,5,4,3,2).

3. Hardness results

3.1. Complete bends

Our first result shows that if we require bends to be complete, as in our specification of the WIRE BEND

SEQUENCING problem, the problem of deciding if there is a feasible bend sequence is NP-complete.

Theorem 1. WIRE BEND SEQUENCING is (weakly) NP-complete, even if P is rectilinear.

Proof. We prove NP-completeness, even in the case that we are restricted to a special class of bend
sequences, namely, those that can be written as the concatenation of up to four monotone subsequences
of the index set{1, . . . , n}. Below, we refer to each subsequence of bends as amonotone pass over the
chain, going from one end to the other, performing a specified subset of complete bends.

Our reduction is from PARTITION: Given a setS of n integers,ai , which sum toA= ∑
i ai , determine

if there exists a partition of the set into two subsets each of which sums toA/2.

122 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Fig. 2. Proving hardness of the WIRE BEND SEQUENCINGproblem for rectilinear chains: frame and key.

The key idea of our construction uses two components, as shown in Fig. 2: One is a rigid “frame”
that can only be unfolded if one end of the chain can be removed from within this frame. The other
component is a “key” that encodes the partition instance. Collapsing the key is possible if and only if
there is a partition of the integers into two sets of equal sum. The total number of segments will be
�= 26+ 4n; we writebi (i = 0,1, . . . ,26+ 4n) for the vertices, andsi = (bi−1, bi) for the segments. For
any point in time, we refer to the position of a jointbi by its coordinates(xi, yi). When discussing some
of the relative distances, we used∞(bi, bj)= max{|xi − xj |, |yi − yj |}.

More precisely, the frame consist of 13 segments,s1 = (b0, b1), . . . , s13 = (b12, b13), as shown in the
figure. Segment lengths are chosen such that the size of the frame is�(L), with minimal coordinate
differencesd∞(b0, b13), d∞(b1, b12), d∞(b2, b11), d∞(b3, b10), d∞(b4, b9), d∞(b5, b8), d∞(b6, b7) being
�(ε), where ε = 1/(n3L2). The “key” consists of 13+ 4n segments,s14 = (b13, b14), . . . , s26+4n =
(b25+4n, b26+4n). Fori = 0, . . . ,4n+2, the “auxiliary” segmentss15+4i , s16+4i , s17+4i have lengthε, while
the “partition” segmentss18+4i have lengthai . The long “positioning” segmentss14, s15, s25+4n, s26+4n

have lengthsL, L/3, L/3 andL − 3nε, respectively; they guarantee that the partition segments must
have a particular relative position when removing the key. We choose the scale to be such thatL/4>A,
for technical reasons that will become clear later in the proof. As indicated in the figure, the initial
position of each key segmentsi, i = 14, . . . ,26+ 4n hasx-coordinatex13 or x13 + ε, with a horizontal
distance ofxi − x4 = ε or xi − x4 = 2ε from s4. Moreover,b14 is positioned at a vertical distance of
y14 − y4 = n2ε = 1/(nL2) aboveb4.

The purpose of the auxiliary segments is as follows. As shown in Fig. 2, we have two types of joints in
the figure: the “ordinary” ones (indicated by solid black dots) form the frame and can only be accessed
once. The “quadruple” ones (indicated by hollow dots in Fig. 2) consist of the four simple joints at three
consecutive auxiliary segments; they are found along the key as described. These quadruple joints make
it possible to simulate opening and closing such a joint a limited number of times.

Now assume that there is a partitionS = S1
·∪ S2, such that

∑
i∈S1

ai = ∑
i∈S2

ai . In order to see
that the key can be removed from the frame we first convert it into the “stair” configuration shown in

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 123

Fig. 3. Turning the key into a stair. (a) An intermediate stage of the monotone pass. (b) The stair configuration at the end of the
monotone pass, with details of the state of quadruple joints.

Fig. 3: We make one monotone pass over the chain towards the key end, and straighten one ordinary
joint per quadruple joint whenever this joint separates two segments from differentSi . Thus, segments
corresponding to numbers inS1 will be horizontal, while those for numbers inS2 will be vertical. In
order to keep the number of monotone passes limited to four, during this first pass we also straighten two
ordinary joints per quadruple joint separating two segments from the sameSi , as shown in Fig. 3(b).

Making a similar monotone pass, we can convert the stair into a “flat harmonica”, as shown in
Fig. 4, with segments fromS2 pointing “down”, i.e.yi < yi−1, and segments fromS1 pointing “up”,
i.e. yi > yi−1. By assumption about the partition, the positions of endpointsb18 and b18+4n satisfy
d∞(b18, b18+4n) < 3nε and 2L/3 − 3ε < y13 − y18 < 2L/3 + 3ε, i.e., bothb18 andb18+4n are roughly
2L/3 belowb13. Altogether, the position of the last segments26+4n of lengthL in the chain will differ by
at most O(nε) from the vertical position of segments14, with all other segments strictly in-between. This
collapsed structure can be rotated aboutb13 without colliding with any frame segments. Then it is easy to
open up the remaining frame (by straighteningb12, b11, b10, b8, b7, b6, b5, b4, b3, b2, b1 as one monotone
pass, skippingb9). Finally, the resulting monotone chain can be straightened in one last monotone pass.

