35,682 research outputs found

    Influence of deflocculant on the isoelectric point of refractory powders: Considerations on the action of deflocculant

    Get PDF
    Isoelectric point changes in suspensions of refractory materials vis-a-vis the role of deflocculants used in monolithic refractories were investigated by considering the mineral compositions and adsorbed ions in four kinds of clay. Three types of curves represented the relation between the isoelectric point and the deflocculant. The surface charge of clay particles in the suspensions became negative as a result of the deflocculant, since the isoelectric point of suspensions decreased as the deflocculant was added. The isoelectric point changes of calcined alumina were also compared with those of the clays, and a similar phenomenon was observed, except that the deflocculant dispersed the calcined alumina better than it did the clays. A simple model was used to analyze the results

    IPC – Isoelectric Point Calculator

    Get PDF

    Nanoscale roughness and morphology affect the IsoElectric Point of titania surfaces

    Get PDF
    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length {\xi} and the Debye length {\lambda}D. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.Comment: 63 pages, including 7 figures and Supporting Informatio

    PIP-DB:the protein isoelectric point database

    Get PDF
    A protein's isoelectric point or pI corresponds to the solution pH at which its net surface charge is zero. Since the early days of solution biochemistry, the pI has been recorded and reported, and thus literature reports of pI abound. The Protein Isoelectric Point database (PIP-DB) has collected and collated these data to provide an increasingly comprehensive database for comparison and benchmarking purposes. A web application has been developed to warehouse this database and provide public access to this unique resource. PIP-DB is a web-enabled SQL database with an HTML GUI front-end. PIP-DB is fully searchable across a range of properties

    AMPHOTERIC COLLOIDS : I. CHEMICAL INFLUENCE OF THE HYDROGEN ION CONCENTRATION.

    Get PDF
    1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer's previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry

    Quantitative Preparative Native Continuous Polyacrylamide Gel Electrophoresis (QPNC-PAGE)

    Get PDF
    QPNC-PAGE, or quantitative preparative native continuous polyacrylamide gel electrophoresis, is a high-resolution technique applied in biochemistry and bioinorganic chemistry to separate proteins by isoelectric point. This variant of gel electrophoresis is used by biologists to isolate active or native metalloproteins in biological samples and to resolve properly and improperly folded metal cofactor-containing proteins in complex protein mixtures

    Identification of Structural Proteins of Rhizobium meliloti Temperate Phage 16-3

    Get PDF
    The structural proteins of Rhizobium meliloti temperate phage 16-3 have been analysed by means of polyacrylamide gel electrophoresis, isoelectric focusing and agarose gel electrophoresis. Five major and five minor proteins were identified and characterized with respect to their size, isoelectric point and their distribution between the head and tail of the phage particle. The synthesis of structural proteins was studied by one- and two-dimensional gel electrophoresis

    Polyelectrolyte-induced peeling of charged multilamellar vesicles

    Full text link
    We study mixtures of charged surfactants, which alone in solution form uni- and multilamellar vesicles, and oppositely charged polyelectrolytes (PEs). The phase behavior is investigated at fixed surfactant concentration as a function of the PE-to-surfactant charge ratio xx. We find that, for x>0x>0, aggregates form. Light microscopy and X-ray scattering experiments show that the isoelectric point plays a crucial role since the morphology and the microscopic structure of the aggregates are different before (x1x\leq1) and after the isoelectric point (x>1x>1). To better understand the dynamics for the formation of PE/surfactant complexes, we perform light microscopy experiments where we follow in real-time the effect of a PE solution on one multilamellar vesicle (MLV). We find that the PE induces a peeling of the bilayers of the MLV one by one. The peeling is accompanied by strong shape fluctuations of the MLV and leads ultimately to a pile of small aggregates. This novel phenomenon is analyzed in detail and discussed in terms of PE-induced tension, and pore formation and growth in a surfactant bilayer.Comment: to appear in Langmui

    Multi-­‐dimensional Protein Identification Technology

    Get PDF
    Before the rise of the Multidimentional Protein Identification Technology (MudPIT), protein and peptide mixtures were resolved using traditional proteomic technologies like the gel-­‐ based 2D chromatography that separates proteins by isoelectric point and molecular weight. This technique was tedious and limited, since the characterization of single proteins required isolation of protein gel spots, their subsequent proteolyzation and analysis using Matrix-­‐ assisted laser desorption/ionization-­‐time of flight (MALDI-­‐TOF) mass spectrometry

    Electrophoretic separation of proteins via complexation with a polyelectrolyte

    Full text link
    We suggest to augment standard isoelectronic focusing for separation of proteins in a gradient of pH by a similar focusing in the presence of a strongly charged polyelectrolyte (PE). Proteins which have the same isoelectric point but different "hidden" charge of both signs in pI point make complexes with PE, which focus in different pH. This is a result of charge inversion of such proteins by adsorbed PE molecules, which is sensitive to the hidden charge. Hence the hidden charge is a new separation parameter
    corecore