44,047 research outputs found

    Safety and efficacy of a propofol and ketamine based procedural sedation protocol in children with cerebral palsy undergoing botulinum toxin A injections.

    Get PDF
    Background Pediatric patients with cerebral palsy (CP) often undergo intramuscular botulinum toxin (BoNT‐A) injections. These injections can be painful and may require procedural sedation. An ideal sedation protocol has yet to be elucidated. Objective To investigate the safety and efficacy of a propofol and ketamine based sedation protocol in pediatric patients with cerebral palsy requiring BoNT‐A injections. Design This is a retrospective chart review of children with CP undergoing propofol and ketamine based sedation for injections with botulinum toxin A. Setting The sedations took place in a procedural sedation suite at a tertiary children’s hospital from Feb 2013 through Sept 2017. Patients 164 patients with diagnoses of cerebral palsy were included in this study. Methods An initial bolus of 0.5 mg/kg ketamine followed by a 2 mg/kg bolus of propofol was administered with supplemental boluses of propofol as needed to achieve deep sedation during the intramuscular BoNT‐A injections. Main Outcome Measurements Propofol dosages, adverse events, serious adverse events, and sedation time parameters were reviewed. Results 345 sedations were successfully performed on 164 patients. The median total dose of propofol was 4.7 mg/kg (IQR 3.5, 6.3). Adverse events were encountered in 10.1% of procedures including hypoxemia responsive to supplemental oxygen (9.6%) and transient apnea (1.4%). The mean procedure time, recovery time and total sedation time were 10, 11 and 33 minutes, respectively. With regard to patient variables, including age, weight, dose of propofol, sedation time, and Gross Motor Function Classification System classification, there was no association with increased incidence of adverse events. Conclusion Our sedation protocol of propofol and ketamine is safe and effective in children with cerebral palsy undergoing procedural sedation for intramuscular injections with BoNT‐A. The adverse events encountered appeared to be related to airway and respiratory complications secondary to musculoskeletal deformities, emphasizing the importance of airway monitoring and management in these patients

    Obstructive sleep apnea syndrome and perioperative complications: a systematic review of the literature.

    Get PDF
    Obstructive sleep apnea syndrome (OSAS) is a common sleep related breathing disorder. Its prevalence is estimated to be between 2% and 25% in the general population. However, the prevalence of sleep apnea is much higher in patients undergoing elective surgery. Sedation and anesthesia have been shown to increase the upper airway collapsibility and therefore increasing the risk of having postoperative complications in these patients. Furthermore, the majority of patients with sleep apnea are undiagnosed and therefore are at risk during the perioperative period. It is important to identify these patients so that appropriate actions can be taken in a timely fashion. In this review article, we will discuss the epidemiology of sleep apnea in the surgical population. We will also discuss why these patients are at a higher risk of having postoperative complications, with the special emphasis on the role of anesthesia, opioids, sedation, and the phenomenon of REM sleep rebound. We will also review how to identify these patients preoperatively and the steps that can be taken for their perioperative management

    The Role of rescue therapies in the treatment of severe ARDS

    Get PDF
    ARDS is characterized by a non-cardiogenic pulmonary edema with bilateral chest radiograph opacities and hypoxemia refractory to oxygen therapy. It is a common cause of admission to the ICU due to hypoxemic respiratory failure requiring mechanical ventilation. Corticosteroids are not recommended in ARDS patients. Rescue therapies alleviate hypoxemia in patients unable to maintain reasonable oxygenation: recruitment maneuvers, prone positioning, inhaled nitric oxide, high-frequency oscillatory ventilation, and extracorporeal membrane oxygenation improve oxygenation, but their impact on mortality remains unproven. Restrictive fluid management seems to be a favorable strategy with no significant reduction in 60-d mortality. Future studies are needed to clarify the efficacy of these therapies on outcomes in patients with severe ARDS, and institution of these therapies may be considered on a case-by-case basis

    Percutaneous closure of PFO in patients with reduced oxygen saturation at rest and during exercise : short- and long-term results