Conversely, assume now that the chain can be straightened. See Fig. 5. It is clear thatb13 must be
straightened before any other joint in the set{b1, . . . , b12}. In order to avoid hitting vertexb4 during this
motion, any part of the key to the right and belowb13 must be strictly within the circleC of radius
r = √

(L+ 1/(nL2))2 + ε2 < L+ 2/(nL2) aroundb13, wherer is the distance betweenb13 andb4 (see
Fig. 4). The following technical arguments show that at this time, segments26+4n has to be in a vertical
position that basically coincides withs14, which is only possible in case of a feasible partition.

124 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Fig. 4. Turning the stair into a harmonica of small width and lengthL. (The horizontal width is not drawn to scale in order to
show details.)

Fig. 5. When straightening jointb13, the key must be fully contained in the shaded circle of radiusr < L+2/(nL2). This forces
a particular position of segments26+4n.

When starting the rotation aboutb13, s26+4n is an axis-parallel segment of lengthL − 3nε > L −
1/(nL2). The rigid frame and the closeness ofb14 andb4 ensure that segments26+4n cannot lie to the left
of s14, implying thats26+4n can only lie within the quarter circle of radiusr below and to the right ofb13

whenb13 is straightened.

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 125

Let bmin be one of the two points in{b25+4n, b26+4n} that is not further fromb13 than the other, and
let bmax be the other point. If the vertical distancey13 − ymin is greater than

√
7/(nL), it follows that the

Euclidean distance betweenbmax andb13 is at least√
7

nL
+

(
L− 1

nL2

)2

=
√(

L+ 2

nL2

)2

+ 1

nL
− 3

n2L4
>L+ 2

nL2
> r,

a contradiction to the assumption thats26+4n is fully contained inC. Now, using our assumption that
L/4> A, we know thatb25+4n andb14 are connected by a polygonal chain of length strictly less than
L/3 + L/4 + L/3 = 11L/12, implying thatb25+4n has Euclidean distance at leastL/12 from b13, so
b26+4n = bmin andb25+4n = bmax. Asb26+4n is within

√
7/(nL) of b13, it follows thatb26+4n has Euclidean

distance at leastL− √
7/(nL) from b14. If s26+4n were horizontal, then the Euclidean distance between

b25+4n andb14 would be at least√(
L− √

7/(nL)
)2 + (

L− 1/(nL2)
)2
> 11L/12,

a contradiction. Hence,s26+4n must be vertical. Just as we derived for the vertical distance betweenb13

andb26+4n, it follows for the horizontal distance thatx26+4n − x13 �
√

7/(nL)� 1.
Now observe that when starting the rotation aboutb13, all partition segments must be strictly between

s14 and the narrow strip betweens14 ands26+4n, meaning that they are all vertical. LetS1 be the set of
“upwards” partition segmentssi with yi > yi−1, andS2 be the set of “downwards” partition segmentssi
with yi < yi−1. As |y24+4n − y15| = �(nε) and |y25+4n − y14| = �(n2ε), we conclude that the integral
total length of upwards segments equals the integral total length of downwards segments.

This means that
∑

i∈S1
ai = ∑

i∈S2
ai , and we have a feasible partition. This completes the proof.✷

3.2. Partial bends

Now we consider the case in which each joint may be changed an arbitrary number of times during
the straightening operations, while still making single-joint bends (bending only one joint at a time).
This version of the problem is closely related to the carpenter’s ruler problem studied by [11,32]. In
the context of our study on folding, there may be the additional requirement of using only monotonic
bend operations, e.g., to avoid work-hardening the wire, possibly causing it to break. We begin with the
following observation about the sufficiency of monotonic single-joint bends; see also the discussion on
p. 9 of Demaine’s thesis [13].

Theorem 2. Any strongly simple polygonal chain P can be straightened using a finite number of
monotonic single-joint bends.

Proof. Consider the setS of points inn-dimensional joint-angle space that correspond to strongly simple
embeddings of the linkage. A single-joint bend corresponds to axis-parallel motion in joint-angle space.
If self-touching is prohibited,S is an open set; note too thatS is bounded. By Streinu’s result [32], there
is an opening motion of the chain that consists of a finite number of individual monotonic moves. Such an
opening motion corresponds to a path,Π , in S , comprised of a finite number of arcs, each corresponding
to a monotonic move. Letε be the Euclidean distance between pathΠ and the boundary ofS ; since
S is open, we know thatε > 0. Then we can replace each arc of the pathΠ with a finite sequence of
axis-parallel moves of sizeε/2, yielding a straightening that uses single-joint bends.✷

126 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

We will refer to a sequence of small individual moves that mimics an overall large-scale motion of
several joints as “wiggly”, since the overall motion may be achieved through back-and-forth motions of
individual segments that gradually change individual angles.

The following results show that allowing even a single point of self-incidence along the linkage
changes the overall situation quite drastically.

Lemma 3. There are polygonal chains P with a single vertex-to-vertex incidence that cannot be
straightened using partial single-joint bends.

Proof. See Fig. 6. The chain has eight joints (labeledb0, . . . , b7) and seven segments (of the form
si = (bi−1, bi)). The endpointb0 coincides with jointb5. It is easily checked that none of the joints
b1, . . . , b4 can be changed without causing a self-intersection: Assume that there is a feasible motion of
a joint bi with 0< i < 5. Then the pointsb0 andb5 would move away from each other along a circle
aroundbi . Without loss of generality, assume thatb5 remains in place, whileb0 is moving. Now consider
the first such rotation that starts withb0 andb5 coinciding, and that avoids a crossing ofs1 with both s5

ands6. If b0 moves clockwise aroundbi , it is easy to see that the angle between(b0, bi) ands5 must be at
leastπ/2 when starting the motion, or elses1 ands5 intersect. Ifb0 moves counterclockwise aroundbi ,
the same follows for the angle between(b0, bi) ands6. Therefore, the center of rotation must lie within
the shaded region shown in the figure. (The cone to the left ofb5 is feasible for clockwise rotation, while
the cone to the right ofb5 is feasible for counterclockwise roation.) However, none of the jointsb1, . . . , b4

lies inside of this feasible region. It follows thatb0, . . . , b5 form a rigid frame, as long as the angle atb5

stays smaller thanπ/2.

