1,646 research outputs found
On Amplify-and-Forward Relaying Over Hyper-Rayleigh Fading Channels
Relayed transmission holds promise for the next generation of wireless communication systems due to the performance gains it can provide over non-cooperative systems. Recently hyper-Rayleigh fading, which represents fading conditions more severe than Rayleigh fading, has received attention in the context of many practical communication scenarios. Though power allocation for Amplify-and-Forward (AF) relaying networks has been studied in the literature, a theoretical analysis of the power allocation problem for hyper-Rayleigh fading channels is a novel contribution of this work. We develop an optimal power allocation (OPA) strategy for a dual-hop AF relaying network in which the relay-destination link experiences hyper-Rayleigh fading. A new closed-form expression for the average signal-to-noise ratio (SNR) at destination is derived and it is shown to provide a new upper-bound on the average SNR at destination, which outperforms a previously proposed upper-bound based on the well-known harmonic-geometric mean inequality. An OPA across the source and relay nodes, subject to a sum-power constraint, is proposed and it is shown to provide measurable performance gains in average SNR and SNR outage at the destination relative to the case of equal power allocation
Performance analysis of energy detection over hyper-Rayleigh fading channels
This study investigates the performance of energy detection (ED)-based spectrum sensing over two-wave with diffused power (TWDP) fading channels, which have been found to provide accurate characterisation for a variety of fading conditions. A closed-form expression for the average detection probability of ED-based spectrum sensing over TWDP fading channels is derived. This expression is then used to describe the behaviour of ED-based spectrum sensing for a variety of channels that include Rayleigh, Rician and hyper-Rayleigh fading models. Such fading scenarios present a reliable behavioural model of machine-to-machine wireless nodes operating in confined structures such as in-vehicular environments
MGF Approach to the Analysis of Generalized Two-Ray Fading Models
We analyze a class of Generalized Two-Ray (GTR) fading channels that consist
of two line of sight (LOS) components with random phase plus a diffuse
component. We derive a closed form expression for the moment generating
function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly
simplifies its analysis. This expression arises from the observation that the
GTR fading model can be expressed in terms of a conditional underlying Rician
distribution. We illustrate the approach to derive simple expressions for
statistics and performance metrics of interest such as the amount of fading,
the level crossing rate, the symbol error rate, and the ergodic capacity in GTR
fading channels. We also show that the effect of considering a more general
distribution for the phase difference between the LOS components has an impact
on the average SNR.Comment: 14 pages, 8 Figures and 2 Tables. This work has been accepted for
publication at IEEE Transactions on Wireless Communications. Copyright (c)
2014 IEEE. Personal use of this material is permitted. However, permission to
use this material for any other purposes must be obtained from the IEEE by
sending a request to [email protected]
Modeling Cellular Networks in Fading Environments with Dominant Specular Components
Stochastic geometry (SG) has been widely accepted as a fundamental tool for
modeling and analyzing cellular networks. However, the fading models used with
SG analysis are mainly confined to the simplistic Rayleigh fading, which is
extended to the Nakagami-m fading in some special cases. However, neither the
Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs)
which may appear in realistic fading channels. In this paper, we present a
tractable model for cellular networks with generalized two-ray (GTR) fading
channel. The GTR fading explicitly accounts for two DSCs in addition to the
diffuse components and offers high flexibility to capture diverse fading
channels that appear in realistic outdoor/indoor wireless communication
scenarios. It also encompasses the famous Rayleigh and Rician fading as special
cases. To this end, the prominent effect of DSCs is highlighted in terms of
average spectral efficiency.Comment: IEEE ICC1
Realising energy-aware communication over fading channels under QoS constraints
There exists a trade-off between energy consumption and spectral efficiency in wireless communication systems under quality of service (QoS) constraints. This paper studies the use of effective capacity theory to characterise the maximum supported channel capacity over fading channels whilst considering both QoS constraints and energy consumption. Moreover, a generalised fading channel model, i.e., the hyper Fox's H fading model, is considered that includes many practical fading channel models as special cases, e.g., Rayleigh, Rician, Weibull and Nakagami-m fading channel models. The results are readily applicable to design energy-aware communication systems over fading channels with QoS constraints, e.g., wireless sensor networks and smart grid communication systems
Unified Framework for the Effective Rate Analysis of Wireless Communication Systems over MISO Fading Channels
This paper proposes a unified framework for the effective rate analysis over arbitrary correlated and not necessarily identical multiple inputs single output (MISO) fading channels, which uses moment generating function (MGF) based approach and H transform representation. The proposed framework has the potential to simplify the cumbersome analysis procedure compared to the probability density function (PDF) based approach. Moreover, the effective rates over two specific fading scenarios are investigated, namely independent but not necessarily identical distributed (i.n.i.d.) MISO hyper Fox’s H fading channels and arbitrary correlated generalized K fading channels. The exact analytical representations for these two scenarios are also presented. By substituting corresponding parameters, the effective rates in various practical fading scenarios, such as Rayleigh, Nakagami-m, Weibull/Gamma and generalized K fading channels, are readily available. In addition, asymptotic approximations are provided for the proposed H transform and MGF based approach as well as for the effective rate over i.n.i.d. MISO hyper Fox’s H fading channels. Simulations under various fading scenarios are also presented, which support the validity of the proposed method
Multi-User Diversity with Optimal Power Allocation in Spectrum Sharing under Average Interference Power Constraint
In this paper, we investigate the performance of multi-user diversity (MUD)
with optimal power allocation (OPA) in spectrum sharing (SS) under average
interference power (AIP) constraint. In particular, OPA through average
transmit power constraint in conjunction with the AIP constraint is assumed to
maximize the ergodic secondary capacity. The solution of this problem requires
the calculation of two Lagrange multipliers instead of one as obtained for the
peak interference power (PIP) constraint and calculated using the well known
water-filling algorithm. To this end, an algorithm based on bisection method is
devised in order to calculate both Lagrange multipliers iteratively. Moreover,
Rayleigh and Nakagami- fading channels with one and multiple primary users
are considered to derive the required end-to-end SNR analysis. Numerical
results are depicted to corroborate our performance analysis and compare it
with the PIP case highlighting hence, the impact of the AIP constraint compared
to the PIP constraint application
On Some Unifications Arising from the MIMO Rician Shadowed Model
This paper shows that the proposed Rician shadowed model for multi-antenna communications allows for the unification of a wide set of models, both for multiple-input multiple-output (MIMO) and single- input single-output (SISO) communications. The MIMO Rayleigh and MIMO Rician can be deduced from the MIMO Rician shadowed, and so their SISO counterparts. Other more general SISO models, besides the Rician shadowed, are included in the model, such as the κ-μ, and its recent generalization, the κ-μ shadowed model. Moreover, the SISO η-μ and Nakagami-q models are also included in the MIMO Rician shadowed model. The literature already presents the probability density function (pdf) of the Rician shadowed Gram channel matrix in terms of the well-known gamma- Wishart distribution. We here derive its moment generating function in a tractable form. Closed- form expressions for the cumulative distribution function and the pdf of the maximum eigenvalue are also carried out.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
- …