    Get PDF
    Background. A patent foramen ovale (PFO) is a rare cause of hypoxemia and clinical symptoms of dyspnea. Due to a right-to-left shunt, desaturated blood enters the systemic circulation in a subset of patients resulting in dyspnea and a subsequent reduction in quality of life (QoL). Percutaneous closure of PFO is the treatment of choice. Objectives. This retrospective multicentre study evaluates short- and long-term results of percutaneous closure of PFO in patients with dyspnea and/or reduced oxygen saturation. Methods. Patients with respiratory symptoms were selected from databases containing all patients percutaneously closed between January 2000 and September 2018. Improvement in dyspnea, oxygenation, and QoL was investigated using pre- and postprocedural lung function parameters and two postprocedural questionnaires (SF-36 and PFSDQ-M). Results. The average follow-up period was 36 [12-43] months, ranging from 0 months to 14 years. Percutaneous closure was successful in 15 of the 16 patients. All patients reported subjective improvement in dyspnea immediately after device deployment, consistent with their improvement in oxygen saturation (from 90 +/- 6% to 94 [92-97%] on room air and in upright position) (p<0.05). Both questionnaires also indicated an improvement of dyspnea and QoL after closure. The two early and two late deaths were unrelated to the procedure. Conclusion. PFO-related dyspnea and/or hypoxemia can be treated successfully with a percutaneous intervention with long-lasting benefits on oxygen saturation, dyspnea, and QoL

    Hypoxic training increases maximal oxygen consumption in Thoroughbred horses well-trained in normoxia.

    Get PDF
    Hypoxic training is effective for improving athletic performance in humans. It increases maximal oxygen consumption (V̇O2max) more than normoxic training in untrained horses. However, the effects of hypoxic training on well-trained horses are unclear. We measured the effects of hypoxic training on V̇O2max of 5 well-trained horses in which V̇O2max had not increased over 3 consecutive weeks of supramaximal treadmill training in normoxia which was performed twice a week. The horses trained with hypoxia (15% inspired O2) twice a week. Cardiorespiratory valuables were analyzed with analysis of variance between before and after 3 weeks of hypoxic training. Mass-specific V̇O2max increased after 3 weeks of hypoxic training (178 ± 10 vs. 194 ± 12.3 ml O2 (STPD)/(kg × min), P&lt;0.05) even though all-out training in normoxia had not increased V̇O2max. Absolute V̇O2max also increased after hypoxic training (86.6 ± 6.2 vs. 93.6 ± 6.6 l O2 (STPD)/min, P&lt;0.05). Total running distance after hypoxic training increased 12% compared to that before hypoxic training; however, the difference was not significant. There were no significant differences between pre- and post-hypoxic training for end-run plasma lactate concentrations or packed cell volumes. Hypoxic training may increase V̇O2max even though it is not increased by normoxic training in well-trained horses, at least for the durations of time evaluated in this study. Training while breathing hypoxic gas may have the potential to enhance normoxic performance of Thoroughbred horses

    MCV/Q, Medical College of Virginia Quarterly, Vol. 15 No. 3

    Get PDF

    Extracorporeal membrane oxygenation improves survival in a novel 24-hour pig model of severe acute respiratory distress syndrome

    Get PDF
    Indexación: Web of Science; Pub Med CentralExtracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. The purpose of the present study was to develop and validate an animal model of acute lung injury (ALI) which resembled severe ARDS, and which could be successfully supported with ECMO. Eighteen pigs were randomly allocated into three groups: sham, ALI, and ALI + ECMO. ALI was induced by a double-hit consisting in repeated saline lavage followed by a 2-hour period of injurious ventilation. All animals were followed up to 24 hours while being ventilated with conventional ventilation (tidal volume 10 ml/kg). The lung injury model resulted in severe hypoxemia, increased airway pressures, pulmonary hypertension, and altered alveolar membrane barrier function, as indicated by an increased protein concentration in bronchoalveolar fluid, and increased wet/dry lung weight ratio. Histologic examination revealed severe diffuse alveolar damage, characteristic of ARDS. Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931177

    Automated Home Oxygen Delivery for Patients with COPD and Respiratory Failure: A New Approach

    Get PDF
    Long-term oxygen therapy (LTOT) has become standard care for the treatment of patients with chronic obstructive pulmonary disease (COPD) and other severe hypoxemic lung diseases. The use of new portable O-2 concentrators (POC) in LTOT is being expanded. However, the issue of oxygen titration is not always properly addressed, since POCs rely on proper use by patients. The robustness of algorithms and the limited reliability of current oximetry sensors are hindering the effectiveness of new approaches to closed-loop POCs based on the feedback of blood oxygen saturation. In this study, a novel intelligent portable oxygen concentrator (iPOC) is described. The presented iPOC is capable of adjusting the O-2 flow automatically by real-time classifying the intensity of a patient's physical activity (PA). It was designed with a group of patients with COPD and stable chronic respiratory failure. The technical pilot test showed a weighted accuracy of 91.1% in updating the O-2 flow automatically according to medical prescriptions, and a general improvement in oxygenation compared to conventional POCs. In addition, the usability achieved was high, which indicated a significant degree of user satisfaction. This iPOC may have important benefits, including improved oxygenation, increased compliance with therapy recommendations, and the promotion of PA
    corecore