Fig. 6. A polygonal chain that cannot be opened with single-joint moves.

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 127

On the other hand, it is easy to see thatb7 cannot be removed from the pocket formed byb1, b2 andb3

if only the two remaining “free” jointsb5 andb6 can be changed. The claim follows.✷
If b0 andb5 have some positive distance, then the frame can be opened along the lines of the approach

in [11] or [32] by gradually straighteningb5, b6, b1, b2 andb3, so that the “zig-zagging” part betweenb0

andb3 pushes left, whileb6 swings aroundb5.
Using the frame as a gadget, we can show the following:

Theorem 4. It is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence can
be straightened by arbitrary partial single-joint bends.

Proof. The basic idea is similar to the one in Theorem 1 and also establishes a reduction of PARTITION.
(Refer to Fig. 7 for an overview.) As before, we writebi for the joints, andsi = (bi−1, bi) for the segments.
We use the idea of the construction from Lemma 3 to construct a rigid frame, with the key corresponding
to the free end of that chain. The frame has one end,b0, of the polygonal chain wedged into the cornerb13,
which has angleϕ � π/2. Because of the degeneracy atb13, none of the jointsb1, . . . , b12 can be moved
individually without causing a self-intersection betweenb0 and the chain in the neighborhood ofb13:

Fig. 7. Illustration of the proof of Theorem 4. Note that lengths are not drawn to scale, in order to show sufficient details; in
particular, the dimensions of the bottleneck are much smaller than the edges encoding the partition instance.

128 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Just like in the proof of Lemma 3, none of the jointsb1, . . . , b12 lies in the area of possible locations of
feasible rotations. This continues to be the case whileφ+ψ <π , i.e., while the sum of angles atb13 and
at b17 does not change significantly.

Again, the “key” contains then segmentss19, . . . , s19+n of integral lengthsa1, . . . , an that encode an
instance of PARTITION. As before, letS denote the set of integers for the PARTITION instance. We also
use “long” auxiliary segments of lengthsL/2 andL, whereL� ∑

i ai =A. Here segmentss19 ands20+n
have lengthL/2, while s21+n has lengthL.

The critical dimensions of the frame are chosen such that the key can just be removed from the frame
if and only if it can be collapsed to a length ofL. Removing the key consists in pulling it through the
narrow bottleneck formed by the segmentss3 ands9 by extending the “spring” formed bys14 ands15,
while moving the “keyholder”s18 down by a distance ofL+ ε. This is possible if and only if there is a
feasible partition.

More precisely, let the angle atb17 beψ � π . Let ε = O(1/nL). We assume that the dimensions
of the frame are chosen sufficiently large to guarantee that movingb17 down by a vertical distance
of L + ε increases its distance fromb13 by Lcosψ + �(ε), i.e., the angles atb17 and atb13 do not
change much. The segmentss14 ands15 forming the spring have lengthL/2cosψ +�(ε), so extending
the spring will just suffice to move the keyholders18 down by L + ε, but not more. The vertical
“height” of the bottleneck, i.e., the length of the segmentss3 ands9, is ε/3, while the horizontal “width”
x8 − x3 = x9 − x2 = ε4 is significantly smaller. (As we will discuss below, this forces the keyholder to be
roughly vertical throughout the motion.) For the initial position of the key inside of the frame, we assume
L< y18−y3 <L+ε/3 andL< y20+n−y3 <L+ε/3. Finally,y6 −y7 = L+�(ε) andx6 −x5 =�(A),
so the dimensions of the rectangle formed byb4, b5, b6, b7 are not large enough to change the basically
vertical orientation of the location segmentss19, s19+n ands20+n.

Now assume that there is a feasible partition,S = S1
·∪ S2, such that

∑
i∈S1

ai = ∑
i∈S2

ai . By
performing a (finite) “wiggly” sequence of moves, we can move the partition segments such that (1)
any segments19+i representingai ∈ S1 satisfiesyi − yi−1 = ai + O(ε5) and|xi − xi−1| = O(ε5), so that
s19+i is pointing up; (2) any segments19+i representingai ∈ S2 satisfiesyi−1 − yi = ai + O(ε5) and
|xi − xi−1| = O(ε5), so thats19+i is pointing down; and (3) we end up placingb20+n within Euclidean
distance O(ε4) from b18 and placingb21+n at distanceε/3+ O(ε5) from b3 andb8. Thus, extending the
spring by an appropriate wiggly motion moves the key through the bottleneck. Now it is easy to open the
joint b13, and unfold the whole chain.

Conversely, assume that the chain can be unfolded. As discussed above, the sum of angles atb13 and
at b17 has to change significantly before the frame ceases to be rigid. Now note that the dimensions of
the bottleneck force the keyholder segment to be roughly vertical, i.e., to have slope within O(1/ε3)

of vertical. (See Fig. 8.) Furthermore, we noted above that any feasible vertical motion ofb17 does not
change the angle atb17 by a significant amount; it is clear that this also prevents the angle atb13 from
changing much. Therefore, the frame remains rigid until the key has been removed from the lock.

Now consider the positions of segmentss18 ands21+n whenb21+n crosses the horizontal liney = y2.
By the dimensions of the bottleneck,s21+n must have a slope within#(1/ε3) of vertical. Furthermore,
by construction of the rectangleb4b5b6b7, we are assured thaty18 − y20+n � O(ε), i.e., s20+n cannot be
significantly belows18. On the other hand,b20+4n must be below the horizontal liney = y3 whenb18

has been moved down by a vertical distance ofL+ ε. Since no segment within the key can change its

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 129

Fig. 8. All segments have to be inside of the shaded region when moving through the bottleneck, i.e., must be close to being
vertical. (Horizontal scale and size of the bottleneck are vastly exaggerated to allow sufficient resolution. In scale, the shaded
region is basically a vertical line.)

vertical slope significantly whiles21+n is within the bottleneck (they must all remain wedged betweens18

ands21+n and be strictly contained in the shaded region in Fig. 8), we conclude thaty20+n − y18 � O(ε)
upon leaving the bottleneck, i.e.,s20+n cannot be significantly aboves18.

Therefore, the setsS1 = {i ∈ 1, . . . , n | yi � yi−1} andS2 = {i ∈ 1, . . . , n | yi < yi−1} upon entering the
bottleneck from above and leaving it from below must satisfy

∑
i∈S1

ai = ∑
i∈S2

ai +�(ε). Sinceε � 1,
this implies that there is a feasible partition.✷

For the case of monotonic bend operations, the above proof can be easily modified:

Corollary 5. It is NP-hard to decide if a polygonal chain P with a single vertex-to-vertex incidence can
be straightened by monotonic partial single-joint bends.

Proof. The joints in the construction shown in Fig. 7 that may not be changed monotonically are
b14, . . . , b20+n, the ones that are not part of the frame. By using small quadruple joint gadgets as in
the construction for Theorem 1, we get a chain that can be opened with monotonic moves, if and only if
it can be opened. ✷

130 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

4. Algorithms

In this section, we turn our attention to positive algorithmic results, giving efficient algorithms for
deciding if particular bend sequences are feasible. We consider here only the case of complete bends.

Consider an arbitrary permutation,σ = (i1, . . . , in), of the bends along a wire. In order forσ to be a
foldable sequence, it is necessary and sufficient that for eachj = 1, . . . , n the bendbij is foldable. Recall
that in our notationP({i1, . . . , ij−1}) denotes the partially bent chain after the bends atbi1, . . . , bij−1 have
been straightened. The pointbij splits P({i1, . . . , ij−1}) into two subchains; letP0 (respectivelyPn+1)
denote the subchain containing the endpointb0 (respectivelybn+1). Now, bij is foldable if the joint at
bij can be straightened without causing a collision to occur betweenP0 andPn+1 at any time during the
rotation aboutbij . We can assume, without loss of generality, thatP0 is fixed and thatPn+1 is pivoted
aboutbij . During this bend operation atbij , each point,u, on Pn+1 moves along a circular arc,Au,
subtending an angleθij , centered onbij . It is clear that in order for the bend to be feasible, none of these
arcsAu may cross the chainP0, for all choices of pointsu onPn+1.

If the perpendicular projection ofbij onto the line containing an edgee of Pn+1 lies on the edge, let
we ∈ e denote the projection point. (Each edge ofPn+1 has at most one projection point.) LetU denote
the union of the set of vertices ofPn+1 and the set of projection points on edges ofPn+1. In the lemma
below, we observe that, in order to test feasibility of straightening the bendbij , it suffices to consider
only the feasibility of the final position of the chainPn+1 and to testP0 for intersection with the discrete
setA= {Au: u ∈U }. See Fig. 9.

Lemma 6. Joint bij is foldable if and only if (1) no arc of A intersects P0, and (2) after the bend, no
segment of Pn+1 intersects a segment of P0.

Fig. 9. Foldability of the jointbi : The subchainPn+1 is shown with thicker lines (two dashed copies show it after different
stages of rotation aboutbij). Each vertex and each projection point (shown as black disks) ofPn+1 moves along a circular arc,
shown using a thin dashed arc. In this example, the rotation shown isnot feasible, as it fails both conditions (1) and (2) of the
lemma.

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 131

Proof. If joint bij is foldable, then, by definition, there can be no intersection ofPn+1 with P0 during its
rotation aboutbij . This implies conditions (1) and (2).

If conditions (1) and (2) hold, then we claim that there can be no intersection ofPn+1 with P0 during
the rotation. Consider a subsegment,s, of Pn+1 whose endpoints are consecutive points ofU . (Note that
at least one endpoint ofs must be a vertex ofPn+1.) During the rotation, it sweeps a regionRs that is
bounded by two circular arcs centered atbij , corresponding to the trajectories of its endpoints during the
rotation, and two line segments, corresponding to the positions ofs before and after the rotation. Here,
we are using the fact that the distance frombij to a pointq ∈ s monotonically changes as a function of
the position ofq on s. (The projection points were introduced in order to assure this property.) Our claim
follows from the fact thatP0 is a simple, connected chain: It cannot intersects at some intermediate stage
of the rotation unless it intersects the boundary of the regionRs . Such an intersection is exactly what is
being checked with conditions (1) and (2).✷
Lemma 7. For any S ⊆ B , and any bi /∈ S, one can decide in O(n logn) time if joint bi is foldable for the
chain P(S).

Proof. Using standard plane sweep methods for segment intersections, adapted to include circular arcs,
we can check in O(n logn) time both conditions ((1) and (2)) of Lemma 6. Events in the sweep algorithm
correspond to joints and to vertical points of tangency of circular arcs, assuming we use a vertical sweep
line. During the sweep, we keep track of the vertical ordering of the segments and arcs that cross the
sweep line; we check for intersection between any two objects that become adjacent in this ordering,
stopping if a crossing is detected. Since we process O(n) events, each at a cost of O(logn), the time
bound follows. ✷
Remark 8. Condition (2) can be tested in linear time, by Chazelle’s triangulation algorithm. We
suspect that condition (1) can also be tested in linear time. Condition (1) involves testing for rotational
separability of twosimple chains about a fixed center point (bi), which is essentially a polar coordinate
variant of translational separability (which is easily tested for simple chains using linear-time visibility
(lower envelope) calculation). The issue that must be addressed for our problem, though, is the “wrap-
around” effect of the rotation; we believe that this can be resolved and that this idea should lead to a
reduction in running time of a factor of logn.

Corollary 9. The foldability of a permutation σ can be tested in O(n2 logn) time.

We obtain improved time bounds for testing the feasibility of a particularly important folding
sequence: the identity permutation. Many real tube-bending and wire-bending machines operate in this
way, making bends sequentially along the wire/tube. (Such is the case for the hydraulic tube-bending
machines at Boeing’s factory, where this problem was first suggested to us.) Of course, there are
chainsP that can be straightened using an appropriate folding sequence but cannot be straightened
using an identity permutation folding sequence; see Fig. 1(e). However, for this special case of identity
permutations, we obtain an algorithm for determining feasibility that runs in nearly linear time:

Theorem 10. In time O(n log2n) one can verify if the identity permutation (σ = (1,2, . . . , n)) is a
foldable permutation for P .

132 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Proof. For notational convenience, we consider the equivalent problem of verifying if it is feasible, in
the orderb1, b2, . . . , bn, to bend the jointsbi from joint angleπ to final angleθi , thereby transforming a
straight wireinto the final shapeP , rather than our convention until now of considering the problem of
performing bend operations to straighten the chainP . ✷

Thus, consider performing the bends in the order given by the identity permutationσ , and consider
the moment when we are testing the foldability ofbi . The subchainPn+1, from bi to bn+1, is a single line
segment,bibn+1, since the jointsbi+1, . . . , bn are straight at the moment. Thus, verifying the foldability
of bendbi amounts to testing if the segmentbibn+1 can be rotated aboutbi by the desired amount,
without colliding with any other parts of the subchainP0 of P , from b0 to bi . In other words, we must
do awedge emptiness query with respect toP0, defined bybi , segmentbibn+1 and the angleθi . Since
P0 is connected, emptiness can be tested by verifying that the boundary of the wedge does not intersect
P0. (See Fig. 10.) Thus, we can perform this query by using (straight) ray shooting and circular-arc ray
shooting inP0; the important issue is thatP0 is dynamically changing as we proceed with more bends.
However, in order to avoid the development of potentially complex dynamic circular-arc ray shooting
data structures, we devise a simple and efficient method that “walks” along portions ofP0, testing for
intersection with the circular arc,γ , from bn+1 to b′

n+1, whereb′
n+1 is the location ofbn+1 after the bend

at bi has been performed.
In particular, we keep track of a “painted” portion ofP0, which corresponds to the subset ofP0 that has

been “walked over”. We consider the chainP0 to be a degenerate simple polygon, having twosides which
form a counterclockwise loop aroundP0. We consider the case in which the bend atbi is a rotation of
the segmentbibn+1 clockwise to the segmentbib′

n+1; the case of a counterclockwise bend atbi is handled
similarly. When we perform a bend atbi , we walk (counterclockwise) along theunpainted portions of
P0, between two points,a anda′, on the boundary ofP0, wherea anda′ are defined according to cases
that depend on the outcomes of two ray-shooting queries:

Fig. 10. Testing the foldability of the jointbi . This example is intended to illustrate a generic step in the algorithm; for this
particular chain, note that it is not feasible to make the bendsb1, . . . , bi−1 to get to the state shown.

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 133

Fig. 11. Case (a): Both of the raysbibn+1 andbib
′
n+1 missP0 and go off to infinity.

Fig. 12. Case (b): Both of the raysbibn+1 andbib
′
n+1 hit P0. The walk extends froma to a′ over the highlighted portion of

P0, painting any previously unpainted portion of it.

(a) If both of the rays
−−−−−→
bibn+1 and

−−−−−→
bib

′
n+1 missP0 (and go off to infinity), then there is nothing more to

check: the rotation atbi can be done without interference withP0, sinceP0 is a (connected) polygonal
chain lying in the complement of the wedge defined by

−−−−−→
bibn+1 and

−−−−−→
bib

′
n+1. See Fig. 11.

(b) If both of the rays
−−−−−→
bibn+1 and

−−−−−→
bib

′
n+1 hit P0, then we leta anda′ (respectively) be the points on the

boundary ofP0 where they first hitP0. See Fig. 12.

134 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

Fig. 13. Case (c): Exactly one of the raysbibn+1 andbib
′
n+1 hitsP0: bibn+1 hitsP0 (left) or bib

′
n+1 hitsP0 (right). The walk

extends froma to a′ over the highlighted portion ofP0, painting any previously unpainted portion of it.

(c) If exactly one of the rays
−−−−−→
bibn+1 and

−−−−−→
bib

′
n+1 hitsP0 while the other missesP0 (and goes off to infinity),

then we definea anda′ as follows. Assume that the ray
−−−−−→
bibn+1 hits P0 (and the ray

−−−−−→
bib

′
n+1 misses

P0); the other case is handled similarly (see Fig. 13, right). Then, we definea to be the point on the
boundary ofP0 where the ray

−−−−−→
bibn+1 hitsP0, and we definea′ to be the point on the boundary ofP0

where a ray from infinity in the direction
−−−−−→
bn+1bi (towardsbi) hitsP0. See Fig. 13, left.

During the walk froma to a′ along the boundary ofP0, we test each segment for intersection with
the circular arcγ in time O(1). Whenever we reach a portion of the boundary that is already painted,
we skip over that portion, going immediately to its end. Already painted portions have endpoints that
were determined by rays in previous steps of the painting procedure. Since there are only a total of O(n)

rays (one per edge ofP), this implies only O(n) endpoints of painted portions. As we walk, we mark
the corresponding portions over which we walk as “painted”. Since, by continuity, it is easy to see that
the painted portion of any one segment ofP0 is connected, we know that we must encounter at least one
vertex ofP0 between the time that the walk leaves a painted portion and the time that the walk enters
the next painted portion. Thus, during a walk, we charge the tests that we do for intersection withγ off
to the vertices that are being painted. The remainder of the justification of the algorithm is based on two
simple claims:

Claim 11. There is no need to walk back over a painted portion in order to check for intersections with
an arc γ at some later stage.

Proof. The fact that we need not walk over a painted portion testing again for intersections withγ

follows from the fact that with each bend in the sequence, the length of the segmentbibn+1 that we are
rotating goesdown by the length of the last link. Thus, if the motion of the tip,bn+1, sweeps an arcγ that
does not reach a portionµ of the boundary ofP0 when the linkbibn+1 is straight, it cannot later be that a
link bjbn+1 (j > i) can permit the tipbn+1 to reach the same portionµ when pivoting is done aboutbj ;
this is a consequence of the triangle inequality.✷

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 135

Claim 12. In testing for intersection with γ , we check enough of the chain P0: if any part of it intersects
γ , then it must lie on the portion between a and a′ over which we walk.

Proof. In case (a), there is nothing to check. In case (b), the closed Jordan curve frombi to a (along
a straight segment), then along the boundary of the simple polygonP0 to a′, then back tobi (along a
straight segment) forms the boundary of a region whose only intersection withP0 is along the shared
boundary froma to a′; thus, ifγ lies within this region (i.e., does not intersect the boundary ofP0 from
a to a′), thenγ does not intersect any other portion ofP0. In case (c) we argue similarly, but we use the
Jordan region defined by the segment frombi to a, the boundary ofP0 from a to a′, the ray froma′ to
infinity (in the direction of

−−−−−→
bibn+1), then the reverse of the ray

−−−−−→
bib

′
n+1 back tobi . ✷

The total time for walking along the chainP0 can be charged off to the vertices ofP , resulting in time
O(n) for tests of intersection with arcsγ , exclusive of the ray shooting time. The final time bound is
then dominated by the time to performn straight ray shooting queries in a dynamic data structure for the
changing polygonal chainP0; these ray shooting queries are utilized both in testing for intersection with
the segmentbib′

n+1 and in determining the pointsa anda′ that define the walk. These ray-shooting queries
and updates are done in time O(log2n) each, using existing techniques [16], leading to the claimed overall
time bound.

Next, we turn to two other important classes of permutations. Again, for notational convenience, we
consider the problem of verifying if it is feasible, in the order given by the permutation, tobend the joints
bi from joint angleπ to final angleθi , thereby transforming a straight wireinto the final shapeP . We say
that a permutation is anoutwards folding sequence (respectively,inwards folding sequence) if at any stage
of the folding, the set of bends that have been completed, and therefore arenot straight, is a subinterval,
bi, bi+1, . . . , bj (respectively, a pair of intervalsb1, b2, . . . , bi andbj , bj+1, . . . , bn); thus, the next bend to
be performed is eitherbi−1 or bj+1 (respectively,bi+1 or bj−1). Inwards and outwards folding sequences
are a subclass of permutations that model a constraint imposed by some forming machines. See Fig. 14.
The identity permutation is a folding sequence that is a special case of both an inwards and an outwards
folding sequence.

Fig. 14. An intermediate state(i, j) in the bending of an outwards (left) and an inwards (right) folding sequence. For the
outwards folding sequence on the left, the next bend is eitherbi−1 or bj+1; the new positions of the chain are shown dashed.
For the inwards folding sequence on the right, the next bend is eitherbi+1 or bj−1.

136 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

We show that one can efficiently search for a folding sequence that is inwards or outwards. Our
algorithms are based on dynamic programming.

First, consider the case of outwards folding sequences. We keep track of thestate as the pair(i, j)
representing the interval of bends (bi, bi+1, . . . , bj) already completed. We construct a graphG whose
O(n2) nodes are the states(i, j) (with 1� i < j � n) and whose edges link states that correspond to the
action of completing a bend atbi−1 or bj+1 (if the starting state is(i, j)). Thus, each node has constant
degree. Our goal is to determine if there is a path in this graph from some(i, i), for i ∈ {1,2, . . . , n}
to (1, n). We augment this graph with a special nodeν0, linked to each node(i, i). Then, our problem
is readily solved in O(n2) time once we have the graph constructed, since it is simply searching for a
path from nodeν0 to node(1, n). (Alternatively, we can construct the graph as we search the graph for
a path.) In order to construct the graph, we need to test whether bendbi−1 or bj+1 can be performed
without intersecting the folded chain,P ′, linking bi−1 to bj+1. This is done in a manner very similar to
that we described above for the case of identity permutations: we perform ray-shooting queries in time
O(log2n) and then use a “painting” procedure to keep track of the states of 2n−2 “walks” that determine
circular-arc ray shooting queries. In particular, there is a separate painting procedure corresponding to
each of then− 1 choices ofi and to each of then− 1 choices ofj . For example, for a fixed choice of
i, the painting procedure will consider each of the possible bendsbi+1, . . . , bn in order, allowing us to
amortize the cost of checking for intersections with the circular arcγ associated with each bend. In total,
the cost of the walks is O(n2), while there may also be O(n2) ray shooting queries (in a dynamically
changing polygon). Thus, the total cost is dominated by the ray shooting queries, giving an overall time
bound of O(n2 logn).

For the case of an inwards folding sequence, we build a similar state graph and search it. However,
the cost of testing if a bend is feasible is somewhat higher, as we do not have an especially efficient
procedure for testing the foldability of a polygonal chain. (Our painting procedures exploit the fact that
the link being folded is straight.) Thus, we apply the relatively naive method of testing feasibility given
in Lemma 7, at a cost of O(n logn) per test (which potentially improves to O(n) time, if our conjecture
mentioned in the remark after the Lemma is true). Thus, the overall cost of the algorithm is dominated
by the O(n2) feasibility tests, at a total cost of O(n3 logn). In summary, we have:

Theorem 13. In time O(n2 log2n) one can determine if there is an outwards folding sequence; in time
O(n3 logn) one can determine if there is an inwards folding sequence.

5. Conclusion

We conclude with some open problems that are suggested by our work:

(1) Is the bend sequencing problem for wire foldingstrongly NP-complete, or is there a pseudo-
polynomial-time algorithm? If not in wire bending, is it strongly NP-complete for the 3-dimensional
sheet metal folding problem?

(2) Is it NP-hard to decide if a polygonal chain in three dimensions can be straightened? In [6] simple
examples of locked chains in three dimensions are shown; can these be extended to a hardness proof
for the decision problem?

E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138 137

(3) In practice, in order to make a bend using a punch and die on a press brake, it is necessary to consider
accessibility constraints. For each bend operation, the die is placed on one side of the material, while
the punch is placed on the other side. The bend is formed by pushing the punch into the die (which
has a matching shape), with the material in between. (See Wang [34].) In the simplest model of this
operation on a wire, we can consider the punch and the die to be oppositely directed rays that form a
bend by coming together (from opposite sides of the wire) so that their apices meet at the bend point.
The accessibility constraint in this simple model is that the rays representing the punch and die must
be disjoint from the wire structure both at the initial placement of these “tools” and during the bend
operation itself.

(4) Can the foldability of a permutation be decided in subquadratic time for wire bending? This would
be possible if one had a dynamic data structure that will permit efficient (sublinear) queries for the
foldability of a vertex.

Acknowledgements

We thank an anonymous referee for pointing out some errors in an earlier draft and for many valuable
suggestions to improve the presentation. We thank Steve Skiena for valuable input in the early stages
of this research and, in particular, for contributing ideas to the hardness proof of Theorem 1. We also
thank Erik Demaine for discussions leading to the current version of Theorem 2. Estie Arkin acknowl-
edges support from the National Science Foundation (CCR-9732221, CCR-0098172) and HRL Labo-
ratories. Sándor Fekete acknowledges support from the National Science Foundation (ECSE-8857642,
CCR-9204585) during his time at Stony Brook (1992–93), when this research was initiated. Joe Mitchell
acknowledges support from HRL Laboratories, the National Science Foundation (CCR-9732221,
CCR-0098172), NASA Ames Research Center, Northrop-Grumman Corporation, Sandia National Labs,
Seagull Technology, and Sun Microsystems.

References

[1] E.M. Arkin, M.A. Bender, E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, S. Sethia, S.S. Skiena, When can you fold a
map?, in: F. Dehne, J.-R. Sack, R. Tamassia (Eds.), Proceedings of the 7th Workshop on Algorithms and Data Structures
(WADS 2001), in: Lecture Notes in Computer Science, Vol. 2125, Providence, RI, 2001, pp. 401–413.

[2] B. Aronov, J. O’Rourke, Nonoverlap of the star unfolding, Discrete Comput. Geom. 8 (1992) 219–250.
[3] V. Ayyadevara, D. Bourne, K. Shimada, R.H. Sturges, Determining near optimal interference-free polyhedral configura-

tions for stacking, in: Proceedings of IEEE International Symposium on Assembly and Task Planning, 1999, pp. 286–293.
[4] M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, A. Mantler, J. Snoeyink, Ununfoldable polyhedra with convex faces,

Computational Geometry 24 (2003) 51–62.
[5] M. Bern, B. Hayes, The complexity of flat origami, in: Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, 1996, pp. 175–

183.
[6] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint,

S. Whitesides, Locked and unlocked polygonal chains in 3D, in: Proc. 10th ACM-SIAM Sympos. Discrete Algorithms,
1999, pp. 866–867.

[7] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint,
S. Whitesides, Locked and unlocked polygonal chains in 3D, Discrete Comput. Geom. 26 (3) (2001) 269–281.

[8] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. Robbins, I. Streinu, G. Toussaint, S. Whitesides,
A note on reconfiguring tree linkages: Trees can lock, Discrete Appl. Math. 117 (1–3) (2002) 293–297.

138 E.M. Arkin et al. / Computational Geometry 25 (2003) 117–138

[9] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, S. Whitesides, Unfolding some
classes of orthogonal polyhedra, in: Proc. 10th Canad. Conf. Comput. Geom., 1998, pp. 70–71. Fuller version in Elec.
Proc. http://cgm.cs.mcgill.ca/cccg98/proceedings/welcome.hml.

[10] D. Bourne, C.-H. Wang, Design and manufacturing of sheet metal parts: Using features to resolve manufacturability
problems, in: A. Busnaina (Ed.), Computer in Engineering, ASME, New York, 1995, pp. 745–753.

[11] R. Connelly, E. Demaine, G. Rote, Every polygon can be untangled, in: Proc. 41st Annu. IEEE Sympos. Found. Comput.
Sci., 2000, pp. 432–442.

[12] L.J. de Vin, J. de Vries, A.H. Streppel, H.J.J. Kals, PART-S, a CAPP system for small batch manufacturing of sheet metal
components, in: Proc. of the 24th CIRP International Seminar on Manufacturing Systems, 1992, pp. 171–182.

[13] E.D. Demaine, Folding and Unfolding, PhD Thesis, Department of Computer Science, University of Waterloo, 2001.
[14] E.D. Demaine, M.L. Demaine, A. Lubiw, Folding and one straight cut suffice, in: Proc. 10th Annu. ACM-SIAM Sympos.

Discrete Alg., 1999, pp. 891–892.
[15] E.D. Demaine, M.L. Demaine, J.S.B. Mitchell, Folding flat silhouettes and wrapping polyhedral packages: New results in

computational origami, Computational Geometry 16 (1) (2000) 3–21.
[16] M.T. Goodrich, R. Tamassia, Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic

triangulations, J. Algorithms 23 (1997) 51–73.
[17] S.K. Gupta, D.A. Bourne, K.H. Kim, S.S. Krishnan, Automated process planning for sheet metal bending operations,

J. Manufacturing Systems 17 (5) (1998) 338–360.
[18] T. Hull, On the mathematics of flat origamis, Congr. Numer. 100 (1994) 215–224.
[19] K.K. Kim, D. Bourne, S. Gupta, S.S. Krishnan, Automated process planning for robotic sheet metal bending operations,

J. Manufacturing Syst. 17 (5) (1998) 338–360.
[20] R.J. Lang, Mathematical algorithms for origami design, Symmetry: Culture and Science 5 (2) (1994) 115–152.
[21] R.J. Lang, A computational algorithm for origami design, in: Proc. 12th Annu. ACM Sympos. Comput. Geom., 1996,

pp. 98–105.
[22] W.J. Lenhart, S.H. Whitesides, Turning a polygon inside-out, in: Proc. 3rd Canad. Conf. Comput. Geom., 1991, pp. 66–69.
[23] W.J. Lenhart, S.H. Whitesides, Reconfiguring closed polygonal chains in Euclideand-space, Discrete Comput. Geom. 13

(1995) 123–140.
[24] L. Lu, S. Akella, Folding cartons with fixtures: A motion planning approach, in: Proc. 1999 IEEE International Conference

on Robotics and Automation Detroit, MI, 1999, pp. 1570–1576.
[25] A. Lubiw, J. O’Rourke, When can a polygon fold to a polytope? Technical Report 048, Dept. Comput. Sci., Smith College,

June 1996. Presented at AMS Conf., 5 October 1996.
[26] M. Namiki, K. Fukuda, Unfolding 3-dimensional convex polytopes: A package for Mathematica 1.2 or 2.0, Mathematica

Notebook, Univ. of Tokyo, 1993.
[27] J. O’Rourke, Computational geometry column 33, Internat. J. Comput. Geom. Appl. 8 (1999) 381–384; Also in SIGACT

News 29 (2) (1998) 12–16, Issue 107.
[28] J. O’Rourke, Folding and unfolding in computational geometry, in: J. Akiyama, M. Kano, M. Urabe (Eds.), Proc. Japan

Conf. Discrete and Computational Geometry, Tokyo, Japan, 9–12 December 1998, in: Lecture Notes in Computer Science,
Vol. 1763, Springer-Verlag, Berlin, 2000, pp. 258–266.

[29] N. Pei, S. Whitesides, On the reachable regions of chains, in: Proc. 8th Canad. Conf. Comput. Geom., 1996, pp. 161–166.
[30] N. Pei, S. Whitesides, On folding rulers in regular polygons, in: Proc. 9th Canad. Conf. Comput. Geom., 1997, pp. 11–16.
[31] C. Schevon, J. O’Rourke. A conjecture on random unfoldings, Technical Report JHU-87/20, Johns Hopkins Univ.,

Baltimore, MD, 1987.
[32] I. Streinu, A combinatorial approach to planar non-colliding robot arm motion planning, in: Proc. 41st Annu. IEEE

Sympos. Found. Comput. Sci., 2000, pp. 443–453.
[33] M. van Kreveld, J. Snoeyink, S. Whitesides, Folding rulers inside triangles, Discrete Comput. Geom. 15 (1996) 265–285.
[34] C.-H. Wang, Manufacturability-driven decomposition of sheet metal products, PhD Thesis, Carnegie Mellon University,

The Robotics Institute, 1997.
[35] C.-H. Wang, D. Bourne, Concurrent decomposition for sheet metal products, in: ASME Design Engineering Technical

Conference, Sacramento, 1997.
[36] C.-H. Wang, R.H. Sturges, Bendcad: A design system for concurrent multiple representations of parts, J. Intelligent

Manufacturing 7 (1996) 133–144.

